EP3344873B1 - Gridded ion thruster with integrated solid propellant - Google Patents

Gridded ion thruster with integrated solid propellant Download PDF

Info

Publication number
EP3344873B1
EP3344873B1 EP16760449.5A EP16760449A EP3344873B1 EP 3344873 B1 EP3344873 B1 EP 3344873B1 EP 16760449 A EP16760449 A EP 16760449A EP 3344873 B1 EP3344873 B1 EP 3344873B1
Authority
EP
European Patent Office
Prior art keywords
chamber
voltage source
thruster
plasma
radiofrequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16760449.5A
Other languages
German (de)
French (fr)
Other versions
EP3344873A1 (en
Inventor
Dmytro RAFALSKYI
Ane Aanesland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3344873A1 publication Critical patent/EP3344873A1/en
Application granted granted Critical
Publication of EP3344873B1 publication Critical patent/EP3344873B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0043Electrostatic ion thrusters characterised by the acceleration grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the invention relates to a plasma thruster comprising an integrated solid propellant.
  • the invention relates more precisely to an ionic thruster, grid, comprising an integrated solid propellant.
  • the invention may find application for a satellite or a space probe.
  • the invention may find application for small satellites.
  • the invention will find an application for satellites having a mass of between 6 kg and 100 kg, possibly up to 500 kg.
  • a particularly interesting application case concerns the ā€œCubeSatā€, of which a basic module (U) weighs less than 1 kg and has dimensions of 10cm ā‡ 10cm ā‡ 10cm.
  • the plasma thruster according to the invention can in particular be integrated into a 1U module or a half-module (1 / 2U) and used in stacks of several modules by 2 (2U), 3 (3U), 6 (6U), 12 (12U) or more.
  • propellant is used here to denote a propellant in an ionic propellant, and not a product consisting of one or more propellants capable of supplying the propulsion energy of a rocket motor by chemical reaction.
  • a solid propellant plasma thruster has already been proposed. They can be classified into two categories, depending on whether they use a plasma chamber or not.
  • Teflon solid propellant
  • This electric discharge causes the ablation of the Teflon, its ionization and its acceleration mainly by electromagnetic means to generate an ion beam directly in the external space.
  • a laser beam is used to ablate and ionize a solid propellant, for example PVC. or KaptonĀ®.
  • the acceleration of the ions is generally carried out electromagnetically.
  • an insulator is placed between an anode and a cathode, the whole being under vacuum.
  • the cathode metallic, serves as ablation material to generate ions.
  • the acceleration takes place electromagnetically.
  • the techniques described in this document make it possible to obtain a relatively compact propellant. Indeed, the solid propellant is ablated, ionized and the ions are accelerated to provide propulsion with an all-in-one device.
  • the ion beam is more or less controlled because there is no separate means for controlling the density of the plasma induced by the ablation of the solid propellant and the speed of the ions. Accordingly, the thrust and specific impulse of the thruster cannot be controlled separately.
  • This supply system can be used for any thruster using a plasma chamber.
  • the solid propellant (iodine I 2 , in this case) is stored in a tank.
  • a heating means is associated with the tank. This heating means may be an element capable of receiving external radiation, placed on the outside of the tank.
  • the diode is sublimated.
  • the diode in the gas state leaves the reservoir and is directed to a chamber, located remote from the reservoir, where it is ionized to form a plasma.
  • the ionization is carried out, in this case, by the Hall effect.
  • the flow of gas entering the plasma chamber is controlled by a valve arranged between the reservoir and this chamber. We can thus achieve better control of the sublimation of the diode and of the characteristics of the plasma, compared with the techniques described in document D1.
  • the characteristics of the ion beam exiting the chamber can then be controlled by means for extracting and accelerating the ions separated from the means used to sublimate the solid propellant and generate the plasma.
  • a propellant plasma thruster integrated in a plasma chamber has already been proposed in US 7,059,111 (D5).
  • This plasma thruster based on the Hall effect, is therefore likely to be more compact than that proposed in documents D2, D3 or D4. It is also capable of better controlling the evaporation of the propellant, the plasma and the extraction of the ions, compared to document D1.
  • the propellant is stored in the liquid state and uses an additional system of electrodes to control the flow of gas leaving the tank.
  • An objective of the invention is to overcome at least one of the aforementioned drawbacks.
  • the invention also relates to a satellite comprising a thruster according to the invention and an energy source, for example a battery or a solar panel, connected to the or each source of direct or alternating voltage of the thruster.
  • an energy source for example a battery or a solar panel
  • the invention also relates to a space probe comprising a thruster according to the invention and an energy source, for example a battery or a solar panel, connected to the or each source of direct or alternating voltage of the thruster.
  • an energy source for example a battery or a solar panel
  • FIG. 1 A first embodiment of an ion propellant 100 according to the invention is shown in figure 1 .
  • the propellant 100 comprises a plasma chamber 10 and a reservoir 20 of solid propellant PS housed in the chamber 10. More precisely, the reservoir 20 comprises a conductive envelope 21 comprising the solid propellant PS, this envelope 21 being provided with one or more orifices 22. The fact of accommodating the solid propellant reservoir 20 in the chamber 10 gives the propellant greater compactness.
  • the thruster 100 also includes a radiofrequency alternating voltage source 30 and one or more coils 40 supplied by the radiofrequency alternating voltage source 30.
  • the or each coil 40 may have one or more windings.
  • a single coil 40 comprising several windings is provided.
  • the coil 40 supplied by the radiofrequency alternating voltage source 30, induces a current in the reservoir 20, which is conductive (eddy current).
  • the current induced in the tank causes a Joule effect which heats the tank 20.
  • the heat thus produced is transmitted to the solid propellant PS by thermal conduction and / or thermal radiation. Heating the solid propellant PS then makes it possible to sublimate the latter, the propellant thus being put into the state of gas.
  • the propellant in the gas state then passes through the orifice (s) 22 of the reservoir 20, in the direction of the chamber 10.
  • This same assembly 30, 40 also makes it possible to generate a plasma in the chamber 10. by ionizing the propellant in the gas state which is in chamber 10.
  • the plasma thus formed will generally be an ion-electron plasma (it should be noted that, the plasma chamber will also include neutral species - propellant in the state of gas - because generally not all gas is ionized to form plasma).
  • the same source 30 of radiofrequency alternating voltage is therefore used to sublimate the solid propellant PS and create the plasma in the chamber 10.
  • a single coil 40 is also used for this purpose.
  • the chamber 10 and the reservoir 20 are initially at the same temperature.
  • the temperature of the reservoir 20, heated by the coil (s) 40 increases.
  • the temperature of the solid propellant PS also increases, the propellant being in thermal contact with the shell 21 of the tank.
  • the assembly formed by the source 30 and the coil (s) 40 makes it possible to generate the plasma in the chamber 10.
  • the solid propellant PS is then more fully heated by the charged particles of the plasma, the coil (s) being screened by the presence of the sheath in the plasma (skin effect) as well as by the presence of the charged particles themselves within the plasma.
  • the temperature of the tank 20 can be better controlled by the presence of a heat exchanger (not shown) connected to the tank 20.
  • One or more orifice (s) 22 can be provided on the reservoir 20, this does not matter. Only the total area of the orifice or, if several orifices are provided, of all of these orifices is of importance. Their size will depend on the nature of the solid propellant used, and the desired operating parameters for the plasma (temperature, pressure).
  • This sizing will therefore be carried out on a case-by-case basis.
  • the sizing of the propellant according to the invention will take up the following steps.
  • the volume of the chamber 10 is first of all defined, as well as the nominal operating pressure P2 desired in this chamber 10 and the mass flow rate m 'of positive ions desired at the outlet of the chamber 10. These data can be obtained by numerical modeling or by routine testing. It should be noted that this mass flow rate (m ā€²) corresponds substantially to that which is found between the reservoir 20 and the chamber 10.
  • the temperature T1 desired for the tank 20 is chosen.
  • This temperature T1 being fixed, it is possible to know the propellant pressure in the corresponding gas state, namely the pressure P1 of this gas in the tank 20 (cf. figure 13 in the case of diode I 2 ).
  • diiodine (I 2 ) diiodine (I 2 )
  • I 2 diodine
  • adamantane gross chemical formula: C 10 H 16
  • ferrocene formula crude chemical: Fe (C 5 H 5 ) 2
  • Arsenic can also be used, but its toxicity makes it a solid propellant whose use is less envisaged.
  • diiodine (I 2 ) will be used as solid propellant.
  • T the temperature in Kelvins.
  • the temperature can be considered to increase by about 50K.
  • the pressure of the iodine gas increases practically by a factor of 100, for a temperature increase of 50K.
  • the leakage of diode gas through the or each orifice 22 is very small, and of the order of 100 times less than the quantity of diode gas passing through the orifice (s) 22. towards the chamber 10, when the thruster 100 is in nominal operation.
  • a greater difference between the nominal operating temperature of the propellant according to the invention and its stopping temperature will only reduce the relative losses by leakage of propellant in the gas state.
  • a propellant 100 according to the invention using the diode (I 2 ) as propellant does not need to implement a valve for the or each orifice, unlike document D2.
  • the flow control of propellant in the gas state is carried out by controlling the temperature of the tank 20, by means of the power supplied to the coil 40 by the radiofrequency alternating voltage source 30 and possibly, as specified. previously, by the presence of a heat exchanger connected to the tank 20. The check is therefore different from that which is carried out in document D3.
  • the thruster 100 also comprises a means 50 for extracting and accelerating the charged particles of the plasma, positive ions and electrons, out of the chamber 20 to form a beam 70 of charged particles at the outlet of the chamber 20.
  • this means 50 comprises a grid 51 located at one end E (outlet) of the chamber 10 and an electrode 52 housed inside the chamber 10, this electrode 52 having by construction a larger area than that of the grid 51
  • the electrode 52 can be formed by the wall itself, conductive, of the reservoir 20.
  • the electrode 52 is isolated from the wall of the chamber by an electrical insulator 58.
  • the grid 51 may have orifices of different shapes, for example circular, square, rectangular or in the form of slots, in particular parallel slots.
  • the diameter of an orifice may be between 0.2mm and 10mm, for example between 0.5mm and 2mm.
  • the means 50 is connected to the radiofrequency alternating voltage source 30.
  • the radiofrequency alternating voltage source 30 therefore ensures, in addition, the control of the means 50 for extracting and accelerating the charged particles outside. of the chamber 10. This is particularly advantageous because it makes it possible to further increase the compactness of the thruster 100.
  • this control of the means 50 of extraction and acceleration by the source 30 of radiofrequency alternating voltage makes it possible to better control the beam 70 of charged particles, unlike the techniques proposed in article D1 in particular.
  • this control also makes it possible to obtain a beam with very good electroneutrality at the outlet of the chamber 10, without using any external device for this purpose.
  • the assembly formed by the means 50 for extracting and accelerating the charged particles from the plasma and the radiofrequency alternating voltage source 30 therefore also makes it possible to obtain a neutralization of the beam 70 at the outlet of the chamber 10.
  • compactness of the thruster 10 is thus increased, which is particularly advantageous for the use of this thruster 100 for a small satellite ( ā‡ 500kg), in particular a micro-satellite (10kg-100kg) or a nano-satellite (1kg-10kg), for example of the ā€œCubeSatā€ type.
  • the gate 51 is connected to the radiofrequency voltage source 30 by means of a means 60 for managing the signal supplied by said radiofrequency voltage source 30 and the electrode 52 is connected to the radiofrequency voltage source. 30, in series, by means of a capacitor 53 and of the means 60 for managing the signal supplied by said radiofrequency voltage source 30.
  • the gate 51 is also placed at a reference potential 55, for example ground.
  • the output of the radiofrequency alternating voltage source 30, not connected to the means 60 is also set to the same reference potential 55, the ground according to the example.
  • the reference potential may be that of the space probe or of the satellite on which the thruster 100 is mounted.
  • the means 60 for managing the signal supplied by said radiofrequency voltage source 30 therefore forms a means 60 which makes it possible to transmit the signal supplied by the source 30 of radiofrequency alternating voltage in the direction of, on the one hand, or of each coil 40 and of 'on the other hand, the means 50 for extracting and accelerating the ions and electrons from the chamber 10.
  • the frequency of the signal supplied by the source 30 can be between a few MHz and a few hundred MHz, depending on the propellant used for the formation of the plasma in the chamber 10 and this, to be between the plasma frequency of ions and the plasma frequency of electrons.
  • a frequency of 13.56MHz is generally well suited, but the following frequencies can also be considered: 1MHz, 2MHz or even 4 MHz.
  • the electroneutrality of the beam 70 is ensured by the capacitive nature of the extraction and acceleration system 50 because, due to the presence of the capacitor 53, there are on average as many positive ions as there are electrons which are extracted at the over time.
  • the shape of the signal produced by the radiofrequency alternating voltage source 30 may be arbitrary. However, provision may be made for the signal supplied by the source 30 of the radiofrequency alternating voltage to the electrode 52 to be rectangular or sinusoidal.
  • the principle of operation for the extraction and acceleration of charged particles from the plasma (ions and electrons) with the first embodiment is as follows.
  • the electrode 52 has a surface which is greater, and generally significantly greater, than that of the grid 51 located at the outlet of the chamber 10.
  • the application of an RF voltage to an electrode 52 having a larger surface area than the gate 51 has the effect of generating at the level of the interface between the electrode 52 and the plasma on the one hand, and at the level of the interface between the gate 51 and the plasma on the other hand, an additional potential difference, adding to the RF potential difference.
  • This total potential difference is distributed over a sheath.
  • the cladding is a space which is formed between the grid 51 or the electrode 52 on the one hand and the plasma on the other hand where the density of positive ions is higher than the density of electrons.
  • This sheath has a variable thickness due to the variable RF signal applied to the electrode 52.
  • the electrode-gate system can be seen as a capacitor with two asymmetric walls , in this case the potential difference is applied to the part of lower capacitance and therefore of smaller surface).
  • the application of the RF signal has the effect of converting the RF voltage to voltage.
  • constant DC due to the charge of the capacitor 53, mainly at the level of the sheath of the gate 51.
  • This constant DC voltage in the sheath of the gate 51 implies that the positive ions are constantly extracted and accelerated (continuously). Indeed, this DC potential difference has the effect of making the plasma potential positive. Consequently, the positive ions of the plasma are constantly accelerated in the direction of the gate 51 (to a reference potential) and therefore extracted from the chamber 10 by this gate 51. The energy of the positive ions corresponds to this difference in DC potential (average energy).
  • the variation of the RF voltage makes it possible to vary the difference in RF + DC potential between the plasma and the gate 51. At the level of the sheath of the gate 51, this results in a change in the thickness of this sheath. When this thickness becomes less than a critical value, which happens for a period of time at regular intervals given by the frequency of the RF signal, the potential difference between the gate 51 and the plasma approaches zero (therefore the plasma potential approaches the reference potential), which makes it possible to extract electrons.
  • critical potential the plasma potential below which the electrons can be accelerated and extracted
  • Child's law which relates this critical potential to the critical thickness of the cladding below which this cladding disappears (ā€œsheath collapseā€ according to Anglo-Saxon terminology).
  • FIG 2 there is shown an alternative embodiment to the first embodiment shown in figure 1 .
  • the means 50 for extracting and accelerating the charged particles from the plasma comprises a set of at least two grids 51, 52 ā€² located at one end E (outlet) of the chamber 10, one 51 at least of the set of at least two gates 51, 52 'being connected to the radiofrequency voltage source 30 via the means 60 for managing the signal supplied by said radiofrequency voltage source 30 and the other 52 'at least of the set of at least two gates 51, 52' being connected to the radiofrequency voltage source 30, in series, by means of a capacitor 53 and of the means 60 for managing the signal supplied by said radio frequency voltage source 30.
  • connection of the gate 52 'to the source 30 of radiofrequency voltage is, on the figure 2 , identical to the connection of the electrode 52 to this source 30, on the figure 1 .
  • Each grid 51, 52 ' may have orifices of different shapes, for example circular, square, rectangular or in the form of slots, in particular parallel slots.
  • the diameter of an orifice may be between 0.2mm and 10mm, for example between 0.5mm and 2mm.
  • the distance between the two grids 52 ā€², 51 may be between 0.2mm and 10mm, for example between 0.5mm and 2mm (the exact choice depends on the DC voltage and the density of the plasma).
  • the capacitor 53 When an RF voltage is applied through the source 30, the capacitor 53 charges. The charge of the capacitor 53 then produces a DC voltage at the terminals of the capacitor 53. An RF + DC voltage is then obtained at the terminals of the assembly formed by the source 30 and the capacitor 53. The constant part of the RF + DC voltage then makes it possible to define an electric field between the two gates 52 ', 51, the average value of the RF signal alone being zero. This DC value therefore makes it possible to extract and accelerate the positive ions through the two gates 51, 52 ', continuously.
  • the plasma follows the potential printed at the gate 52 ', which is in contact with the plasma, namely RF + DC.
  • the other gate 51 reference potential 55, for example the mass
  • it is also in contact with the plasma, but only during the brief time intervals during which the electrons are extracted with the positive ions, namely when the RF + DC voltage is less than a critical value below which the sheath disappears. This critical value is defined by Child's law.
  • the electroneutrality of the beam 70 of ions and electrons can be obtained at least in part by adjusting the duration of application of the positive and / or negative potentials from the radiofrequency alternating voltage source 30.
  • This electroneutrality of the beam 70 ions and electrons can also be obtained at least in part by adjusting the amplitude of the positive and / or negative potentials coming from the radiofrequency alternating voltage source 30.
  • the advantage of this variant is, compared to the embodiment illustrated in figure 1 and implementing a gate 51 at the E end of chamber 10 and an electrode 52 housed in the chamber having a larger surface area than gate 51 to provide better control of the positive ion trajectory.
  • This is linked to the fact that a DC (continuous) potential difference is generated between the two gates 52 ', 51, under the action of the source 30 of radiofrequency alternating voltage and of the capacitor 53 in series and not at the level of the cladding between the plasma and the grid 51 (cf. previously) in the case of the first embodiment of the figure 1 .
  • the positive ions passing through the orifices of the grid 52 'do not come into contact with the wall of the grid 51 which is visible, from the point of view of these ions, only through the orifices of the grid 52. '. Accordingly, the service life of the grids 52 ', 51 according to this variant embodiment is improved compared to that of the grid 51 of the first embodiment of the figure 1 .
  • the life of the resulting propellant 100 is therefore improved.
  • the efficiency is improved because the positive ions can be focused by the set of at least two gates 51, 52 ', the flow of neutral species being reduced because the transparency to these neutral species increases. .
  • the figure 3 shows another variant of the first embodiment of the figure 1 , for which the gate 51 is connected, by its two ends to the source 30 of radiofrequency alternating voltage.
  • the figure 4 shows an alternative embodiment to the variant shown in figure 2 , for which the gate 51 is connected, by its two ends, to the radiofrequency alternating voltage source.
  • the figure 5 represents a second embodiment of an ion propellant according to the invention.
  • the source 30 used for the extraction and acceleration of the charged particles out of the plasma remains a source of radiofrequency alternating voltage whose frequency is between the plasma frequency of the ions and the plasma frequency of the electrons, the source 30 'may generate a different signal.
  • the operating frequency of the source 30 ā€² may in particular be greater than that of the operating frequency of the source 30. .
  • the figure 6 shows a variant of the second embodiment shown in figure 5 .
  • the difference between the propellant 100 shown in the figure 5 and the one shown on the figure 1 lies in the fact that the electrode 52 housed inside the chamber 10 is omitted and that a grid 52 'is added at the level of the end E (outlet) of the chamber 10.
  • the difference between the variant shown in the figure 6 and the second embodiment of the figure 5 is the same as that which was presented previously between the variant shown on the figure 2 and the first embodiment of the figure 1 .
  • the figure 7 shows another variant of the second embodiment of the figure 5 , for which the gate 51 is connected to the source 30 of radiofrequency alternating voltage.
  • the figure 8 shows an alternative embodiment to the variant shown in figure 6 , for which the gate 51 is connected to the source 30 of radiofrequency alternating voltage.
  • the figure 9 represents an alternative embodiment of the thruster 100 illustrated in figure 8 .
  • This variant embodiment differs from that shown in the figure 8 in that the reservoir 20 comprises two stages E1, E2 for injecting propellant in the gas state to the plasma chamber 10.
  • the reservoir 20 comprises a casing 21, one wall of which is provided with one or more orifice (s) 22, thereby defining a reservoir with a single stage.
  • the reservoir further comprises a membrane 22 ā€² comprising at least one orifice 22 ā€²ā€² and separating the reservoir into two stages E1, E2.
  • the reservoir 20 comprises a membrane 22 ā€² situated between the solid propellant PS and the envelope 21 provided with at least one orifice 22, said membrane 22 'comprising at least one orifice 22 ", the area of the or each orifice 22" of the membrane 22' being greater than the area of the or each orifice 22 of the envelope 21 of the tank 20.
  • This variant is of interest when, taking into account the sizing of the or each orifice 22 on the casing 21 of the reservoir 20 in order to obtain in particular the desired operating pressure P2 in the plasma chamber 10, the result is to define orifices that are too small. These orifices may then not be technically feasible. These holes can also, although technically feasible, too small to ensure that solid propellant dust and more generally impurities, will not block orifices 22 in use.
  • the or each orifice 22 "of the membrane 22 ' is dimensioned so that it is larger than the or each orifice 22 made on the casing 21 of the reservoir 20, the or each orifice 22 remaining dimensioned to obtain the desired operating pressure P2 in the plasma chamber 10.
  • a double-stage tank 20 can be envisaged for all of the embodiments described in support of the figures 1 to 7 .
  • the figure 10 represents a third embodiment of an ion propellant according to the invention.
  • FIG. 8 This figure is presented as an alternative to the realization of the figure 8 (grids 52 'and 51' both connected to the voltage source). However, it also applies as a variant to the figure 6 (grid 52 'connected to the source and grid 51 connected to ground), to the figure 7 (electrode 52 and gate 51 both connected to the voltage source), to the figure 5 (electrode 52 connected to the source and gate 51 connected to ground) and to the figure 9 .
  • the propellant 100 presented here makes it possible to form a beam 70 ā€² of positive ions at the outlet of the plasma chamber 10.
  • the radiofrequency alternating voltage source 30 is replaced by a direct voltage (DC) source 30 ".
  • DC direct voltage
  • electrons are injected into the beam 70' by an external device 80 , 81 to chamber 10.
  • This device comprises a power source 80 supplying an electron generator 81.
  • the electron beam 70 ā€²ā€² leaving the electron generator 81 is directed towards the beam 70 ā€² of positive ions to ensure electroneutrality.
  • the figures 11 and 12 represent a possible design for a plasma chamber 10 and its environment for a thruster 100 in accordance with the achievements of the figure 1 , of the figure 3 , of the figure 5 or the figure 7 .
  • the casing 21 is made of a conductive material, for example metallic (aluminum, zinc or a metallic material coated with gold, for example) or of a metal alloy (stainless steel or brass, for example).
  • a conductive material for example metallic (aluminum, zinc or a metallic material coated with gold, for example) or of a metal alloy (stainless steel or brass, for example).
  • the chamber 10 is clamped between two rings 201, 202, mounted together by means of rods 202, 204, 205 extending along the chamber 10 (longitudinal axis AX).
  • the chamber 10 is made of a dielectric material, for example ceramic.
  • the fixing of the rings and the rods can be made by bolts / nuts (not shown).
  • the rings can be made of a metallic material, for example aluminum.
  • the rods they are for example made of ceramic or a metallic material.
  • the assembly thus formed by the rings 201, 203 and the rods 202, 204, 205 allows the fixing of the chamber 10 and its environment, by means of additional parts 207, 207 ', which sandwich one 203 rings, on a system (not shown on the figures 11 and 12 ) intended to accommodate the thruster, for example a satellite or a space probe.
  • the plasma chamber and its environment conform to what has been described in support of the figures 11 and 12 .
  • the materials were chosen for a maximum acceptable temperature of 300 Ā° C.
  • the solid PS propellant used is diodine (I 2 , dry mass of about 50 g).
  • a reference temperature T1 for tank 20 has been set at 60 Ā° C. This can be obtained with a power of 10W at the level of the radiofrequency alternating voltage source 30.
  • the frequency of the signal supplied by the source 30 is chosen to be between the plasma frequency of the ions and the plasma frequency of the electrons, in this case. 13.56MHz.
  • the pressure P1 of the iodine gas in the reservoir 20 is then known by the figure 13 (case of I 2 ; cf. the corresponding formula F1), this one providing the link between P1 and T1.
  • P1 is 10 Torr (approximately 1330 Pa).
  • the pressure P2 in chamber 10 must then be between 7Pa and 15Pa with a mass flow m 'of iodine gas less than 15sccm ( ā‡ 1.8.10 -6 kg.s -1 ) between the tank 20 and room 10.
  • the diameter of the equivalent (circular) orifice is about 50 microns.
  • the orifice When the orifice is single, it will therefore have a diameter of 50 microns.
  • the orifice 22 is then dimensioned.
  • the thruster 100 according to the invention can in particular be used for a satellite S or a space probe SP.
  • FIG 14 represents, schematically, a satellite S comprising a thruster 100 according to the invention and an energy source SE, for example a battery or a solar panel, connected to the or each source of direct voltage 30 "or alternating voltage 30, 30 '(radio frequency or microwave, as the case may be) of the thruster 100.
  • an energy source SE for example a battery or a solar panel, connected to the or each source of direct voltage 30 "or alternating voltage 30, 30 '(radio frequency or microwave, as the case may be) of the thruster 100.
  • FIG 15 it schematically represents a space probe SS comprising a thruster 100 according to the invention and an energy source SE, for example a battery or a solar panel, connected to the or each source of direct voltage 30 "or alternating voltage 30 , 30 '(radiofrequency or microwave, as the case may be) from the thruster 100.
  • an energy source SE for example a battery or a solar panel

