EP2791664A1 - System for detecting and counting ions - Google Patents

System for detecting and counting ions

Info

Publication number
EP2791664A1
EP2791664A1 EP12806407.8A EP12806407A EP2791664A1 EP 2791664 A1 EP2791664 A1 EP 2791664A1 EP 12806407 A EP12806407 A EP 12806407A EP 2791664 A1 EP2791664 A1 EP 2791664A1
Authority
EP
European Patent Office
Prior art keywords
filament
ions
curvature
radius
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12806407.8A
Other languages
German (de)
French (fr)
Inventor
Pierre Nugues
Adel DOUAHI
René-paul GARCIA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2791664A1 publication Critical patent/EP2791664A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks

Definitions

  • the invention relates to a system for detecting and counting ions.
  • This type of system is commonly used for the detection and counting of ions in mass spectrometers or atomic clocks.
  • a source of hot filament ions within an ion detection and counting system.
  • the atoms from a source of atoms in the vicinity of the hot filament are ionized and the ions formed are re-emitted.
  • the re-emitted ions form a beam which is focused towards the ion detection and counting modules, using ion-extracting electrodes and a magnetic field.
  • the document "Optimization of a Langmuir-Taylor detector for lithium" by R. Delhuille et al. discloses an ion detection and counting system comprising an atom source, a hot filament ion source, ion extracting electrodes, and modules. detection and counting of ions.
  • the filament of the ion source is in the form of a substantially planar ribbon, in other words, the filament is a straight flat ribbon.
  • a source of atoms emits a gas composed of atoms.
  • the atoms of the gas strike the hot filament, said filament has a work output greater than the ionization energy of the atom.
  • One or more extraction electrodes judiciously arranged, which may or may not surround the filament, facilitate the retransmission of the ions, the trajectory of the latter being oriented towards the source of atoms.
  • a magnetic field then deflects the path of the ions towards the detection and counting modules.
  • a disadvantage of this system lies in the fact that only a certain percentage of ions, typically 50%, emitted by the hot filament is focused towards the ion detection and counting modules. which causes a significant loss of said ions at the detection modules.
  • An object of the invention is the development of an ion detection and counting system which allows better detection and counting of the ions reemitted by the source of hot filament ions.
  • an ion detection and counting system comprising a source of atoms, a source of hot filament ions, means for generating a magnetic field and means detection and counting of said ions characterized in that said filament comprises a concave portion along its axis, longitudinal and / or transverse. The radius of curvature is continuous along the longitudinal axis and / or transverse.
  • the trajectory of the ion beam reemitted by the filament is already concentrated towards the detection and counting means. Focusing the ion beam towards these means then allows the use of a reduced electric field. In addition, a better focusing of the re-emitted ion beam on the detection and counting means makes it possible to improve