Description

L'invention concerne un propulseur plasma comportant un propergol solide intƩgrƩ.The invention relates to a plasma thruster comprising an integrated solid propellant.

L'invention concerne plus prƩcisƩment un propulseur ionique, Ơ grille, comportant un propergol solide intƩgrƩ.The invention relates more precisely to an ionic thruster, grid, comprising an integrated solid propellant.

L'invention pourra trouver application pour un satellite ou une sonde spatiale.The invention may find application for a satellite or a space probe.

Plus particuliĆØrement, l'invention pourra trouver application pour des petits satellites. Typiquement, l'invention trouvera une application pour des satellites prĆ©sentant une masse comprise entre 6kg et 100kg, pouvant Ć©ventuellement aller jusqu'Ć  500kg. Un cas particuliĆØrement intĆ©ressant d'application concerne le Ā« CubeSat Ā» dont un module (U) de base fait moins d'1kg et prĆ©sente des dimensions de 10cmāˆ—10cmāˆ—10cm. Le propulseur plasma selon l'invention peut en particulier ĆŖtre intĆ©grĆ© dans un module 1U ou un demi-module (1/2U) et utilisĆ© dans des empilements de plusieurs modules par 2 (2U), 3 (3U), 6 (6U), 12 (12U) ou plus.More particularly, the invention may find application for small satellites. Typically, the invention will find an application for satellites having a mass of between 6 kg and 100 kg, possibly up to 500 kg. A particularly interesting application case concerns the ā€œCubeSatā€, of which a basic module (U) weighs less than 1 kg and has dimensions of 10cm āˆ— 10cm āˆ— 10cm. The plasma thruster according to the invention can in particular be integrated into a 1U module or a half-module (1 / 2U) and used in stacks of several modules by 2 (2U), 3 (3U), 6 (6U), 12 (12U) or more.

Le terme "propergol" est ici utilisĆ© pour dĆ©signer un agent propulsif dans un propulseur ionique, et non pas un produit constituĆ© par un ou plusieurs ergols apte Ć  fournir par rĆ©action chimique l'Ć©nergie de propulsion d'un moteur-fusĆ©e.The term ā€œpropellantā€ is used here to denote a propellant in an ionic propellant, and not a product consisting of one or more propellants capable of supplying the propulsion energy of a rocket motor by chemical reaction.

Un propulseur plasma Ć  propergol solide a dĆ©jĆ  Ć©tĆ© proposĆ©. On peut les classer en deux catĆ©gories, selon qu'ils mettent en œuvre une chambre Ć  plasma ou non.A solid propellant plasma thruster has already been proposed. They can be classified into two categories, depending on whether they use a plasma chamber or not.

Dans l'article de Keidar & al., Ā« Electric propulsion for small satellites Ā», Plasma Phys. Control. Fusion, 57 (2015 ) (D1), diffĆ©rentes techniques sont dĆ©crites pour gĆ©nĆ©rer un plasma Ć  partir d'un propergol solide, toutes basĆ©es sur une ablation d'un propergol solide. Le propergol solide donne directement sur l'espace extĆ©rieur, Ć  savoir l'espace pour des satellites ou sondes spatiales, sans chambre plasma.In the article by Keidar & al., ā€œElectric propulsion for small satellitesā€, Plasma Phys. Control. Merger, 57 (2015 ) ( D1 ), different techniques are described for generating a plasma from a solid propellant, all based on ablation of a solid propellant. The solid propellant gives directly onto the external space, namely space for satellites or space probes, without a plasma chamber.

Selon une premiĆØre technique, on dispose du tĆ©flon (propergol solide) entre une anode et une cathode entre lesquelles on rĆ©alise une dĆ©charge Ć©lectrique. Cette dĆ©charge Ć©lectrique provoque l'ablation du tĆ©flon son ionisation et son accĆ©lĆ©ration principalement par voie Ć©lectromagnĆ©tique pour gĆ©nĆ©rer un faisceau d'ions directement dans l'espace externe.According to a first technique, Teflon (solid propellant) is placed between an anode and a cathode between which an electric discharge is carried out. This electric discharge causes the ablation of the Teflon, its ionization and its acceleration mainly by electromagnetic means to generate an ion beam directly in the external space.

Selon une deuxiĆØme technique, on utilise un faisceau laser pour rĆ©aliser l'ablation et l'ionisation d'un propergol solide, par exemple du PVC ou du KaptonĀ®. L'accĆ©lĆ©ration des ions est gĆ©nĆ©ralement rĆ©alisĆ©e par voie Ć©lectromagnĆ©tique.According to a second technique, a laser beam is used to ablate and ionize a solid propellant, for example PVC. or KaptonĀ®. The acceleration of the ions is generally carried out electromagnetically.

Selon une troisiĆØme technique, on dispose un isolant entre une anode et une cathode, le tout Ć©tant sous vide. La cathode, mĆ©tallique, sert de matĆ©riau d'ablation pour gĆ©nĆ©rer des ions. L'accĆ©lĆ©ration s'effectue par voie Ć©lectromagnĆ©tique.According to a third technique, an insulator is placed between an anode and a cathode, the whole being under vacuum. The cathode, metallic, serves as ablation material to generate ions. The acceleration takes place electromagnetically.

Les techniques dƩcrites dans ce document permettent d'obtenir un propulseur relativement compact. En effet, le propergol solide est ablatƩ, ionisƩ et les ions sont accƩlƩrƩs pour assurer la propulsion avec un dispositif tout-en-un.The techniques described in this document make it possible to obtain a relatively compact propellant. Indeed, the solid propellant is ablated, ionized and the ions are accelerated to provide propulsion with an all-in-one device.

Toutefois, la consƩquence est qu'il n'y a pas de contrƓle sƩparƩ de la sublimation du propergol solide, du plasma et du faisceau d'ions.However, the consequence is that there is no separate control of the sublimation of the solid propellant, the plasma and the ion beam.

En particulier, le faisceau d'ions est plus ou moins contrĆ“lĆ© du fait qu'il n' y a pas de moyens sĆ©parĆ©s pour contrĆ“ler la densitĆ© du plasma induit par l'ablation du propergol solide et la vitesse des ions. En consĆ©quence, la poussĆ©e et l'impulsion spĆ©cifique du propulseur ne peuvent pas ĆŖtre contrĆ“lĆ©es sĆ©parĆ©ment.In particular, the ion beam is more or less controlled because there is no separate means for controlling the density of the plasma induced by the ablation of the solid propellant and the speed of the ions. Accordingly, the thrust and specific impulse of the thruster cannot be controlled separately.

On n'a gĆ©nĆ©ralement pas ce type d'inconvĆ©nients lorsqu'une chambre Ć  plasma est mise en œuvre.We generally do not have this type of disadvantage when a plasma chamber is implemented.

L'article de Polzin & al., Ā« Iodine Hall Thruster Propellant Feed System for a CubeSat Ā», American Institute of Aeronautics and Astronautics (D2) propose un systĆØme d'alimentation en propergol solide pour un propulseur fonctionnant par effet Hall.The article of Polzin & al., ā€œIodine Hall Thruster Propellant Feed System for a CubeSatā€, American Institute of Aeronautics and Astronautics (D2) proposes a solid propellant supply system for a thruster operating by Hall effect.

Ce systĆØme d'alimentation est utilisable pour tout propulseur mettant en œuvre une chambre Ć  plasma.This supply system can be used for any thruster using a plasma chamber.

En effet, dans l'article D2, le propergol solide (iode I2, en l'occurrence) est stockĆ© dans un rĆ©servoir. Un moyen de chauffage est associĆ© au rĆ©servoir. Ce moyen de chauffage peut ĆŖtre un Ć©lĆ©ment apte Ć  recevoir un rayonnement externe, placĆ© sur l'extĆ©rieur du rĆ©servoir. Ainsi, lorsque le rĆ©servoir est chauffĆ©, le diiode est sublimĆ©. Le diiode Ć  l'Ć©tat de gaz sort du rĆ©servoir et est dirigĆ© vers une chambre, situĆ©e Ć  distance du rĆ©servoir, oĆ¹ il est ionisĆ© pour former un plasma. L'ionisation est rĆ©alisĆ©e, dans le cas d'espĆØce, par effet Hall. Le dĆ©bit de gaz entrant dans la chambre plasma est contrĆ“lĆ© par une valve disposĆ©e entre le rĆ©servoir et cette chambre. On peut ainsi rĆ©aliser un meilleur contrĆ“le de la sublimation du diiode et des caractĆ©ristiques du plasma, par rapport aux techniques dĆ©crites dans le document D1.In fact, in article D2, the solid propellant (iodine I 2 , in this case) is stored in a tank. A heating means is associated with the tank. This heating means may be an element capable of receiving external radiation, placed on the outside of the tank. Thus, when the tank is heated, the diode is sublimated. The diode in the gas state leaves the reservoir and is directed to a chamber, located remote from the reservoir, where it is ionized to form a plasma. The ionization is carried out, in this case, by the Hall effect. The flow of gas entering the plasma chamber is controlled by a valve arranged between the reservoir and this chamber. We can thus achieve better control of the sublimation of the diode and of the characteristics of the plasma, compared with the techniques described in document D1.

Par ailleurs, les caractĆ©ristiques du faisceau d'ions sortant de la chambre peuvent alors ĆŖtre contrĆ“lĆ©es par un moyen d'extraction et d'accĆ©lĆ©ration des ions sĆ©parĆ©s des moyens mis en œuvre pour sublimer le propergol solide et gĆ©nĆ©rer le plasma.Moreover, the characteristics of the ion beam exiting the chamber can then be controlled by means for extracting and accelerating the ions separated from the means used to sublimate the solid propellant and generate the plasma.

Ce systĆØme prĆ©sente donc de nombreux avantages par rapport Ć  ceux dĆ©crits dans le document D1.This system therefore has many advantages over those described in document D1.

Toutefois, dans le document D2, la prĆ©sence d'un tel systĆØme d'alimentation rend le propulseur plasma peu compact et en consĆ©quence, peu envisageable pour des petits satellites, en particulier pour un module de type Ā« CubeSat Ā».However, in document D2, the presence of such a power supply system makes the plasma thruster not very compact and consequently not very conceivable for small satellites, in particular for a ā€œCubeSatā€ type module.

Dans US 8 610 356 (D3), il est Ć©galement proposĆ© un systĆØme utilisant un propergol tel que l'iode (I2) stockĆ© dans un rĆ©servoir situĆ© Ć  distance d'une chambre plasma. Le contrĆ“le du dĆ©bit de gaz de diiode sortant du rĆ©servoir est rĆ©alisĆ© par des capteurs de tempĆ©rature et pression installĆ©s en sortie du rĆ©servoir et reliĆ©s Ć  une boucle de contrĆ“le de la tempĆ©rature du rĆ©servoir.In US 8,610,356 (D3), a system is also proposed using a propellant such as iodine (I 2 ) stored in a reservoir located at a distance from a plasma chamber. The flow of diode gas leaving the tank is controlled by temperature and pressure sensors installed at the tank outlet and connected to a tank temperature control loop.

LĆ  Ć©galement, le systĆØme est peu compact.Here too, the system is not very compact.

Dans le mĆŖme type de systĆØme que ceux proposĆ©s dans les documents D2 ou D3, on peut encore citer le document US 6 609 363 (D4), qui dĆ©crit un propulseur ionique selon le prĆ©ambule de la revendication 1.In the same type of system as those proposed in documents D2 or D3, we can also cite document US 6,609,363 (D4), which describes an ion propellant according to the preamble of claim 1.

Il convient de noter qu'un propulseur plasma Ć  propergol intĆ©grĆ© dans une chambre plasma a dĆ©jĆ  Ć©tĆ© proposĆ© dans US 7 059 111 (D5). Ce propulseur plasma, basĆ© sur l'effet Hall, est donc susceptible d'ĆŖtre plus compact que celui proposĆ© dans les documents D2, D3 ou D4. Il est Ć©galement susceptible de mieux contrĆ“ler l'Ć©vaporation du propergol, le plasma et l'extraction des ions, par rapport au document D1. Toutefois, le propergol est stockĆ© Ć  l'Ć©tat liquide et utilise un systĆØme additionnel d'Ć©lectrodes pour contrĆ“ler le dĆ©bit de gaz sortant du rĆ©servoir.It should be noted that a propellant plasma thruster integrated in a plasma chamber has already been proposed in US 7,059,111 (D5). This plasma thruster, based on the Hall effect, is therefore likely to be more compact than that proposed in documents D2, D3 or D4. It is also capable of better controlling the evaporation of the propellant, the plasma and the extraction of the ions, compared to document D1. However, the propellant is stored in the liquid state and uses an additional system of electrodes to control the flow of gas leaving the tank.

Un objectif de l'invention est de pallier l'un au moins des inconvƩnients prƩcitƩs.An objective of the invention is to overcome at least one of the aforementioned drawbacks.

Pour atteindre cet objectif, l'invention propose un propulseur ionique, comprenant :

  • une chambre,
  • un rĆ©servoir comprenant un propergol solide, ledit rĆ©servoir Ć©tant logĆ© dans la chambre et comportant une enveloppe conductrice munie d'au moins un orifice ;
  • un ensemble de moyens pour former un plasma ions-Ć©lectrons dans la chambre, ledit ensemble Ć©tant apte Ć  sublimer le propergol solide dans le rĆ©servoir pour former un propergol Ć  l'Ć©tat de gaz, puis Ć  gĆ©nĆ©rer ledit plasma dans la chambre Ć  partir du propergol Ć  l'Ć©tat de gaz provenant du rĆ©servoir Ć  travers ledit au moins orifice ;
  • un moyen d'extraction et d'accĆ©lĆ©ration d'au moins les ions du plasma hors de la chambre, ledit moyen d'extraction et d'accĆ©lĆ©ration comprenant :
    • soit une Ć©lectrode logĆ©e dans la chambre Ć  laquelle est associĆ©e une grille situĆ©e Ć  une extrĆ©mitĆ© de la chambre, ladite Ć©lectrode prĆ©sentant une surface plus importante que la surface de la grille,
    • soit un ensemble d'au moins deux grilles situĆ©es Ć  une extrĆ©mitĆ© de la chambre ;
  • une source de tension continue ou une source de tension alternative radiofrĆ©quence disposĆ©e en sĆ©rie avec un condensateur et adaptĆ©e pour gĆ©nĆ©rer un signal dont la radiofrĆ©quence est comprise entre la frĆ©quence plasma des ions et la frĆ©quence plasma des Ć©lectrons, ladite source de tension continue ou alternative radiofrĆ©quence Ć©tant connectĆ©e, par l'une de ses sorties, au moyen d'extraction et d'accĆ©lĆ©ration d'au moins les ions du plasma hors de la chambre, et plus prĆ©cisĆ©ment:
    • soit Ć  l'Ć©lectrode,
    • soit Ć  l'une des grilles dudit ensemble d'au moins deux grilles,
la grille associƩe Ơ l'Ʃlectrode ou, selon le cas, l'autre grille dudit ensemble d'au moins deux grilles Ʃtant soit mise Ơ un potentiel de rƩfƩrence, soit connectƩe Ơ l'autre des sorties de ladite source de tension alternative radiofrƩquence ;
ledit moyen d'extraction et d'accƩlƩration et ladite source de tension continue ou alternative radiofrƩquence permettant de former, en sortie de la chambre, un faisceau comportant au moins des ions.To achieve this objective, the invention provides an ion propellant, comprising:
  • room,
  • a tank comprising a solid propellant, said tank being housed in the chamber and comprising a conductive envelope provided with at least one orifice;
  • a set of means for forming an ion-electron plasma in the chamber, said set being able to sublimate the solid propellant in the tank to form a propellant in the gas state, then to generate said plasma in the chamber from the propellant in the form of gas coming from the reservoir through said at least orifice;
  • means for extracting and accelerating at least the ions from the plasma out of the chamber, said means for extracting and accelerating comprising:
    • either an electrode housed in the chamber with which is associated a grid located at one end of the chamber, said electrode having a larger area than the area of the grid,
    • either a set of at least two grids located at one end of the chamber;
  • a direct voltage source or a radiofrequency alternating voltage source arranged in series with a capacitor and adapted to generate a signal the radiofrequency of which is between the plasma frequency of the ions and the plasma frequency of the electrons, said direct or alternating radiofrequency voltage source being connected, by one of its outputs, by means of extraction and acceleration of at least the ions of the plasma outside the chamber, and more precisely:
    • either to the electrode,
    • either to one of the grids of said set of at least two grids,
the gate associated with the electrode or, as the case may be, the other gate of said set of at least two gates being either set to a reference potential, or connected to the other of the outputs of said radiofrequency alternating voltage source;
said extraction and acceleration means and said radiofrequency direct or alternating voltage source making it possible to form, at the outlet of the chamber, a beam comprising at least ions.

Le propulseur pourra Ʃgalement comprendre l'une au moins des caractƩristiques suivantes, prises seules ou en combinaison :

  • la source de tension connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration est une source de tension alternative radiofrĆ©quence, et l'ensemble de moyens pour former le plasma ions-Ć©lectrons comprend au moins une bobine alimentĆ©e par cette mĆŖme source de tension alternative radiofrĆ©quence par l'intermĆ©diaire d'un moyen pour gĆ©rer le signal fourni par ladite source de tension radiofrĆ©quence en direction d'une part, de ladite au moins une bobine et d'autre part, du moyen d'extraction et d'accĆ©lĆ©ration, pour former un faisceau d'ions et d'Ć©lectrons en sortie de la chambre ;
  • l'ensemble de moyens pour former le plasma ions -Ć©lectrons comprend au moins une bobine alimentĆ©e par une source de tension alternative radiofrĆ©quence diffĆ©rente de la source de tension continue ou alternative radiofrĆ©quence connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration ou au moins une antenne micro-ondes alimentĆ©e par une source de tension alternative micro-ondes ;
  • la source de tension connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration est une source de tension alternative radiofrĆ©quence, pour former, en sortie de la chambre, un faisceau d'ions et d'Ć©lectrons ;
  • le moyen d'extraction et d'accĆ©lĆ©ration est un ensemble d'au moins deux grilles situĆ©es Ć  une extrĆ©mitĆ© de la chambre, l'Ć©lectroneutralitĆ© du faisceau d'ions et d'Ć©lectrons est obtenue au moins en partie par rĆ©glage de la durĆ©e d'application des potentiels positifs et/ou nĆ©gatifs issus de la source de tension alternative radiofrĆ©quence connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration ;
  • le moyen d'extraction et d'accĆ©lĆ©ration est un ensemble d'au moins deux grilles situĆ©es Ć  une extrĆ©mitĆ© de la chambre, l'Ć©lectroneutralitĆ© du faisceau d'ions et d'Ć©lectrons est obtenue au moins en partie par rĆ©glage de l'amplitude des potentiels positifs et/ou nĆ©gatifs issus de la source de tension alternative radiofrĆ©quence connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration ;
  • la source de tension connectĆ©e au moyen d'extraction et d'accĆ©lĆ©ration est une source de tension continue, pour former, en sortie de la chambre, un faisceau d'ions, le propulseur comprenant en outre des moyens pour injecter des Ć©lectrons dans ledit faisceau d'ions afin d'assurer une Ć©lectroneutralitĆ© ;
  • le rĆ©servoir comporte une membrane situĆ©e entre le propergol solide et l'enveloppe munie d'au moins un orifice, ladite membrane comportant au moins un orifice, la surface de la ou chaque orifice de la membrane Ć©tant plus grande que la surface de la ou chaque orifice de l'enveloppe du rĆ©servoir ;
  • la ou chaque grille prĆ©sente des orifices dont la forme est choisie parmi les formes suivantes : circulaires, carrĆ©s, rectangles ou en formes de fentes, notamment de fentes parallĆØles ;
  • la ou chaque grille prĆ©sente des orifices circulaires, dont le diamĆØtre est compris entre 0,2mm et 10mm, par exemple entre 0,5mm et 2mm ;
  • lorsque le moyen d'extraction et d'accĆ©lĆ©ration hors de la chambre comprend un ensemble d'au moins deux grilles situĆ©es Ć  l'extrĆ©mitĆ© de la chambre, la distance entre les deux grilles est comprise entre 0,2mm et 10mm, par exemple entre 0,5mm et 2mm ;
  • le propergol solide est choisi parmi : le diiode, le diiode mĆ©langĆ© Ć  d'autres composants chimiques, le ferrocĆØne, l'adamantane ou l'arsenic.
The propellant may also include at least one of the following characteristics, taken alone or in combination:
  • the voltage source connected to the extraction and acceleration means is a radiofrequency alternating voltage source, and the assembly of means for forming the ion-electron plasma comprises at least one coil supplied by this same radiofrequency alternating voltage source by means of a means for managing the signal supplied by said radiofrequency voltage source in the direction of, on the one hand, said at least one coil and on the other hand, the extraction and acceleration means, to form a beam of ions and electrons at the outlet of the chamber;
  • the set of means for forming the ion-electron plasma comprises at least one coil supplied by a radiofrequency alternating voltage source different from the radiofrequency direct or alternating voltage source connected to the extraction and acceleration means or at least one antenna microwave powered by an alternating microwave voltage source;
  • the voltage source connected to the extraction and acceleration means is a radiofrequency alternating voltage source, to form, at the output of the chamber, a beam of ions and electrons;
  • the extraction and acceleration means is a set of at least two grids located at one end of the chamber, the electroneutrality of the ion and electron beam is obtained at least in part by adjusting the duration d application of the positive and / or negative potentials coming from the radiofrequency alternating voltage source connected to the extraction and acceleration means;
  • the extraction and acceleration means is a set of at least two grids located at one end of the chamber, the electroneutrality of the ion and electron beam is obtained at least in part by adjusting the amplitude positive and / or negative potentials coming from the radiofrequency alternating voltage source connected to the extraction and acceleration means;
  • the voltage source connected to the extraction and acceleration means is a direct voltage source, to form, at the output of the chamber, an ion beam, the propellant further comprising means for injecting electrons into said beam ions in order to ensure electroneutrality;
  • the reservoir comprises a membrane located between the solid propellant and the envelope provided with at least one orifice, said membrane comprising at least one orifice, the area of the or each orifice of the membrane being greater than the area of the or each orifice of the tank shell;
  • the or each grid has orifices the shape of which is chosen from the following shapes: circular, square, rectangular or in the form of slots, in particular of parallel slots;
  • the or each grid has circular orifices, the diameter of which is between 0.2mm and 10mm, for example between 0.5mm and 2mm;
  • when the means of extraction and acceleration out of the chamber comprises a set of at least two grids located at the end of the chamber, the distance between the two grids is between 0.2mm and 10mm, for example between 0.5mm and 2mm;
  • the solid propellant is selected from: diodine, diodine mixed with other chemical components, ferrocene, adamantane or arsenic.

L'invention concerne Ʃgalement un satellite comprenant un propulseur selon l'invention et une source d'Ʃnergie, par exemple une batterie ou un panneau solaire, connectƩe Ơ la ou chaque source de tension continue ou alternative du propulseur.The invention also relates to a satellite comprising a thruster according to the invention and an energy source, for example a battery or a solar panel, connected to the or each source of direct or alternating voltage of the thruster.

L'invention concerne Ʃgalement une sonde spatiale comprenant un propulseur selon l'invention et une source d'Ʃnergie, par exemple une batterie ou un panneau solaire, connectƩe Ơ la ou chaque source de tension continue ou alternative du propulseur.The invention also relates to a space probe comprising a thruster according to the invention and an energy source, for example a battery or a solar panel, connected to the or each source of direct or alternating voltage of the thruster.

L'invention sera mieux comprise et d'autres buts, avantages et caractƩristiques de celle-ci apparaƮtront plus clairement Ơ la lecture de la description qui suit et qui est faite au regard des figures annexƩes, sur lesquelles :

  • la figure 1 est une vue schĆ©matique d'un propulseur plasma selon un premier mode de rĆ©alisation de l'invention ;
  • la figure 2 est une vue schĆ©matique d'une variante au premier mode de rĆ©alisation reprĆ©sentĆ© sur la figure 1 ;
  • la figure 3 est une vue schĆ©matique d'une autre variante au premier mode de rĆ©alisation reprĆ©sentĆ© sur la figure 1 ;
  • la figure 4 est une vue schĆ©matique d'une autre variante au premier mode de rĆ©alisation reprĆ©sentĆ© sur la figure 1 ;
  • la figure 5 est une vue schĆ©matique d'un propulseur plasma selon un deuxiĆØme mode de rĆ©alisation de l'invention ;
  • la figure 6 est une vue schĆ©matique d'une variante au deuxiĆØme mode de rĆ©alisation reprĆ©sentĆ© sur la figure 5 ;
  • la figure 7 est une vue schĆ©matique d'une autre variante au deuxiĆØme mode de rĆ©alisation reprĆ©sentĆ© sur la figure 5 ;
  • la figure 8 est une vue schĆ©matique d'une autre variante au deuxiĆØme mode de rĆ©alisation reprĆ©sentĆ© sur la figure 5 ;
  • la figure 9 est une vue schĆ©matique d'une variante de rĆ©alisation du propulseur plasma reprĆ©sentĆ© sur la figure 8
  • la figure 10 est une vue schĆ©matique d'un troisiĆØme mode de rĆ©alisation de l'invention ;
  • la figure 11 est une vue en coupe d'un rĆ©servoir Ć  propergol solide susceptible d'ĆŖtre employĆ© dans un propulseur plasma selon l'invention, quel que soit le mode de rĆ©alisation envisagĆ©, avec son environnement permettant son montage Ć  l'intĆ©rieur de la chambre plasma ;
  • la figure 12 est une vue Ć©clatĆ©e du rĆ©servoir reprĆ©sentĆ© sur la figure 9 ;
  • la figure 13 est une courbe fournissant, dans le cas du diiode (I2) utilisĆ© comme propergol solide, l'Ć©volution de la pression de vapeurs de diode en fonction de la tempĆ©rature ;
  • la figure 14 reprĆ©sente, de faƧon schĆ©matique, un satellite comportant un propulseur plasma selon l'invention ;
  • la figure 15 reprĆ©sente, de faƧon schĆ©matique, une sonde spatiale comportant un propulseur plasma selon l'invention.
The invention will be better understood and other aims, advantages and characteristics thereof will emerge more clearly on reading the description which follows and which is given with regard to the appended figures, in which:
  • the figure 1 is a schematic view of a plasma thruster according to a first embodiment of the invention;
  • the figure 2 is a schematic view of a variant of the first embodiment shown in figure 1 ;
  • the figure 3 is a schematic view of another variant of the first embodiment shown in figure 1 ;
  • the figure 4 is a schematic view of another variant of the first embodiment shown in figure 1 ;
  • the figure 5 is a schematic view of a plasma thruster according to a second embodiment of the invention;
  • the figure 6 is a schematic view of a variant of the second embodiment shown in figure 5 ;
  • the figure 7 is a schematic view of another variant of the second embodiment shown in figure 5 ;
  • the figure 8 is a schematic view of another variant of the second embodiment shown in figure 5 ;
  • the figure 9 is a schematic view of an alternative embodiment of the plasma thruster shown in figure 8
  • the figure 10 is a schematic view of a third embodiment of the invention;
  • the figure 11 is a sectional view of a solid propellant tank capable of being used in a plasma thruster according to the invention, regardless of the embodiment envisaged, with its environment allowing its mounting inside the plasma chamber;
  • the figure 12 is an exploded view of the tank shown in figure 9 ;
  • the figure 13 is a curve providing, in the case of the diode (I 2 ) used as solid propellant, the evolution of the pressure of diode vapors as a function of the temperature;
  • the figure 14 represents, schematically, a satellite comprising a plasma thruster according to the invention;
  • the figure 15 represents, schematically, a space probe comprising a plasma thruster according to the invention.

Un premier mode de rƩalisation d'un propulseur ionique 100 selon l'invention est reprƩsentƩ sur la figure 1.A first embodiment of an ion propellant 100 according to the invention is shown in figure 1 .

Le propulseur 100 comporte une chambre 10 Ć  plasma et un rĆ©servoir 20 de propergol solide PS logĆ© dans la chambre 10. Plus prĆ©cisĆ©ment, le rĆ©servoir 20 comporte une enveloppe conductrice 21 comportant le propergol solide PS, cette enveloppe 21 Ć©tant munie d'un ou plusieurs orifices 22. Le fait de loger le rĆ©servoir 20 de propergol solide dans la chambre 10 confĆØre au propulseur une compacitĆ© plus grande.The propellant 100 comprises a plasma chamber 10 and a reservoir 20 of solid propellant PS housed in the chamber 10. More precisely, the reservoir 20 comprises a conductive envelope 21 comprising the solid propellant PS, this envelope 21 being provided with one or more orifices 22. The fact of accommodating the solid propellant reservoir 20 in the chamber 10 gives the propellant greater compactness.

Le propulseur 100 comporte Ʃgalement une source de tension alternative radiofrƩquence 30 et une ou plusieurs bobines 40 alimentƩe(s) par la source de tension alternative radiofrƩquence 30. La ou chaque bobine 40 peut prƩsenter un ou plusieurs enroulement(s). Sur la figure 1, une seule bobine 40 comportant plusieurs enroulements est prƩvue.The thruster 100 also includes a radiofrequency alternating voltage source 30 and one or more coils 40 supplied by the radiofrequency alternating voltage source 30. The or each coil 40 may have one or more windings. On the figure 1 , a single coil 40 comprising several windings is provided.

La bobine 40, alimentĆ©e par la source de tension alternative radiofrĆ©quence 30, induit un courant dans le rĆ©servoir 20, lequel est conducteur (courant de Foucault). Le courant induit dans le rĆ©servoir provoque un effet Joule qui chauffe le rĆ©servoir 20. La chaleur ainsi produite se transmet au propergol solide PS par conduction thermique et/ou rayonnement thermique. Le chauffage du propergol solide PS permet alors de sublimer celui-ci, le propergol Ć©tant ainsi mis Ć  l'Ć©tat de gaz. Puis, le propergol Ć  l'Ć©tat de gaz passe ensuite Ć  travers la ou les orifice(s) 22 du rĆ©servoir 20, en direction de la chambre 10. Ce mĆŖme ensemble 30, 40 permet par ailleurs de gĆ©nĆ©rer un plasma dans la chambre 10 en ionisant le propergol Ć  l'Ć©tat de gaz qui est dans la chambre 10. Le plasma ainsi formĆ© sera gĆ©nĆ©ralement un plasma ions-Ć©lectrons (il convient de noter que, la chambre plasma comprendra Ć©galement des espĆØces neutres - propergol Ć  l'Ć©tat de gaz - car, gĆ©nĆ©ralement, tout le gaz n'est pas ionisĆ© pour former le plasma).The coil 40, supplied by the radiofrequency alternating voltage source 30, induces a current in the reservoir 20, which is conductive (eddy current). The current induced in the tank causes a Joule effect which heats the tank 20. The heat thus produced is transmitted to the solid propellant PS by thermal conduction and / or thermal radiation. Heating the solid propellant PS then makes it possible to sublimate the latter, the propellant thus being put into the state of gas. Then, the propellant in the gas state then passes through the orifice (s) 22 of the reservoir 20, in the direction of the chamber 10. This same assembly 30, 40 also makes it possible to generate a plasma in the chamber 10. by ionizing the propellant in the gas state which is in chamber 10. The plasma thus formed will generally be an ion-electron plasma (it should be noted that, the plasma chamber will also include neutral species - propellant in the state of gas - because generally not all gas is ionized to form plasma).

Une mĆŖme source 30 de tension alternative radiofrĆ©quence est donc utilisĆ©e pour sublimer le propergol solide PS et crĆ©er le plasma dans la chambre 10. Dans le cas d'espĆØce, une seule bobine 40 est Ć©galement employĆ©e Ć  cet effet. Toutefois, il est envisageable de prĆ©voir plusieurs bobines, par exemple une bobine pour sublimer le propergol solide PS et une bobine pour crĆ©er le plasma. En utilisant plusieurs bobines 40, il est alors possible d'augmenter la longueur de la chambre 10.The same source 30 of radiofrequency alternating voltage is therefore used to sublimate the solid propellant PS and create the plasma in the chamber 10. In the present case, a single coil 40 is also used for this purpose. However, it is conceivable to provide several coils, for example a coil to sublimate the solid propellant PS and a coil to create the plasma. By using several coils 40, it is then possible to increase the length of the chamber 10.

Plus prĆ©cisĆ©ment, la chambre 10 et le rĆ©servoir 20 sont initialement Ć  une mĆŖme tempĆ©rature.More precisely, the chamber 10 and the reservoir 20 are initially at the same temperature.

Lorsque la source 30 est mise en œuvre, la tempĆ©rature du rĆ©servoir 20, chauffĆ© par la ou les bobine(s) 40, augmente. La tempĆ©rature du propergol solide PS augmente Ć©galement, le propergol Ć©tant en contact thermique avec l'enveloppe 21 du rĆ©servoir.When the source 30 is activated, the temperature of the reservoir 20, heated by the coil (s) 40, increases. The temperature of the solid propellant PS also increases, the propellant being in thermal contact with the shell 21 of the tank.

Cela provoque une sublimation du propergol solide PS, au sein du rƩservoir 20, et par suite une augmentation de la pression P1 de propergol Ơ l'Ʃtat de gaz au sein du rƩservoir 20 accompagnant l'augmentation de tempƩrature T1 dans ce rƩservoir.This causes sublimation of the solid propellant PS, within the tank 20, and consequently an increase in the pressure P1 of propellant in the gas state within the tank 20 accompanying the increase in temperature T1 in this tank.

Puis, sous l'effet de la diffƩrence de pression entre le rƩservoir 20 et la chambre 10, le propergol Ơ l'Ʃtat de gaz passent Ơ travers le ou chaque orifice 22 en direction de la chambre 10.Then, under the effect of the pressure difference between the reservoir 20 and the chamber 10, the propellant in the gas state passes through the or each orifice 22 in the direction of the chamber 10.

Lorsque les conditions de tempĆ©rature et de pression sont suffisamment importantes dans la chambre 10, l'ensemble formĆ© par la source 30 et la ou les bobine(s) 40 permet de gĆ©nĆ©rer le plasma dans la chambre 10. A ce stade, le propergol solide PS est alors plus amplement chauffĆ© par les particules chargĆ©es du plasma, la ou les bobine(s) Ć©tant Ć©crantĆ©es par la prĆ©sence de la gaine dans le plasma (effet de peau) ainsi que par la prĆ©sence des particules chargĆ©es elles-mĆŖmes au sein du plasma.When the temperature and pressure conditions are sufficiently high in the chamber 10, the assembly formed by the source 30 and the coil (s) 40 makes it possible to generate the plasma in the chamber 10. At this stage, the solid propellant PS is then more fully heated by the charged particles of the plasma, the coil (s) being screened by the presence of the sheath in the plasma (skin effect) as well as by the presence of the charged particles themselves within the plasma.

En prĆ©sence du plasma (propulseur en fonctionnement), il convient de noter que la tempĆ©rature du rĆ©servoir 20 peut ĆŖtre mieux contrĆ“lĆ©e par la prĆ©sence d'un Ć©changeur thermique (non reprĆ©sentĆ©) connectĆ© au rĆ©servoir 20.In the presence of the plasma (propellant in operation), it should be noted that the temperature of the tank 20 can be better controlled by the presence of a heat exchanger (not shown) connected to the tank 20.

On peut prĆ©voir un ou plusieurs orifice(s) 22 sur le rĆ©servoir 20, cela n'a pas d'importance. Seule la surface totale de l'orifice ou, si plusieurs orifices sont prĆ©vus, de l'ensemble de ces orifices a une importance. Leur dimensionnement dĆ©pendra de la nature du propergol solide employĆ©, et des paramĆØtres de fonctionnement souhaitĆ©s pour le plasma (tempĆ©rature, pression).One or more orifice (s) 22 can be provided on the reservoir 20, this does not matter. Only the total area of the orifice or, if several orifices are provided, of all of these orifices is of importance. Their size will depend on the nature of the solid propellant used, and the desired operating parameters for the plasma (temperature, pressure).

Ce dimensionnement s'effectuera donc au cas par cas.This sizing will therefore be carried out on a case-by-case basis.

De maniĆØre gĆ©nĆ©rale, le dimensionnement du propulseur selon l'invention reprendra les Ć©tapes suivantes.In general, the sizing of the propellant according to the invention will take up the following steps.

Le volume de la chambre 10 est tout d'abord dĆ©fini, ainsi que la pression P2 de fonctionnement nominal souhaitĆ©e dans cette chambre 10 et le dĆ©bit massique m' d'ions positifs souhaitĆ© en sortie de la chambre 10. Ces donnĆ©es peuvent ĆŖtre obtenues par modĆ©lisation numĆ©rique ou par des essais de routine. Il est Ć  noter que ce dĆ©bit massique (m') est correspond sensiblement Ć  celui qu'on retrouve entre le rĆ©servoir 20 et la chambre 10.The volume of the chamber 10 is first of all defined, as well as the nominal operating pressure P2 desired in this chamber 10 and the mass flow rate m 'of positive ions desired at the outlet of the chamber 10. These data can be obtained by numerical modeling or by routine testing. It should be noted that this mass flow rate (m ā€²) corresponds substantially to that which is found between the reservoir 20 and the chamber 10.

Ensuite, la tempƩrature T1 souhaitƩe pour le rƩservoir 20 est choisie.Then, the temperature T1 desired for the tank 20 is chosen.

Cette tempƩrature T1 Ʃtant fixƩe, on peut connaƮtre la pression de propergol Ơ l'Ʃtat de gaz correspondante, Ơ savoir la pression P1 de ce gaz dans le rƩservoir 20 (cf. figure 13 dans le cas du diiode I2).This temperature T1 being fixed, it is possible to know the propellant pressure in the corresponding gas state, namely the pressure P1 of this gas in the tank 20 (cf. figure 13 in the case of diode I 2 ).

Connaissant ainsi P2, m', P1 et T1, il est possible d'en dĆ©duire la surface A de l'orifice ou, si plusieurs orifices sont prĆ©vus, de l'ensemble des orifices. Avantageusement, on prĆ©voira cependant plusieurs orifices pour assurer une rĆ©partition plus homogĆØne du propergol Ć  l'Ć©tat de gaz au sein de la chambre 10.Knowing in this way P2, m ', P1 and T1, it is possible to deduce therefrom the area A of the orifice or, if several orifices are provided, of all of the orifices. Advantageously, however, several orifices will be provided to ensure a more homogeneous distribution of the propellant in the gas state within the chamber 10.

Un exemple de dimensionnement est cependant fourni plus loin.An example of sizing is however provided below.

Il est ensuite possible d'estimer la fuite de propergol Ć  l'Ć©tat de gaz entre le rĆ©servoir 20 et la chambre 10 lorsque le propulseur 100 est Ć  l'arrĆŖt. En effet, dans ce cas, la surface A des orifices est connue, tout comme P1, T1 et P2, ce qui permet d'obtenir m' (dĆ©bit de fuite). En pratique, il s'avĆØre qu'Ć  l'arrĆŖt, la fuite est minime par rapport au dĆ©bit de propergol Ć  l'Ć©tat de gaz passant du rĆ©servoir 20 vers la chambre 10 en cours d'utilisation. C'est pourquoi, dans le cadre de l'invention, la prĆ©sence de valves au niveau des orifices n'est pas obligatoire.It is then possible to estimate the leakage of propellant in the gas state between the reservoir 20 and the chamber 10 when the thruster 100 is stopped. In fact, in this case, the surface A of the orifices is known, just like P1, T1 and P2, which makes it possible to obtain m '(leakage rate). In practice, it turns out that when stopping, the leak is minimal compared to the flow rate of propellant in the gas state passing from the tank 20 to the chamber 10 during use. This is why, in the context of the invention, the presence of valves at the level of the orifices is not compulsory.

Pour le propergol solide, on peut envisager : du diiode (I2), un mĆ©lange de diiode (I2) avec d'autres composants chimiques, de l'adamantane (formule chimique brute : C10H16) ou du ferrocĆØne (formule chimique brute : Fe(C5H5)2). De l'arsenic peut Ć©galement ĆŖtre employĆ©, mais sa toxicitĆ© en fait un propergol solide dont l'utilisation est moins envisagĆ©e.For the solid propellant, one can consider: diiodine (I 2 ), a mixture of diodine (I 2 ) with other chemical components, adamantane (gross chemical formula: C 10 H 16 ) or ferrocene (formula crude chemical: Fe (C 5 H 5 ) 2 ). Arsenic can also be used, but its toxicity makes it a solid propellant whose use is less envisaged.

Avantageusement, on utilisera du diiode (I2) comme propergol solide.Advantageously, diiodine (I 2 ) will be used as solid propellant.

Ce propergol prĆ©sente en effet plusieurs avantages. On a reprĆ©sentĆ© sur la figure 13, une courbe fournissant, dans le cas du diiode (I2), l'Ć©volution de la pression P du gaz diiode en fonction de la tempĆ©rature T. Cette courbe peut ĆŖtre approchĆ©e par la formule suivante : Log P = āˆ’ 3512,8 * 1 / T āˆ’ 2,013 * log T + 13,374

Figure imgb0001
avec :
P, la pression en Torr ;This propellant indeed has several advantages. One represented on the figure 13 , a curve providing, in the case of the diode (I 2 ), the evolution of the pressure P of the iodine gas as a function of the temperature T. This curve can be approximated by the following formula: Log P = - 3512.8 * 1 / T - 2013 * log T + 13.374
Figure imgb0001
with:
P, the pressure in Torr;

T, la tempƩrature en Kelvins.T, the temperature in Kelvins.

Cette formule peut ĆŖtre obtenue dans Ā« The Vapor Pressure Iodine Ā», G.P. Baxter, C.H. Hickey, W.C. Holmes, J. Am. Chem. Soc., 1907, 29(2) pp. 12-136 . Cette formule est Ć©galement citĆ©e dans Ā« The normal Vapor Pressure of Crysta/line Iodine Ā», L.J. Gillespie, & al., J. Am. Chem Soc., 1936, vol. 58(11), pp 2260-2263 . Cette formule a fait l'objet de vĆ©rifications expĆ©rimentales, par diffĆ©rents auteurs.This formula can be obtained in "The Vapor Pressure Iodine", GP Baxter, CH Hickey, WC Holmes, J. Am. Chem. Soc., 1907, 29 (2) pp. 12-136 . This formula is also cited in "The normal Vapor Pressure of Crysta / line Iodine", LJ Gillespie, & al., J. Am. Chem Soc., 1936, vol. 58 (11), pp 2260-2263 . This formula has been the subject of experimental verifications by various authors.

Lorsque le propulseur passe d'un mode arrĆŖt Ć  un mode de fonctionnement nominal, on peut considĆ©rer que la tempĆ©rature augmente d'environ 50K. Dans la gamme de tempĆ©rature comprise entre 300K et 400K, on relĆØve sur cette figure 13 que la pression du gaz diiode augmente pratiquement d'un facteur 100, pour une augmentation de tempĆ©rature de 50K.When the thruster goes from an off mode to a nominal operating mode, the temperature can be considered to increase by about 50K. In the temperature range between 300K and 400K, we note on this figure 13 that the pressure of the iodine gas increases practically by a factor of 100, for a temperature increase of 50K.

Aussi, lorsque le propulseur est en mode arrĆŖt, la fuite de gaz diode Ć  travers le ou chaque orifice 22 est trĆØs faible, et de l'ordre de 100 fois infĆ©rieure Ć  la quantitĆ© de gaz diiode traversant le ou les orifice(s) 22 en direction de la chambre 10, lorsque le propulseur 100 est en fonctionnement nominal.Also, when the thruster is in stop mode, the leakage of diode gas through the or each orifice 22 is very small, and of the order of 100 times less than the quantity of diode gas passing through the orifice (s) 22. towards the chamber 10, when the thruster 100 is in nominal operation.

Une diffĆ©rence plus importante entre la tempĆ©rature de fonctionnement nominale du propulseur selon l'invention et sa tempĆ©rature Ć  l'arrĆŖt ne fera que diminuer les pertes relatives par fuite de propergol Ć  l'Ć©tat de gaz.A greater difference between the nominal operating temperature of the propellant according to the invention and its stopping temperature will only reduce the relative losses by leakage of propellant in the gas state.

En consĆ©quence, un propulseur 100 selon l'invention utilisant du diode (I2) comme propergol n'a pas besoin de mettre en œuvre une valve pour le ou chaque orifice et ce, contrairement au document D2. Ceci simplifie d'autant la conception du propulseur et en assure une bonne fiabilitĆ©. Le contrĆ“le du dĆ©bit de propergol Ć  l'Ć©tat de gaz s'effectue par le contrĆ“le de la tempĆ©rature du rĆ©servoir 20, par l'intermĆ©diaire de la puissance fournie Ć  la bobine 40 par la source de tension alternative radiofrĆ©quence 30 et Ć©ventuellement, comme prĆ©cisĆ© prĆ©cĆ©demment, par la prĆ©sence d'un Ć©changeur thermique connectĆ© au rĆ©servoir 20. Le contrĆ“le est donc diffĆ©rent de celui qui est effectuĆ© dans le document D3.Consequently, a propellant 100 according to the invention using the diode (I 2 ) as propellant does not need to implement a valve for the or each orifice, unlike document D2. This further simplifies the design of the thruster and ensures good reliability. The flow control of propellant in the gas state is carried out by controlling the temperature of the tank 20, by means of the power supplied to the coil 40 by the radiofrequency alternating voltage source 30 and possibly, as specified. previously, by the presence of a heat exchanger connected to the tank 20. The check is therefore different from that which is carried out in document D3.

Le propulseur 100 comprend Ć©galement un moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es du plasma, ions positifs et Ć©lectrons, hors de la chambre 20 pour former un faisceau 70 de particules chargĆ©es en sortie de la chambre 20. Sur la figure 1, ce moyen 50 comprend une grille 51 situĆ©e Ć  une extrĆ©mitĆ© E (sortie) de la chambre 10 et une Ć©lectrode 52 logĆ©e Ć  l'intĆ©rieur de la chambre 10, cette Ć©lectrode 52 prĆ©sentant par construction une surface plus importante que celle de la grille 51. Dans certains cas, l'Ć©lectrode 52 peut ĆŖtre formĆ©e par la paroi elle-mĆŖme, conductrice, du rĆ©servoir 20.The thruster 100 also comprises a means 50 for extracting and accelerating the charged particles of the plasma, positive ions and electrons, out of the chamber 20 to form a beam 70 of charged particles at the outlet of the chamber 20. On the figure 1 , this means 50 comprises a grid 51 located at one end E (outlet) of the chamber 10 and an electrode 52 housed inside the chamber 10, this electrode 52 having by construction a larger area than that of the grid 51 In certain cases, the electrode 52 can be formed by the wall itself, conductive, of the reservoir 20.

L'Ʃlectrode 52 est isolƩe de la paroi de la chambre par un isolant Ʃlectrique 58.The electrode 52 is isolated from the wall of the chamber by an electrical insulator 58.

La grille 51 pourra prĆ©senter des orifices de diffĆ©rentes formes, par exemple circulaires, carrĆ©s, rectangles ou en formes de fentes, notamment de fentes parallĆØles. En particulier, dans le cas d'orifices circulaires, le diamĆØtre d'un orifice pourra ĆŖtre compris entre 0,2mm et 10mm, par exemple entre 0,5mm et 2mm.The grid 51 may have orifices of different shapes, for example circular, square, rectangular or in the form of slots, in particular parallel slots. In particular, in the case of circular orifices, the diameter of an orifice may be between 0.2mm and 10mm, for example between 0.5mm and 2mm.

Pour assurer cette extraction et accĆ©lĆ©ration, le moyen 50 est connectĆ© Ć  la source de tension alternative radiofrĆ©quence 30. La source de tension alternative radiofrĆ©quence 30 assure donc, en plus, le contrĆ“le du moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es hors de la chambre 10. Ceci est particuliĆØrement intĆ©ressant car cela permet d'augmenter encore un peu plus la compacitĆ© du propulseur 100. De plus, ce contrĆ“le du moyen 50 d'extraction et d'accĆ©lĆ©ration par la source 30 de tension alternative radiofrĆ©quence permet de mieux contrĆ“ler le faisceau 70 de particules chargĆ©es et ce, contrairement aux techniques proposĆ©es dans l'article D1 notamment. Enfin, ce contrĆ“le permet aussi d'obtenir un faisceau avec une trĆØs bonne Ć©lectroneutralitĆ© en sortie de la chambre 10, sans mettre en oeuvre un quelconque dispositif externe Ć  cet effet. Autrement dit, l'ensemble formĆ© par le moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es du plasma et la source de tension alternative radiofrĆ©quence 30 permet donc Ć©galement d'obtenir une neutralisation du faisceau 70 en sortie de la chambre 10. La compacitĆ© du propulseur 10 est ainsi augmentĆ©e, ce qui est particuliĆØrement avantageux pour l'utilisation de ce propulseur 100 pour un petit satellite (<500kg), notamment un micro-satellite (10kg-100kg) ou un nano-satellite (1kg-10kg), par exemple de type Ā« CubeSat Ā».To ensure this extraction and acceleration, the means 50 is connected to the radiofrequency alternating voltage source 30. The radiofrequency alternating voltage source 30 therefore ensures, in addition, the control of the means 50 for extracting and accelerating the charged particles outside. of the chamber 10. This is particularly advantageous because it makes it possible to further increase the compactness of the thruster 100. In addition, this control of the means 50 of extraction and acceleration by the source 30 of radiofrequency alternating voltage makes it possible to better control the beam 70 of charged particles, unlike the techniques proposed in article D1 in particular. Finally, this control also makes it possible to obtain a beam with very good electroneutrality at the outlet of the chamber 10, without using any external device for this purpose. In other words, the assembly formed by the means 50 for extracting and accelerating the charged particles from the plasma and the radiofrequency alternating voltage source 30 therefore also makes it possible to obtain a neutralization of the beam 70 at the outlet of the chamber 10. compactness of the thruster 10 is thus increased, which is particularly advantageous for the use of this thruster 100 for a small satellite (<500kg), in particular a micro-satellite (10kg-100kg) or a nano-satellite (1kg-10kg), for example of the ā€œCubeSatā€ type.

A cet effet, la grille 51 est connectĆ©e Ć  la source de tension radiofrĆ©quence 30 par l'intermĆ©diaire d'un moyen 60 pour gĆ©rer le signal fourni par ladite source de tension radiofrĆ©quence 30 et l'Ć©lectrode 52 est connectĆ©e Ć  la source de tension radiofrĆ©quence 30, en sĆ©rie, par l'intermĆ©diaire d'un condensateur 53 et du moyen 60 pour gĆ©rer le signal fourni par ladite source de tension radiofrĆ©quence 30. La grille 51 est par ailleurs mise Ć  un potentiel de rĆ©fĆ©rence 55, par exemple la masse. De mĆŖme, la sortie de la source de tension alternative radiofrĆ©quence 30, non connectĆ©e au moyen 60, est Ć©galement mise au mĆŖme potentiel de rĆ©fĆ©rence 55, la masse selon l'exemple.For this purpose, the gate 51 is connected to the radiofrequency voltage source 30 by means of a means 60 for managing the signal supplied by said radiofrequency voltage source 30 and the electrode 52 is connected to the radiofrequency voltage source. 30, in series, by means of a capacitor 53 and of the means 60 for managing the signal supplied by said radiofrequency voltage source 30. The gate 51 is also placed at a reference potential 55, for example ground. Likewise, the output of the radiofrequency alternating voltage source 30, not connected to the means 60, is also set to the same reference potential 55, the ground according to the example.

En pratique, pour des applications dans le domaine spatial, le potentiel de rĆ©fĆ©rence pourra ĆŖtre celui de la sonde spatiale ou du satellite sur lequel le propulseur 100 est montĆ©.In practice, for applications in the space field, the reference potential may be that of the space probe or of the satellite on which the thruster 100 is mounted.

Le moyen 60 pour gƩrer le signal fourni par ladite source de tension radiofrƩquence 30 forme donc un moyen 60 qui permet de transmettre le signal fourni par la source 30 de tension alternative radiofrƩquence en direction d'une part, du ou de chaque bobine 40 et d'autre part, du moyen 50 d'extraction et d'accƩlƩration des ions et Ʃlectrons hors de la chambre 10.The means 60 for managing the signal supplied by said radiofrequency voltage source 30 therefore forms a means 60 which makes it possible to transmit the signal supplied by the source 30 of radiofrequency alternating voltage in the direction of, on the one hand, or of each coil 40 and of 'on the other hand, the means 50 for extracting and accelerating the ions and electrons from the chamber 10.

La source 30 (RF - radiofrĆ©quences) est rĆ©glĆ©e pour dĆ©finir une pulsation Ļ‰RF telle que Ļ‰pi, ā‰¤ Ļ‰RF ā‰¤ Ļ‰pe, oĆ¹ : Ļ‰ pe = e 0 2 n p Īµ 0 m e

Figure imgb0002
est la pulsation plasma des Ć©lectrons et Ļ‰ pi = e 0 2 n p Īµ 0 m i
Figure imgb0003
la pulsation plasma des ions positifs ; avec :

  • e0, la charge de l'Ć©lectron,
  • Īµ0, la permittivitĆ© du vide,
  • n p , la densitĆ© du plasma,
  • mi , la masse des ions et
  • me , la masse des Ć©lectrons.
The source 30 (RF - radio frequencies) is set to define a pulse Ļ‰ RF such that Ļ‰ pi , ā‰¤ Ļ‰ RF ā‰¤ Ļ‰ pe , where: Ļ‰ pe = e 0 2 not p Īµ 0 m e
Figure imgb0002
is the plasma pulsation of electrons and Ļ‰ pi = e 0 2 not p Īµ 0 m i
Figure imgb0003
the plasma pulsation of positive ions; with:
  • e 0 , the charge of the electron,
  • Īµ 0 , the permittivity of vacuum,
  • n p , the density of the plasma,
  • m i , the mass of the ions and
  • m e , the mass of electrons.

Il convient de noter que Ļ‰pi << Ļ‰pe du fait que mi >> me. Note that Ļ‰ pi << Ļ‰ pe due to the fact that m i >> m e .

De maniĆØre gĆ©nĆ©rale, la frĆ©quence du signal fourni par la source 30 peut ĆŖtre comprise entre quelques MHz et quelques centaines de MHz, en fonction du propergol employĆ© pour la formation du plasma dans la chambre 10 et ce, pour ĆŖtre comprise entre la frĆ©quence plasma des ions et la frĆ©quence plasma des Ć©lectrons. Une frĆ©quence de 13,56MHz est gĆ©nĆ©ralement bien adaptĆ©e, mais on peut Ć©galement envisager les frĆ©quences suivantes : 1MHz, 2MHz ou encore 4 MHz.In general, the frequency of the signal supplied by the source 30 can be between a few MHz and a few hundred MHz, depending on the propellant used for the formation of the plasma in the chamber 10 and this, to be between the plasma frequency of ions and the plasma frequency of electrons. A frequency of 13.56MHz is generally well suited, but the following frequencies can also be considered: 1MHz, 2MHz or even 4 MHz.

L'Ć©lectroneutralitĆ© du faisceau 70 est assurĆ©e par la nature capacitive du systĆØme 50 d'extraction et d'accĆ©lĆ©ration car, du fait de la prĆ©sence du condensateur 53, il y en moyenne autant d'ions positifs que d'Ć©lectrons qui sont extraits au cours du temps.The electroneutrality of the beam 70 is ensured by the capacitive nature of the extraction and acceleration system 50 because, due to the presence of the capacitor 53, there are on average as many positive ions as there are electrons which are extracted at the over time.

Dans ce cadre, la forme du signal produit par la source 30 de tension alternative radiofrĆ©quence peut ĆŖtre arbitraire. On pourra cependant prĆ©voir que le signal fourni par la source 30 de tension alternative radiofrĆ©quence Ć  l'Ć©lectrode 52 soit rectangulaire ou sinusoĆÆdal.In this context, the shape of the signal produced by the radiofrequency alternating voltage source 30 may be arbitrary. However, provision may be made for the signal supplied by the source 30 of the radiofrequency alternating voltage to the electrode 52 to be rectangular or sinusoidal.

Le principe de fonctionnement pour l'extraction et l'accƩlƩration des particules chargƩes du plasma (ions et Ʃlectrons) avec le premier mode de rƩalisation est le suivant.The principle of operation for the extraction and acceleration of charged particles from the plasma (ions and electrons) with the first embodiment is as follows.

Par construction, l'Ʃlectrode 52 prƩsente une surface supƩrieure, et gƩnƩralement nettement supƩrieure, Ơ celle de la grille 51 situƩe en sortie de la chambre 10.By construction, the electrode 52 has a surface which is greater, and generally significantly greater, than that of the grid 51 located at the outlet of the chamber 10.

De maniĆØre gĆ©nĆ©rale, l'application d'une tension RF sur une Ć©lectrode 52 prĆ©sentant une surface plus grande que la grille 51 a pour effet de gĆ©nĆ©rer au niveau de l'interface entre l'Ć©lectrode 52 et le plasma d'une part, et au niveau de l'interface entre la grille 51 et le plasma d'autre part, une diffĆ©rence de potentiel additionnelle, s'ajoutant Ć  la diffĆ©rence de potentiel RF. Cette diffĆ©rence de potentiel totale se rĆ©partit sur une gaine. La gaine est un espace qui est formĆ© entre la grille 51 ou l'Ć©lectrode 52 d'une part et le plasma d'autre part oĆ¹ la densitĆ© d'ions positifs est plus Ć©levĆ©e que la densitĆ© d'Ć©lectrons. Cette gaine prĆ©sente une Ć©paisseur variable en raison du signal RF, variable, appliquĆ© Ć  l'Ć©lectrode 52.In general, the application of an RF voltage to an electrode 52 having a larger surface area than the gate 51 has the effect of generating at the level of the interface between the electrode 52 and the plasma on the one hand, and at the level of the interface between the gate 51 and the plasma on the other hand, an additional potential difference, adding to the RF potential difference. This total potential difference is distributed over a sheath. The cladding is a space which is formed between the grid 51 or the electrode 52 on the one hand and the plasma on the other hand where the density of positive ions is higher than the density of electrons. This sheath has a variable thickness due to the variable RF signal applied to the electrode 52.

En pratique, la majeure partie de l'effet de l'application d'un signal RF sur l'Ć©lectrode 52 est cependant situĆ©e dans la gaine de la grille 51 (on peut voir le systĆØme Ć©lectrode-grille comme un condensateur avec deux parois asymĆ©triques, dans ce cas la diffĆ©rence de potentiel s'applique sur la partie de plus faible capacitance donc de plus faible surface).In practice, most of the effect of applying an RF signal to electrode 52, however, is located in the sheath of gate 51 (the electrode-gate system can be seen as a capacitor with two asymmetric walls , in this case the potential difference is applied to the part of lower capacitance and therefore of smaller surface).

En prƩsence du condensateur 53 en sƩrie avec la source RF, 30 l'application du signal RF a pour effet de convertir la tension RF en tension constante DC en raison de la charge du condensateur 53, principalement au niveau de la gaine de la grille 51.In the presence of the capacitor 53 in series with the RF source, the application of the RF signal has the effect of converting the RF voltage to voltage. constant DC due to the charge of the capacitor 53, mainly at the level of the sheath of the gate 51.

Cette tension constante DC dans la gaine de la grille 51 implique que les ions positifs sont constamment extraits et accƩlƩrƩs (en continu). En effet, cette diffƩrence de potentiel DC a pour effet de rendre le potentiel plasma positif. En consƩquence, les ions positifs du plasma sont constamment accƩlƩrƩs en direction de la grille 51 (Ơ un potentiel de rƩfƩrence) et donc extraits de la chambre 10 par cette grille 51. L'Ʃnergie des ions positifs correspond Ơ cette diffƩrence de potentiel DC (Ʃnergie moyenne).This constant DC voltage in the sheath of the gate 51 implies that the positive ions are constantly extracted and accelerated (continuously). Indeed, this DC potential difference has the effect of making the plasma potential positive. Consequently, the positive ions of the plasma are constantly accelerated in the direction of the gate 51 (to a reference potential) and therefore extracted from the chamber 10 by this gate 51. The energy of the positive ions corresponds to this difference in DC potential ( average energy).

La variation de la tension RF permet de faire varier la diffƩrence de potentiel RF + DC entre le plasma et la grille 51. Au niveau de la gaine de la grille 51, cela se traduit par une Ʃvolution de l'Ʃpaisseur de cette gaine. Lorsque cette Ʃpaisseur devient infƩrieure Ơ une valeur critique, ce qui arrive pendant un laps de temps Ơ intervalles rƩguliers donnƩs par la frƩquence du signal RF, la diffƩrence de potentiel entre la grille 51 et le plasma approche la valeur zƩro (donc le potentiel plasma approche le potentiel de rƩfƩrence), ce qui permet d'extraire des Ʃlectrons.The variation of the RF voltage makes it possible to vary the difference in RF + DC potential between the plasma and the gate 51. At the level of the sheath of the gate 51, this results in a change in the thickness of this sheath. When this thickness becomes less than a critical value, which happens for a period of time at regular intervals given by the frequency of the RF signal, the potential difference between the gate 51 and the plasma approaches zero (therefore the plasma potential approaches the reference potential), which makes it possible to extract electrons.

En pratique, le potentiel plasma en-dessous duquel les Ć©lectrons peuvent ĆŖtre accĆ©lĆ©rĆ©s et extraits (= potentiel critique) est donnĆ© par la loi de Child, laquelle relie ce potentiel critique Ć  l'Ć©paisseur critique de la gaine en-dessous de laquelle cette gaine disparaĆ®t (Ā« sheath collapse Ā» selon la terminologie anglo-saxonne).In practice, the plasma potential below which the electrons can be accelerated and extracted (= critical potential) is given by Child's law, which relates this critical potential to the critical thickness of the cladding below which this cladding disappears (ā€œsheath collapseā€ according to Anglo-Saxon terminology).

Tant que le potentiel plasma est infƩrieur au potentiel critique, alors il y a une accƩlƩration et une extraction simultanƩe des Ʃlectrons et des ions.As long as the plasma potential is lower than the critical potential, then there is an acceleration and simultaneous extraction of electrons and ions.

Une bonne Ć©lectroneutralitĆ© du faisceau 70 d'ions positifs et d'Ć©lectrons en sortie de la chambre 10 plasma peut ainsi ĆŖtre obtenue.Good electroneutrality of the beam 70 of positive ions and of electrons at the outlet of the plasma chamber 10 can thus be obtained.

Sur la figure 2, on a reprƩsentƩ une variante de rƩalisation au premier mode de rƩalisation reprƩsentƩ sur la figure 1.On the figure 2 , there is shown an alternative embodiment to the first embodiment shown in figure 1 .

Les mĆŖmes rĆ©fĆ©rences dĆ©signent les mĆŖmes composants.The same references designate the same components.

La diffƩrence entre le propulseur reprƩsentƩ sur la figure 2 par rapport au propulseur illustrƩ sur la figure 1 rƩside dans le fait que l'Ʃlectrode 52 logƩe Ơ l'intƩrieur de la chambre 10 est supprimƩe et qu'une grille 52' est ajoutƩe au niveau de l'extrƩmitƩ E (sortie) de la chambre 10.The difference between the propellant shown in the figure 2 compared to the thruster shown on figure 1 lies in the fact that the electrode 52 housed inside the chamber 10 is omitted and that a grid 52 'is added at the level of the end E (outlet) of the chamber 10.

En d'autres termes, le moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es du plasma comporte un ensemble d'au moins deux grilles 51, 52' situĆ©es Ć  une extrĆ©mitĆ© E (sortie) de la chambre 10, l'une 51 au moins de l'ensemble d'au moins deux grilles 51, 52' Ć©tant connectĆ©e Ć  la source de tension radiofrĆ©quence 30 par l'intermĆ©diaire du moyen 60 pour gĆ©rer le signal fourni par ladite source de tension radiofrĆ©quence 30 et l'autre 52' au moins de l'ensemble d'au moins deux grilles 51, 52' Ć©tant connectĆ©e Ć  la source de tension radiofrĆ©quence 30, en sĆ©rie, par l'intermĆ©diaire d'un condensateur 53 et du moyen 60 pour gĆ©rer le signal fourni par ladite source de tension radiofrĆ©quence 30.In other words, the means 50 for extracting and accelerating the charged particles from the plasma comprises a set of at least two grids 51, 52 ā€² located at one end E (outlet) of the chamber 10, one 51 at least of the set of at least two gates 51, 52 'being connected to the radiofrequency voltage source 30 via the means 60 for managing the signal supplied by said radiofrequency voltage source 30 and the other 52 'at least of the set of at least two gates 51, 52' being connected to the radiofrequency voltage source 30, in series, by means of a capacitor 53 and of the means 60 for managing the signal supplied by said radio frequency voltage source 30.

La connexion de la grille 52' Ơ la source 30 de tension radiofrƩquence est, sur la figure 2, identique Ơ la connexion de l'Ʃlectrode 52 Ơ cette source 30, sur la figure 1.The connection of the gate 52 'to the source 30 of radiofrequency voltage is, on the figure 2 , identical to the connection of the electrode 52 to this source 30, on the figure 1 .

Chaque grille 51, 52' pourra prĆ©senter des orifices de formes diffĆ©rentes, par exemple circulaires, carrĆ©s, rectangles ou en forme de fentes, notamment de fentes parallĆØles. En particulier, dans le cas d'orifices circulaires, le diamĆØtre d'un orifice pourra ĆŖtre compris entre 0,2mm et 10mm, par exemple entre 0,5mm et 2mm.Each grid 51, 52 'may have orifices of different shapes, for example circular, square, rectangular or in the form of slots, in particular parallel slots. In particular, in the case of circular orifices, the diameter of an orifice may be between 0.2mm and 10mm, for example between 0.5mm and 2mm.

Par ailleurs, la distance entre les deux grilles 52', 51 peut ĆŖtre comprise entre 0,2mm et 10mm, par exemple entre 0,5mm et 2mm (le choix exact dĆ©pend de la tension DC et de la densitĆ© du plasma).Furthermore, the distance between the two grids 52 ā€², 51 may be between 0.2mm and 10mm, for example between 0.5mm and 2mm (the exact choice depends on the DC voltage and the density of the plasma).

Dans cette variante, le fonctionnement de l'extraction et de l'accƩlƩration des ions positifs et des Ʃlectrons est le suivant.In this variant, the operation of extraction and acceleration of positive ions and electrons is as follows.

Lorsqu'on applique une tension RF par l'intermƩdiaire de la source 30, le condensateur 53 se charge. La charge du condensateur 53 produit alors une tension DC continue aux bornes du condensateur 53. On obtient alors, aux bornes de l'ensemble forme par la source 30 et le condensateur 53, une tension RF + DC. La partie constante de la tension RF + DC, permet alors de dƩfinir un champ Ʃlectrique entre les deux grilles 52', 51, la valeur moyenne du seul signal RF Ʃtant nulle. Cette valeur DC permet donc d'extraire et d'accƩlƩrer les ions positifs Ơ travers les deux grilles 51, 52', en continu.When an RF voltage is applied through the source 30, the capacitor 53 charges. The charge of the capacitor 53 then produces a DC voltage at the terminals of the capacitor 53. An RF + DC voltage is then obtained at the terminals of the assembly formed by the source 30 and the capacitor 53. The constant part of the RF + DC voltage then makes it possible to define an electric field between the two gates 52 ', 51, the average value of the RF signal alone being zero. This DC value therefore makes it possible to extract and accelerate the positive ions through the two gates 51, 52 ', continuously.

Par ailleurs, lorsqu'on applique cette tension RF, le plasma suit le potentiel imprimƩ Ơ la grille 52', qui est en contact avec le plasma, Ơ savoir RF + DC. Quant Ơ l'autre grille 51 (potentiel de rƩfƩrence 55, par exemple la masse), elle est Ʃgalement en contact avec le plasma, mais seulement pendant les brefs intervalles temporels pendant lesquels les Ʃlectrons sont extraits avec les ions positifs, Ơ savoir lorsque la tension RF +DC est infƩrieure Ơ une valeur critique en dessous de laquelle la gaine disparaƮt. Cette valeur critique est dƩfinie par la loi de Child.Furthermore, when this RF voltage is applied, the plasma follows the potential printed at the gate 52 ', which is in contact with the plasma, namely RF + DC. As for the other gate 51 (reference potential 55, for example the mass), it is also in contact with the plasma, but only during the brief time intervals during which the electrons are extracted with the positive ions, namely when the RF + DC voltage is less than a critical value below which the sheath disappears. This critical value is defined by Child's law.

L'ƩlectroneutralitƩ du faisceau 70 en sortie de la chambre 10 est ainsi assurƩe.The electroneutrality of the beam 70 at the outlet of the chamber 10 is thus ensured.

Il convient par ailleurs de noter que, pour cette rĆ©alisation de la figure 2, l'Ć©lectroneutralitĆ© du faisceau 70 d'ions et d'Ć©lectrons peut ĆŖtre obtenue au moins en partie par rĆ©glage de la durĆ©e d'application des potentiels positifs et/ou nĆ©gatifs issus de la source de tension alternative radiofrĆ©quence 30. Cette Ć©lectroneutralitĆ© du faisceau 70 d'ions et d'Ć©lectrons peut Ć©galement ĆŖtre obtenue au moins en partie par rĆ©glage de l'amplitude des potentiels positifs et/ou nĆ©gatifs issus de la source de tension alternative radiofrĆ©quence 30.It should also be noted that, for this realization of the figure 2 , the electroneutrality of the beam 70 of ions and electrons can be obtained at least in part by adjusting the duration of application of the positive and / or negative potentials from the radiofrequency alternating voltage source 30. This electroneutrality of the beam 70 ions and electrons can also be obtained at least in part by adjusting the amplitude of the positive and / or negative potentials coming from the radiofrequency alternating voltage source 30.

L'intĆ©rĆŖt de cette variante est, par rapport au mode de rĆ©alisation illustrĆ© sur la figure 1 et mettant en œuvre une grille 51 Ć  l'extrĆ©mitĆ© E de la chambre 10 et une Ć©lectrode 52 logĆ©e dans la chambre de surface plus grande que la grille 51 de fournir un meilleur contrĆ“le de la trajectoire des ions positifs. Ceci est liĆ© au fait qu'une diffĆ©rence de potentiel DC (continue) est gĆ©nĆ©rĆ©e entre les deux grilles 52', 51, sous l'action de la source 30 de tension alternative radiofrĆ©quence et du condensateur 53 en sĆ©rie et non au niveau de la gaine entre le plasma et la grille 51 (cf. prĆ©cĆ©demment) dans le cas du premier mode de rĆ©alisation de la figure 1.The advantage of this variant is, compared to the embodiment illustrated in figure 1 and implementing a gate 51 at the E end of chamber 10 and an electrode 52 housed in the chamber having a larger surface area than gate 51 to provide better control of the positive ion trajectory. This is linked to the fact that a DC (continuous) potential difference is generated between the two gates 52 ', 51, under the action of the source 30 of radiofrequency alternating voltage and of the capacitor 53 in series and not at the level of the cladding between the plasma and the grid 51 (cf. previously) in the case of the first embodiment of the figure 1 .

De ce fait, avec la variante de rƩalisation reprƩsentƩe sur la figure 2, on s'assure que beaucoup plus d'ions positifs passent Ơ travers les orifices de la grille 52', sans toucher la paroi de cette grille 52', par rƩfƩrence Ơ ce qui se passe dans le cas du premier mode de rƩalisation illustrƩ sur la figure 1.Therefore, with the variant embodiment shown in figure 2 , it is ensured that many more positive ions pass through the orifices of the grid 52 ', without touching the wall of this grid 52', with reference to what happens in the case of the first embodiment illustrated on the figure 1 .

De plus, les ions positifs passant par les orifices de la grille 52' ne viennent pas plus toucher la paroi de la grille 51 qui n'est visible, du point de vue de ces ions, qu'Ơ travers les orifices de la grille 52'. En consƩquence, la durƩe de vie des grilles 52', 51 selon cette variante de rƩalisation est amƩliorƩe par rapport Ơ celle de la grille 51 du premier mode de rƩalisation de la figure 1.In addition, the positive ions passing through the orifices of the grid 52 'do not come into contact with the wall of the grid 51 which is visible, from the point of view of these ions, only through the orifices of the grid 52. '. Accordingly, the service life of the grids 52 ', 51 according to this variant embodiment is improved compared to that of the grid 51 of the first embodiment of the figure 1 .

La durƩe de vie du propulseur 100 rƩsultante est donc amƩliorƩe.The life of the resulting propellant 100 is therefore improved.

Enfin, l'efficacitĆ© est amĆ©liorĆ©e car les ions positifs peuvent ĆŖtre focalisĆ©s par l'ensemble d'au moins deux grilles 51, 52', le flux d'espĆØces neutres Ć©tant quant Ć  lui rĆ©duit du fait que la transparence Ć  ces espĆØces neutres augmente.Finally, the efficiency is improved because the positive ions can be focused by the set of at least two gates 51, 52 ', the flow of neutral species being reduced because the transparency to these neutral species increases. .

La figure 3 reprƩsente une autre variante du premier mode de rƩalisation de la figure 1, pour laquelle la grille 51 est connectƩe, par ses deux extrƩmitƩs Ơ la source 30 de tension alternative radiofrƩquence.The figure 3 shows another variant of the first embodiment of the figure 1 , for which the gate 51 is connected, by its two ends to the source 30 of radiofrequency alternating voltage.

Tout le reste est identique et fonctionne de la mĆŖme faƧon.Everything else is the same and works the same.

La figure 4 reprƩsente une variante de rƩalisation Ơ la variante reprƩsentƩe sur la figure 2, pour laquelle la grille 51 est connectƩe, par ses deux extrƩmitƩs, Ơ la source de tension alternative radiofrƩquence.The figure 4 shows an alternative embodiment to the variant shown in figure 2 , for which the gate 51 is connected, by its two ends, to the radiofrequency alternating voltage source.

Tout le reste est identique et fonctionne de la mĆŖme faƧon.Everything else is the same and works the same.

Les variantes illustrĆ©es sur les figures 3 et 4 n'impliquent donc pas la mise en œuvre d'un potentiel de rĆ©fĆ©rence pour la grille 51. Dans le domaine spatial, une telle connexion assure une absence de courants parasites circulant entre d'une part, les parties conductrices externes de la sonde spatiale ou du satellite sur lequel le propulseur 100 est montĆ© et d'autre part, le moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es proprement dit.The variants illustrated on figures 3 and 4 therefore do not involve the implementation of a reference potential for the gate 51. In the space field, such a connection ensures an absence of parasitic currents flowing between, on the one hand, the external conductive parts of the space probe or of the satellite on which the thruster 100 is mounted and, on the other hand, the means 50 for extracting and accelerating the charged particles proper.

La figure 5 reprĆ©sente un deuxiĆØme mode de rĆ©alisation d'un propulseur ionique selon l'invention.The figure 5 represents a second embodiment of an ion propellant according to the invention.

Il s'agit d'une alternative au premier mode de rĆ©alisation reprĆ©sentĆ© sur la figure 1 et pour laquelle il est prĆ©vu une premiĆØre source 30 de tension alternative radiofrĆ©quence pour gĆ©rer l'extraction et l'accĆ©lĆ©ration des particules chargĆ©es du plasma hors de la chambre 10 et une deuxiĆØme source 30' de tension alternative, distincte de la premiĆØre source 30 de tension alternative radiofrĆ©quence.This is an alternative to the first embodiment shown in figure 1 and for which there is provided a first source 30 of radiofrequency alternating voltage to manage the extraction and acceleration of the charged particles of the plasma out of the chamber 10 and a second source 30 'of alternating voltage, separate from the first source 30 of radio frequency alternating voltage.

Le reste est identique et fonctionne de la mĆŖme faƧon.The rest are the same and work the same.

Dans ce cas, le moyen 60 pour gĆ©rer le signal fourni par une source unique de tension alternative radiofrĆ©quence 30 telle que proposĆ©e Ć  l'appui des figures 1 Ć  4 ne prĆ©sente plus d'intĆ©rĆŖt.In this case, the means 60 for managing the signal supplied by a single source of radiofrequency alternating voltage 30 as proposed in support of the figures 1 to 4 no longer of interest.

Cette alternative permet d'avoir plus de flexibilitƩ.This alternative allows for more flexibility.

En effet, si la source 30 utilisƩe pour l'extraction et l'accƩlƩration des particules chargƩes hors du plasma reste une source de tension alternative radiofrƩquence dont la frƩquence est comprise entre la frƩquence plasma des ions et la frƩquence plasma des Ʃlectrons, la source 30' peut gƩnƩrer un signal diffƩrent.Indeed, if the source 30 used for the extraction and acceleration of the charged particles out of the plasma remains a source of radiofrequency alternating voltage whose frequency is between the plasma frequency of the ions and the plasma frequency of the electrons, the source 30 'may generate a different signal.

Par exemple, la source 30' peut gĆ©nĆ©rer un signal de tension alternatif radiofrĆ©quence, associĆ© Ć  une ou plusieurs bobine(s) 40 pour chauffer l'enveloppe 21 du rĆ©servoir 20 conducteur (rĆ©alisĆ© en un matĆ©riau mĆ©tallique par exemple), Ć©vaporer le propergol solide puis gĆ©nĆ©rer un plasma dans la chambre 10, dont la frĆ©quence est diffĆ©rente de celle de la frĆ©quence de fonctionnement de la source 30. La frĆ©quence de fonctionnement de la source 30' peut notamment ĆŖtre supĆ©rieure Ć  celle de la frĆ©quence de fonctionnement de la source 30.For example, the source 30 'can generate an alternating radiofrequency voltage signal, associated with one or more coil (s) 40 to heat the casing 21 of the conductive tank 20 (made of a metallic material for example), to evaporate the solid propellant then generate a plasma in the chamber 10, the frequency of which is different from that of the operating frequency of the source 30. The operating frequency of the source 30 ā€² may in particular be greater than that of the operating frequency of the source 30. .

Selon un autre exemple, la source 30' peut gƩnƩrer un signal de tension alternatif dans des frƩquences correspondant aux micro-ondes, associƩ Ơ une ou plusieurs antenne(s) micro-ondes 40.According to another example, the source 30 'can generate an alternating voltage signal in frequencies corresponding to microwaves, associated with one or more microwave antenna (s) 40.

La figure 6 reprĆ©sente une variante au deuxiĆØme mode de rĆ©alisation reprĆ©sentĆ© sur la figure 5.The figure 6 shows a variant of the second embodiment shown in figure 5 .

La diffƩrence entre le propulseur 100 reprƩsentƩ sur la figure 5 et celui qui est illustrƩ sur la figure 1 rƩside dans le fait que l'Ʃlectrode 52 logƩe Ơ l'intƩrieur de la chambre 10 est supprimƩe et qu'une grille 52' est ajoutƩe au niveau de l'extrƩmitƩ E (sortie) de la chambre 10.The difference between the propellant 100 shown in the figure 5 and the one shown on the figure 1 lies in the fact that the electrode 52 housed inside the chamber 10 is omitted and that a grid 52 'is added at the level of the end E (outlet) of the chamber 10.

Le reste est identique et fonctionne de la mĆŖme faƧon.The rest are the same and work the same.

En d'autres termes, la diffĆ©rence entre la variante reprĆ©sentĆ©e sur la figure 6 et le deuxiĆØme mode de rĆ©alisation de la figure 5 est la mĆŖme que celle qui a Ć©tĆ© prĆ©sentĆ© prĆ©cĆ©demment entre la variante reprĆ©sentĆ©e sur la figure 2 et le premier mode de rĆ©alisation de la figure 1.In other words, the difference between the variant shown in the figure 6 and the second embodiment of the figure 5 is the same as that which was presented previously between the variant shown on the figure 2 and the first embodiment of the figure 1 .

La figure 7 reprĆ©sente une autre variante du deuxiĆØme mode de rĆ©alisation de la figure 5, pour laquelle la grille 51 est connectĆ©e Ć  la source 30 de tension alternative radiofrĆ©quence.The figure 7 shows another variant of the second embodiment of the figure 5 , for which the gate 51 is connected to the source 30 of radiofrequency alternating voltage.

Tout le reste est identique et fonctionne de la mĆŖme faƧon.Everything else is the same and works the same.

La figure 8 reprƩsente une variante de rƩalisation Ơ la variante reprƩsentƩe sur la figure 6, pour laquelle la grille 51 est connectƩe Ơ la source 30 de tension alternative radiofrƩquence.The figure 8 shows an alternative embodiment to the variant shown in figure 6 , for which the gate 51 is connected to the source 30 of radiofrequency alternating voltage.

Tout le reste est identique et fonctionne de la mĆŖme faƧon.Everything else is the same and works the same.

Les variantes illustrĆ©es sur les figures 7 et 8 n'impliquent donc pas la mise en œuvre d'un potentiel de rĆ©fĆ©rence 55 pour la grille 51. Comme expliquĆ© prĆ©cĆ©demment, dans le domaine spatial, une telle connexion assure une absence de courants parasites circulant entre d'une part, les parties conductrices externes de la sonde spatiale ou du satellite sur lequel le propulseur 100 est montĆ© et d'autre part, le moyen 50 d'extraction et d'accĆ©lĆ©ration des particules chargĆ©es proprement dit.The variants illustrated on figures 7 and 8 therefore do not involve the use of a reference potential 55 for the gate 51. As explained previously, in the space field, such a connection ensures an absence of parasitic currents flowing between, on the one hand, the external conductive parts of the space probe or of the satellite on which the thruster 100 is mounted and, on the other hand, the means 50 for extracting and accelerating the charged particles proper.

La figure 9 reprƩsente une variante de rƩalisation au propulseur 100 illustrƩ sur la figure 8.The figure 9 represents an alternative embodiment of the thruster 100 illustrated in figure 8 .

Cette variante de rĆ©alisation diffĆØre de celle qui est reprĆ©sentĆ© sur la figure 8 par le fait que le rĆ©servoir 20 comprend deux Ć©tages E1, E2 d'injection de propergol Ć  l'Ć©tat de gaz vers la chambre 10 plasma.This variant embodiment differs from that shown in the figure 8 in that the reservoir 20 comprises two stages E1, E2 for injecting propellant in the gas state to the plasma chamber 10.

En effet, sur la figure 8, et d'ailleurs sur l'ensemble des figures 1 Ơ 7, le rƩservoir 20 comprend une enveloppe 21 dont une paroi est munie d'un ou plusieurs orifice(s) 22, dƩfinissant de ce fait un rƩservoir avec un unique Ʃtage.Indeed, on the figure 8 , and moreover on all figures 1 to 7 , the reservoir 20 comprises a casing 21, one wall of which is provided with one or more orifice (s) 22, thereby defining a reservoir with a single stage.

Au contraire, dans la variante reprĆ©sentĆ©e sur la figure 9, le rĆ©servoir comporte, en outre, une membrane 22' comportant au moins un orifice 22" et sĆ©parant le rĆ©servoir en deux Ć©tages E1, E2. Plus prĆ©cisĆ©ment, le rĆ©servoir 20 comporte une membrane 22' situĆ©e entre le propergol solide PS et l'enveloppe 21 munie d'au moins un orifice 22, ladite membrane 22' comportant au moins un orifice 22", la surface de la ou chaque orifice 22" de la membrane 22' Ć©tant plus grande que la surface de la ou chaque orifice 22 de l'enveloppe 21 du rĆ©servoir 20.On the contrary, in the variant shown in figure 9 , the reservoir further comprises a membrane 22 ā€² comprising at least one orifice 22 ā€³ and separating the reservoir into two stages E1, E2. More precisely, the reservoir 20 comprises a membrane 22 ā€² situated between the solid propellant PS and the envelope 21 provided with at least one orifice 22, said membrane 22 'comprising at least one orifice 22 ", the area of the or each orifice 22" of the membrane 22' being greater than the area of the or each orifice 22 of the envelope 21 of the tank 20.

Cette variante prĆ©sente un intĆ©rĆŖt lorsque, compte tenu du dimensionnement du ou de chaque orifice 22 sur l'enveloppe 21 du rĆ©servoir 20 pour obtenir notamment la pression P2 de fonctionnement souhaitĆ©e dans la chambre 10 plasma, on aboutit Ć  dĆ©finir des orifices trop petits. Ces orifices peuvent alors ne pas ĆŖtre rĆ©alisables techniquement. Ces orifices peuvent aussi, bien que rĆ©alisables techniquement, trop petits pour s'assurer que des poussiĆØres de propergol solide et plus gĆ©nĆ©ralement, des impuretĆ©s, ne bloqueront pas les orifices 22 en cours d'utilisation.This variant is of interest when, taking into account the sizing of the or each orifice 22 on the casing 21 of the reservoir 20 in order to obtain in particular the desired operating pressure P2 in the plasma chamber 10, the result is to define orifices that are too small. These orifices may then not be technically feasible. These holes can also, although technically feasible, too small to ensure that solid propellant dust and more generally impurities, will not block orifices 22 in use.

Dans ce cas, on dimensionne le ou chaque orifice 22" de la membrane 22' de sorte qu'il soit plus grand que le ou chaque orifice 22 rƩalisƩ sur l'enveloppe 21 du rƩservoir 20, le ou chaque orifice 22 restant dimensionnƩ pour obtenir la pression P2 de fonctionnement souhaitƩe dans la chambre 10 Ơ plasma.In this case, the or each orifice 22 "of the membrane 22 'is dimensioned so that it is larger than the or each orifice 22 made on the casing 21 of the reservoir 20, the or each orifice 22 remaining dimensioned to obtain the desired operating pressure P2 in the plasma chamber 10.

Bien entendu, un rĆ©servoir 20 Ć  double Ć©tage peut ĆŖtre envisagĆ© pour l'ensemble des rĆ©alisations dĆ©crites Ć  l'appui des figures 1 Ć  7.Of course, a double-stage tank 20 can be envisaged for all of the embodiments described in support of the figures 1 to 7 .

La figure 10 reprĆ©sente un troisiĆØme mode de rĆ©alisation d'un propulseur ionique selon l'invention.The figure 10 represents a third embodiment of an ion propellant according to the invention.

Cette figure se prƩsente comme une variante Ơ la rƩalisation de la figure 8 (grilles 52' et 51' toutes deux reliƩes Ơ la source de tension). Cependant, elle s'applique Ʃgalement en tant que variante Ơ la figure 6 (grille 52' reliƩe Ơ la source et grille 51 reliƩe Ơ la masse), Ơ la figure 7 (Ʃlectrode 52 et grille 51 toutes deux reliƩes Ơ la source de tension), Ơ la figure 5 (Ʃlectrode 52 reliƩe Ơ la source et grille 51 reliƩe Ơ la masse) et Ơ la figure 9.This figure is presented as an alternative to the realization of the figure 8 (grids 52 'and 51' both connected to the voltage source). However, it also applies as a variant to the figure 6 (grid 52 'connected to the source and grid 51 connected to ground), to the figure 7 (electrode 52 and gate 51 both connected to the voltage source), to the figure 5 (electrode 52 connected to the source and gate 51 connected to ground) and to the figure 9 .

Le propulseur 100 prĆ©sentĆ© ici permet de former un faisceau 70' d'ions positifs en sortie de la chambre 10 plasma. Pour cela, la source de tension alternative radiofrĆ©quence 30 est remplacĆ©e par une source 30" de tension continu (DC). Afin d'assurer l'Ć©lectroneutralitĆ© du faisceau 70', des Ć©lectrons sont injectĆ©s dans le faisceau 70' par un dispositif externe 80, 81 Ć  la chambre 10. Ce dispositif comprend une source de puissance 80 alimentant un gĆ©nĆ©rateur d'Ć©lectrons 81. Le faisceau d'Ć©lectrons 70" sortant du gĆ©nĆ©rateur d'Ć©lectrons 81 est dirigĆ© vers le faisceau 70' d'ions positifs pour assurer l'Ć©lectroneutralitĆ©.The propellant 100 presented here makes it possible to form a beam 70 ā€² of positive ions at the outlet of the plasma chamber 10. For this, the radiofrequency alternating voltage source 30 is replaced by a direct voltage (DC) source 30 ". In order to ensure the electroneutrality of the beam 70 ', electrons are injected into the beam 70' by an external device 80 , 81 to chamber 10. This device comprises a power source 80 supplying an electron generator 81. The electron beam 70 ā€³ leaving the electron generator 81 is directed towards the beam 70 ā€² of positive ions to ensure electroneutrality.

Les figures 11 et 12 reprƩsentent une conception envisageable pour une chambre plasma 10 et son environnement pour un propulseur 100 conforme aux rƩalisations de la figure 1, de la figure 3, de la figure 5 ou de la figure 7.The figures 11 and 12 represent a possible design for a plasma chamber 10 and its environment for a thruster 100 in accordance with the achievements of the figure 1 , of the figure 3 , of the figure 5 or the figure 7 .

Sur ces figures, on reconnaĆ®t la chambre 10 plasma, le rĆ©servoir 20 avec son enveloppe 21 et les orifices 22. Le rĆ©servoir 20 sert Ć©galement d'Ć©lectrode 52. Dans le cas d'espĆØce, on a reprĆ©sentĆ© trois orifices 22, Ć©quirĆ©partis autour de l'axe de symĆ©trie AX du rĆ©servoir 20. L'enveloppe 21 est rĆ©alisĆ©e en un matĆ©riau conducteur, par exemple mĆ©tallique (Aluminium, Zinc ou un matĆ©riau mĆ©tallique recouvert par le l'or, par exemple) ou en un alliage mĆ©tallique (inox ou laiton, par exemple). De ce fait, des courants de Foucault et par suite, un effet Joule peuvent ĆŖtre produits dans l'enveloppe 21 du rĆ©servoir 20 sous l'action de la source de tension alternative 30, 30' et de la bobine 40 ou, selon le cas, de l'antenne micro-ondes 40. La transmission de la chaleur entre l'enveloppe 21 du rĆ©servoir 20 et le propergol solide PS peut s'effectuer par conduction thermique et/ou rayonnement thermique.These figures show the plasma chamber 10, the reservoir 20 with its casing 21 and the orifices 22. The reservoir 20 also serves as an electrode 52. In the present case, three orifices have been shown. 22, evenly distributed around the axis of symmetry AX of the reservoir 20. The casing 21 is made of a conductive material, for example metallic (aluminum, zinc or a metallic material coated with gold, for example) or of a metal alloy (stainless steel or brass, for example). As a result, eddy currents and therefore a Joule effect can be produced in the casing 21 of the reservoir 20 under the action of the alternating voltage source 30, 30 'and of the coil 40 or, as the case may be. , the microwave antenna 40. The transmission of heat between the casing 21 of the tank 20 and the solid propellant PS can be effected by thermal conduction and / or thermal radiation.

La chambre 10 est enserrĆ©e entre deux anneaux 201, 202, montĆ©s ensembles par l'intermĆ©diaire de tiges 202, 204, 205 s'Ć©tendant le long de la chambre 10 (axe longitudinal AX). La chambre 10 est rĆ©alisĆ©e en un matĆ©riau diĆ©lectrique, par exemple en cĆ©ramique. La fixation des anneaux et des tiges peut s'effectuer par des boulons/Ć©crous (non reprĆ©sentĆ©s). Les anneaux peuvent ĆŖtre rĆ©alisĆ©s en un matĆ©riau mĆ©tallique, par exemple de l'aluminium. Quant aux tiges, elles sont par exemple rĆ©alisĆ©es en cĆ©ramique ou en un matĆ©riau mĆ©tallique.The chamber 10 is clamped between two rings 201, 202, mounted together by means of rods 202, 204, 205 extending along the chamber 10 (longitudinal axis AX). The chamber 10 is made of a dielectric material, for example ceramic. The fixing of the rings and the rods can be made by bolts / nuts (not shown). The rings can be made of a metallic material, for example aluminum. As for the rods, they are for example made of ceramic or a metallic material.

L'ensemble ainsi formĆ© par les anneaux 201, 203 et les tiges 202, 204, 205 permet la fixation de la chambre 10 et de son environnement, par l'intermĆ©diaire de piĆØces additionnelles 207, 207', lesquelles prennent en sandwich l'un 203 des anneaux, sur un systĆØme (non reprĆ©sentĆ© sur les figures 11 et 12) destinĆ© Ć  accueillir le propulseur, par exemple un satellite ou une sonde spatiale.The assembly thus formed by the rings 201, 203 and the rods 202, 204, 205 allows the fixing of the chamber 10 and its environment, by means of additional parts 207, 207 ', which sandwich one 203 rings, on a system (not shown on the figures 11 and 12 ) intended to accommodate the thruster, for example a satellite or a space probe.

Exemple de dimensionnement.Sizing example.

Un propulseur ionique 100 conforme Ơ celui reprƩsentƩ sur la figure 1 a ƩtƩ testƩ.An ion propellant 100 conforming to that shown in figure 1 has been tested.

La chambre 10 plasma et son environnement sont conformes Ć  ce qui a Ć©tĆ© dĆ©crit Ć  l'appui des figures 11 et 12. Les matĆ©riaux ont Ć©tĆ© choisis pour une tempĆ©rature maximum acceptable de 300Ā°C.The plasma chamber and its environment conform to what has been described in support of the figures 11 and 12 . The materials were chosen for a maximum acceptable temperature of 300 Ā° C.

Le propergol solide PS utilisĆ© est du diiode (I2, masse sĆØche d'environ 50g).The solid PS propellant used is diodine (I 2 , dry mass of about 50 g).

Plusieurs orifices 22 ont ƩtƩ prƩvus sur l'enveloppe 21 conductrice du rƩservoir 20 pour faire passer le gaz diiode depuis le rƩservoir 20 vers la chambre 10 Ơ plasma (rƩservoir 20 Ơ Ʃtage unique).Several orifices 22 have been provided on the conductive casing 21 of the reservoir 20 to pass the iodine gas from the reservoir 20 to the plasma chamber 10 (single-stage reservoir 20).

Une tempĆ©rature de rĆ©fĆ©rence T1 pour le rĆ©servoir 20 a Ć©tĆ© fixĆ©e Ć  60Ā°C. Ceci peut ĆŖtre obtenu avec une puissance de 10W au niveau de la source de tension alternative radiofrĆ©quence 30. La frĆ©quence du signal fourni par la source 30 est choisie pour ĆŖtre entre la frĆ©quence plasma des ions et la frĆ©quence plasma des Ć©lectrons, en l'occurrence 13,56MHz.A reference temperature T1 for tank 20 has been set at 60 Ā° C. This can be obtained with a power of 10W at the level of the radiofrequency alternating voltage source 30. The frequency of the signal supplied by the source 30 is chosen to be between the plasma frequency of the ions and the plasma frequency of the electrons, in this case. 13.56MHz.

La pression P1 du gaz diiode dans le rĆ©servoir 20 est alors connue par la figure 13 (cas du I2 ; cf. la formule F1 correspondante), celle-ci fournissant le lien entre P1 et T1. Dans le cas d'espĆØce, P1 est de 10 Torr (environ 1330 Pa).The pressure P1 of the iodine gas in the reservoir 20 is then known by the figure 13 (case of I 2 ; cf. the corresponding formula F1), this one providing the link between P1 and T1. In the present case, P1 is 10 Torr (approximately 1330 Pa).

Pour obtenir une efficacitĆ© optimale, la pression P2 dans la chambre 10 doit alors ĆŖtre comprise entre 7Pa et 15Pa avec un dĆ©bit massique m' de gaz diiode infĆ©rieur Ć  15sccm (ā‰…1,8.10-6 kg.s-1) entre le rĆ©servoir 20 et la chambre 10.To obtain optimum efficiency, the pressure P2 in chamber 10 must then be between 7Pa and 15Pa with a mass flow m 'of iodine gas less than 15sccm (ā‰…1.8.10 -6 kg.s -1 ) between the tank 20 and room 10.

On peut alors estimer que le diamĆØtre de l'orifice (circulaire) Ć©quivalent est d'environ 50 microns. Lorsque l'orifice est unique, il prĆ©sentera donc un diamĆØtre de 50 microns. Lorsque plusieurs orifices sont prĆ©vus, ce qui est le cas dans le test effectuĆ©, il convient alors de dĆ©terminer la surface de cette orifice et de rĆ©partir cette surface sur plusieurs orifices afin d'obtenir le diamĆØtre de chacun des orifices, qui sera avantageusement le mĆŖme.We can then estimate that the diameter of the equivalent (circular) orifice is about 50 microns. When the orifice is single, it will therefore have a diameter of 50 microns. When several orifices are provided, which is the case in the test carried out, it is then necessary to determine the area of this orifice and to distribute this area over several orifices in order to obtain the diameter of each of the orifices, which will advantageously be the same. .

Toutefois, afin de donner quelques ƩlƩments de dimensionnement supplƩmentaires correspondants aux valeurs numƩriques fournies ci-dessus, on peut noter les points suivants, dans le cas d'un orifice 22 de surface A.However, in order to give some additional sizing elements corresponding to the numerical values provided above, the following points may be noted, in the case of an orifice 22 with surface A.

Le dĆ©bit volumique Ć  travers l'orifice 22 peut ĆŖtre estimĆ© par la relation : Q = v 4 A P 1 āˆ’ P 2

Figure imgb0004
oĆ¹ :

  • P1 est la pression dans le rĆ©servoir 20;
  • P2 est la pression dans la chambre 10 ; et
  • v est la vitesse moyenne des molĆ©cules de gaz de diiode, dĆ©terminĆ©e par la relation : v = 8 kT 1 Ļ€m
    Figure imgb0005
    oĆ¹:
    • T1 est la tempĆ©rature dans le rĆ©servoir 20;
    • k est la constante de Boltzmann (k ā‰ˆ 1.38Ā·10-23 JĀ·K-1); et
    • m est la masse d'une molĆ©cule du gaz diode (m(I2) ā‰ˆ 4.25Ā·10-25 kg).
The volume flow through the orifice 22 can be estimated by the relation: Q = v 4 AT P 1 - P 2
Figure imgb0004
or :
  • P 1 is the pressure in the reservoir 20;
  • P 2 is the pressure in chamber 10; and
  • v is the average speed of the molecules of iodine gas, determined by the relation: v = 8 kT 1 Ļ€m
    Figure imgb0005
    or:
    • T 1 is the temperature in the tank 20;
    • k is Boltzmann's constant ( k ā‰ˆ 1.38 Ā· 10 -23 J Ā· K -1 ); and
    • m is the mass of a molecule of the diode gas ( m (I 2 ) ā‰ˆ 4.25 Ā· 10 -25 kg).

Le dƩbit massique m' de gaz de diiode Ơ travers l'orifice 22 est alors obtenu par la relation : m l kg / s = MQ RT 1

Figure imgb0006
oĆ¹:

  • M est la masse molaire du diode (for I2, M ā‰ˆ 254 u); et
  • R est la constante molaire des gaz (R ā‰ˆ 8.31 J/molĀ·K).
The mass flow m 'of iodine gas through the orifice 22 is then obtained by the relation: m l kg / s = MQ RT 1
Figure imgb0006
or:
  • M is the molar mass of the diode (for I 2 , M ā‰ˆ 254 u); and
  • R is the molar constant of gases ( R ā‰ˆ 8.31 J / mol Ā· K).

En combinant les relations (R1) et (R3), on en dĆ©duit la surface A de l'orifice 22 par la relation: A = 4 m l RT 1 vM P 1 āˆ’ P 2

Figure imgb0007
By combining the relations (R1) and (R3), we deduce the area A of the orifice 22 by the relation: AT = 4 m l RT 1 vM P 1 - P 2
Figure imgb0007

L'orifice 22 est alors dimensionnƩ.The orifice 22 is then dimensioned.

Comme on peut le constater dans la relation (R4), la tempĆ©rature T2 dans la chambre 10 Ć  plasma n'intervient pas. Une modĆ©lisation plus prĆ©cise pourrait ĆŖtre obtenue en prenant en compte cette tempĆ©rature T2. Pour des donnĆ©es plus gĆ©nĆ©rales sur ce dimensionnement, on pourra se rĆ©fĆ©rer Ć  : A User Guide To Vacuum Technology, third ed., Johan F. O'Hanlon (John Wiley & Sons Inc., 2003 ).As can be seen in relation (R4), the temperature T 2 in the plasma chamber 10 does not intervene. A more precise modeling could be obtained by taking this temperature T 2 into account. For more general data on this dimensioning, one can refer to: A User Guide To Vacuum Technology, third ed., Johan F. O'Hanlon (John Wiley & Sons Inc., 2003 ).

Une fois que la surface A de l'orifice 22 est dimensionnĆ©, le dĆ©bit massique m' leak (kg/s) de fuite de gaz de diiode lorsque le propulseur 100 est Ć  l'arrĆŖt peut ĆŖtre dĆ©terminĆ© par la relation : m l leak kg / s āˆ AP 0 Mv 0 4 RT 0

Figure imgb0008
oĆ¹:

  • T0 est la tempĆ©rature du propulseur 100 Ć  l'arrĆŖt;
  • P0 est la pression du gaz dans le rĆ©servoir 20 lorsque le propulseur est Ć  l'arrĆŖt, cette pression Ć©tant fournie par la formule F1 (cf. figure 13) Ć  la tempĆ©rature T0; et
  • v0 est obtenue en utilisant la relation (R2) en substituant T1 par T0.
Once the area A of the orifice 22 is sized, the mass flow rate m ' leak (kg / s) of diode gas leakage when the propellant 100 is stopped can be determined by the relation: m l leak kg / s āˆ AP 0 Mv 0 4 RT 0
Figure imgb0008
or:
  • T 0 is the temperature of the propellant 100 when stopped;
  • P 0 is the gas pressure in the tank 20 when the thruster is stopped, this pressure being provided by formula F1 (cf. figure 13 ) at temperature T 0 ; and
  • v 0 is obtained by using the relation (R2) by substituting T 1 by T 0 .

Fin de l'exemple.End of the example.

Il convient de noter que le positionnement du ou de chaque orifice, reprĆ©sentĆ© sur les figures annexĆ©s sur une face de l'enveloppe du rĆ©servoir 20 faisant face Ć  la chambre 10 plasma pourrait ĆŖtre diffĆ©rent. En particulier, il est tout Ć  fait envisageable de disposer le ou chaque orifice sur la face opposĆ©e du rĆ©servoir 20.It should be noted that the positioning of the or each orifice, shown in the appended figures on a face of the shell of the reservoir 20 facing the plasma chamber 10 could be different. In particular, it is quite possible to arrange the or each orifice on the opposite face of the reservoir 20.

Enfin, le propulseur 100 selon l'invention peut en particulier ĆŖtre utilisĆ© pour un satellite S ou une sonde spatiale SP.Finally, the thruster 100 according to the invention can in particular be used for a satellite S or a space probe SP.

Ainsi, la figure 14 reprƩsente, de faƧon schƩmatique, un satellite S comprenant un propulseur 100 selon l'invention et une source d'Ʃnergie SE, par exemple une batterie ou un panneau solaire, connectƩe Ơ la ou chaque source de tension continue 30" ou alternative 30, 30' (radiofrƩquence ou micro-ondes, selon le cas) du propulseur 100.So the figure 14 represents, schematically, a satellite S comprising a thruster 100 according to the invention and an energy source SE, for example a battery or a solar panel, connected to the or each source of direct voltage 30 "or alternating voltage 30, 30 '(radio frequency or microwave, as the case may be) of the thruster 100.

Quant Ơ la figure 15, elle reprƩsente de faƧon schƩmatique, une sonde spatiale SS comprenant un propulseur 100 selon l'invention et une source d'Ʃnergie SE, par exemple une batterie ou un panneau solaire, connectƩe Ơ la ou chaque source de tension continue 30" ou alternative 30, 30' (radiofrƩquence ou micro-ondes, selon le cas) du propulseur 100.About the figure 15 , it schematically represents a space probe SS comprising a thruster 100 according to the invention and an energy source SE, for example a battery or a solar panel, connected to the or each source of direct voltage 30 "or alternating voltage 30 , 30 '(radiofrequency or microwave, as the case may be) from the thruster 100.

Claims (14)

  1. Ion thruster (100) comprising:
    - a chamber (10),
    - a tank (20) comprising a solid propellant (PS), said tank (20) comprising a conductive jacket (21) provided with at least one orifice (22);
    - a set of means (30, 30', 40) for forming an ion-electron plasma in the chamber (10), said set being able to sublime the solid propellant in the tank (20) in order to form a propellant in the gaseous state, then to generate said plasma in the chamber (10) from the propellant in the gaseous state coming from the tank (20) through said at least one orifice (22);
    - a means (50) for extracting and accelerating at least the ions of the plasma out of the chamber (10), said means (50) for extracting and accelerating comprising:
    ā€¢ either an electrode (52) housed in the chamber (10) to which is associated a grid (51) located at one end (E) of the chamber (10), said electrode (52) having a surface that is greater than the surface of the grid (51),
    ā€¢ or a set of at least two grids (52', 51) located at one end (E) of the chamber (10);
    - a DC voltage source (30") or a radiofrequency AC voltage source (30) arranged in series with a capacitor (53) and adapted for generating a signal of which the radiofrequency is between the plasma frequency of the ions and the plasma frequency of the electrons, said DC (30") or radiofrequency AC voltage source being connected, by one of its outputs, to the means (50) for extracting and accelerating at least the ions of the plasma out of the chamber (10), and more precisely:
    ā€¢ either to the electrode (52),
    ā€¢ or to one (52') of the grids of said set of at least two grids (51, 52'),
    with the grid (51) associated with the electrode (52) or, according to the case, the other grid (51) of said set of at least two grids (52', 51) being either set to a reference potential (55), or connected to the other of the outputs of said radiofrequency AC voltage source (30);
    said means (50) for extracting and accelerating and said DC or radiofrequency AC voltage source (30, 30") making it possible to form, at the output of the chamber (10), a beam (70, 70') comprising at least ions;
    characterised in that said tank (20) is housed in the chamber (10).
  2. Thruster (100) according to claim 1, wherein:
    ā€¢ the voltage source connected to the means (50) for extracting and accelerating is a radiofrequency AC voltage source (30),
    ā€¢ the set of means (30, 40) for forming the ion-electron plasma comprises at least one coil (40) powered by this same radiofrequency AC voltage source (30) by the intermediary of a means (60) for managing the signal supplied by said radiofrequency voltage source (30) in the direction on the one hand, of said at least one coil (40) and on the other hand, of the means (50) for extracting and accelerating
    in order to form a beam (70) of ions and of electrons at the output of the chamber (10).
  3. Thruster (100) according to claim 1, wherein the set of means (30, 40, 30') for forming the ion-electron plasma comprises:
    ā€¢ at least one coil (40) powered by a radiofrequency AC voltage source (30') different from the DC (30") or radiofrequency AC (30) voltage source connected to the means (50) for extracting and accelerating; or
    ā€¢ at least one microwave antenna (40) powered by a microwave AC voltage source (30').
  4. Thruster (100) as claimed in the preceding claim, wherein the voltage source connected to the means (50) for extracting and accelerating is a radiofrequency AC voltage source (30), in order to form, at the output of the chamber (10), a beam (70) of ions and of electrons.
  5. Thruster (100) according to one of claims 2 or 4, wherein, when the means (50) for extracting and accelerating is a set of at least two grids (52', 51) located at one end (E) of the chamber (10), the electroneutrality of the beam (70) of ions and electrons is obtained at least partially by adjusting the application duration of the positive and/or negative potentials coming from the radiofrequency AC voltage source (30) connected to the means (50) for extracting and accelerating.
  6. Thruster (100) according to one of claims 2 or 4, wherein, when the means (50) for extracting and accelerating is a set of at least two grids (52', 51) located at one end (E) of the chamber (10), the electroneutrality of the beam (70) of ions and electrons is obtained at least partially by adjusting the amplitude of the positive and/or negative potentials coming from the radiofrequency AC voltage source (30) connected to the means (50) for extracting and accelerating.
  7. Thruster (100) according to claim 3, wherein the voltage source connected to the means (50) for extracting and accelerating is a DC voltage source (30"), in order to form, at the output of the chamber (10), a beam (70') of ions, with the thruster (100) further comprising means (80, 81) for injecting electrons into said beam (70') of ions in order to provide electroneutrality.
  8. Thruster (100) according to one of the preceding claims, wherein the tank (20) comprises a membrane (22') located between the solid propellant (PS) and the jacket (21) provided with at least one orifice (22), said membrane (22') comprising at least one orifice (22"), with the surface of the or of each orifice (22") of the membrane (22') being larger than the surface of the or of each orifice (22) of the jacket (21) of the tank (20).
  9. Thruster (100) according to one of the preceding claims, wherein the or each grid (51, 52') has orifices of which the shape is chosen from the following shapes: circular, square, rectangle or in the form of slots, in particular parallel slots.
  10. Thruster (100) according to one of the preceding claims, wherein the or each grid (51, 52') has circular orifices, of which the diameter is between 0.2 mm and 10 mm, for example between 0.5 mm and 2 mm.
  11. Thruster (100) according to one of the preceding claims, wherein, when the means (50) for extracting and accelerating out of the chamber (10) comprise a set of at least two grids (52', 51) located at the end (E) of the chamber (10), the distance between the two grids (52', 51) is between 0.2 mm and 10 mm, for example between 0.5 mm and 2 mm.
  12. Thruster (10) according to one of the preceding claims, wherein the solid propellant (PS) is chosen from: diatomic iodine, diatomic iodine mixed with other chemical components, ferrocene, adamantane or arsenic.
  13. Satellite (S) comprising a thruster (100) according to one of the preceding claims and a source of energy (SE), for example a battery or a solar panel, connected to the or to each DC (30") or AC (30, 30') voltage source of the thruster (100).
  14. Space probe (SS) comprising a thruster (100) according to one of claims 1 to 12 and a source of energy (SE), for example a battery or a solar panel, connected to the or to each DC (30") or AC (30, 30') voltage source of the thruster (100).
EP16760449.5A 2015-08-31 2016-08-30 Gridded ion thruster with integrated solid propellant Active EP3344873B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558071A FR3040442B1 (en) 2015-08-31 2015-08-31 GRID ION PROPELLER WITH INTEGRATED SOLID PROPERGOL
PCT/EP2016/070412 WO2017037062A1 (en) 2015-08-31 2016-08-30 Gridded ion thruster with integrated solid propellant

Publications (2)

Publication Number Publication Date
EP3344873A1 EP3344873A1 (en) 2018-07-11
EP3344873B1 true EP3344873B1 (en) 2020-07-22

Family

ID=55589924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16760449.5A Active EP3344873B1 (en) 2015-08-31 2016-08-30 Gridded ion thruster with integrated solid propellant

Country Status (13)

Country Link
US (1) US11060513B2 (en)
EP (1) EP3344873B1 (en)
JP (1) JP6943392B2 (en)
KR (1) KR102635775B1 (en)
CN (1) CN209228552U (en)
CA (1) CA2996431C (en)
ES (1) ES2823276T3 (en)
FR (1) FR3040442B1 (en)
HK (1) HK1251281A1 (en)
IL (1) IL257700B (en)
RU (1) RU2732865C2 (en)
SG (1) SG11201801545XA (en)
WO (1) WO2017037062A1 (en)

Families Citing this family (12)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062545B1 (en) * 2017-01-30 2020-07-31 Centre Nat Rech Scient SYSTEM FOR GENERATING A PLASMA JET OF METAL ION
RU2696832C1 (en) * 2018-07-24 2019-08-06 ŠŸŃƒŠ±Š»ŠøчŠ½Š¾Šµ Š°ŠŗцŠøŠ¾Š½ŠµŃ€Š½Š¾Šµ Š¾Š±Ń‰ŠµŃŃ‚Š²Š¾ "Š Š°ŠŗŠµŃ‚Š½Š¾-ŠŗŠ¾ŃŠ¼ŠøчŠµŃŠŗŠ°Ń ŠŗŠ¾Ń€ŠæŠ¾Ń€Š°Ń†Šøя "Š­Š½ŠµŃ€Š³Šøя" ŠøŠ¼ŠµŠ½Šø Š”.ŠŸ. ŠšŠ¾Ń€Š¾Š»ŠµŠ²Š°" Iodine storage and supply system (versions) and method of determining flow rate and remaining weight of iodine therein
WO2020117354A2 (en) * 2018-09-28 2020-06-11 Phase Four, Inc. Optimized rf-sourced gridded ion thruster and components
SE542881C2 (en) * 2018-12-27 2020-08-04 Nils Brenning Ion thruster and method for providing thrust
FR3092385B1 (en) 2019-02-06 2021-01-29 Thrustme Thruster tank with on-off gas flow control system, thruster and spacecraft incorporating such a control system
CN110469474B (en) * 2019-09-04 2020-11-17 北äŗ¬čˆŖē©ŗčˆŖ天大学 Radio frequency plasma source for microsatellite
WO2021046044A1 (en) * 2019-09-04 2021-03-11 Phase Four, Inc. Propellant injector system for plasma production devices and thrusters
CN111140450B (en) * 2019-12-24 2022-10-25 兰州ē©ŗ闓ꊀęœÆē‰©ē†ē ”ē©¶ę‰€ Iodine medium ground air supply device for Hall thruster and use method
CN111322213B (en) * 2020-02-11 2021-03-30 哈尔ę»Øå·„äøšå¤§å­¦ Piezoelectric grid with variable spacing
CN111287922A (en) * 2020-02-13 2020-06-16 哈尔ę»Øå·„äøšå¤§å­¦ Dual-frequency dual-antenna small wave ionized ion propulsion device
CN112795879B (en) * 2021-02-09 2022-07-12 兰州ē©ŗ闓ꊀęœÆē‰©ē†ē ”ē©¶ę‰€ Coating film storage structure of discharge chamber of ion thruster
US20240018951A1 (en) * 2022-07-12 2024-01-18 Momentus Space Llc Chemical-Microwave-Electrothermal Thruster

Family Cites Families (13)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743191B1 (en) 1995-12-29 1998-03-27 Europ Propulsion ELECTRON-CLOSED DRIFT SOURCE OF IONS
US5924277A (en) * 1996-12-17 1999-07-20 Hughes Electronics Corporation Ion thruster with long-lifetime ion-optics system
US6609363B1 (en) * 1999-08-19 2003-08-26 The United States Of America As Represented By The Secretary Of The Air Force Iodine electric propulsion thrusters
WO2005003557A1 (en) * 2003-06-25 2005-01-13 Design Net Engineering, Llc Laser propulsion thruster
US7059111B2 (en) * 2003-10-24 2006-06-13 Michigan Technological University Thruster apparatus and method
ATE454553T1 (en) * 2004-09-22 2010-01-15 Elwing Llc PROPULSION SYSTEM FOR SPACE VEHICLES
US20130067883A1 (en) * 2004-09-22 2013-03-21 Elwing Llc Spacecraft thruster
RU2308610C2 (en) * 2005-02-01 2007-10-20 ŠžŃ‚ŠŗрытŠ¾Šµ Š°ŠŗцŠøŠ¾Š½ŠµŃ€Š½Š¾Šµ Š¾Š±Ń‰ŠµŃŃ‚Š²Š¾ "Š Š°ŠŗŠµŃ‚Š½Š¾-ŠŗŠ¾ŃŠ¼ŠøчŠµŃŠŗŠ°Ń ŠŗŠ¾Ń€ŠæŠ¾Ń€Š°Ń†Šøя "Š­Š½ŠµŃ€Š³Šøя" ŠøŠ¼. Š”.ŠŸ. ŠšŠ¾Ń€Š¾Š»ŠµŠ²Š°" Electric rocket engine plant and method of its operation
US7701145B2 (en) * 2007-09-07 2010-04-20 Nexolve Corporation Solid expellant plasma generator
DE102008058212B4 (en) * 2008-11-19 2011-07-07 Astrium GmbH, 81667 Ion propulsion for a spacecraft
US8610356B2 (en) * 2011-07-28 2013-12-17 Busek Co., Inc. Iodine fueled plasma generator system
JP5950715B2 (en) * 2012-06-22 2016-07-13 äø‰č±é›»ę©Ÿę Ŗ式会ē¤¾ Power supply
RU2543103C2 (en) * 2013-06-24 2015-02-27 ŠžŃ‚ŠŗрытŠ¾Šµ Š°ŠŗцŠøŠ¾Š½ŠµŃ€Š½Š¾Šµ Š¾Š±Ń‰ŠµŃŃ‚Š²Š¾ "Š Š°ŠŗŠµŃ‚Š½Š¾-ŠŗŠ¾ŃŠ¼ŠøчŠµŃŠŗŠ°Ń ŠŗŠ¾Ń€ŠæŠ¾Ń€Š°Ń†Šøя "Š­Š½ŠµŃ€Š³Šøя" ŠøŠ¼ŠµŠ½Šø Š”.ŠŸ. ŠšŠ¾Ń€Š¾Š»ŠµŠ²Š°" Ion engine

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
IL257700A (en) 2018-04-30
JP6943392B2 (en) 2021-09-29
RU2732865C2 (en) 2020-09-23
CN209228552U (en) 2019-08-09
EP3344873A1 (en) 2018-07-11
WO2017037062A1 (en) 2017-03-09
SG11201801545XA (en) 2018-03-28
US20180216605A1 (en) 2018-08-02
FR3040442B1 (en) 2019-08-30
KR20180064385A (en) 2018-06-14
ES2823276T3 (en) 2021-05-06
US11060513B2 (en) 2021-07-13
RU2018109227A (en) 2019-10-03
IL257700B (en) 2022-01-01
HK1251281A1 (en) 2019-01-25
FR3040442A1 (en) 2017-03-03
JP2018526570A (en) 2018-09-13
RU2018109227A3 (en) 2020-01-31
CA2996431C (en) 2023-12-05
CA2996431A1 (en) 2017-03-09
KR102635775B1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
EP3344873B1 (en) Gridded ion thruster with integrated solid propellant
EP2798209B1 (en) Plasma thruster and method for generating propulsive plasma thrust
EP2880438B1 (en) Gas analysis system comprising a mass spectrometer provided with a micro-reflectron
FR3038663B1 (en) HIGH-ALTITUDE HALL-EFFECT THRUSTER
FR2961628A1 (en) ELECTRON MULTIPLIER DETECTOR FORMED OF A HIGHLY DOPED NANODIAMANT LAYER
WO2015159208A1 (en) Device for forming a quasi-neutral beam of oppositely charged particles
FR2627909A1 (en) PASSIVE FREQUENCY CALIBRATION
EP0199625B1 (en) Electron cyclotron resonance negative ion source
EP2311061B1 (en) Electron cyclotron resonance ion generator
EP0813223B1 (en) Magnetic field generation means and ECR ion source using the same
FR3035517A1 (en) DEVICE FOR SPHERICAL DETECTION OF PARTICLES OR RADIATION
WO2018138458A1 (en) System for generating a plasma jet of metal ions
EP0819314B1 (en) Method and device for controlling the energy of at least one charged species bombarding a body immersed in a plasma
WO2017093630A1 (en) Ion-generating device
EP3086139B1 (en) Spherical detection device comprising a holding rod
EP2791664A1 (en) System for detecting and counting ions
WO2017115023A1 (en) Closed system for generating a plasma beam with electron drift and thruster comprising such a system
FR3027399A1 (en) TOMOGRAPHIC ATOMIC PROBE APPARATUS AND PARTICLE BEAM ASSISTED SAMPLE ANALYZED METHOD, AND USE OF SUCH A METHOD
FR3019936A1 (en) PHOTO-THERMO-VOLTAIC CELL WITH PLASMA GENERATOR BY MICROONDE RESONANCE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1251281

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016040435

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016040435

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2823276

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200830

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230705

Year of fee payment: 8

Ref country code: GB

Payment date: 20230627

Year of fee payment: 8

Ref country code: ES

Payment date: 20230907

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230628

Year of fee payment: 8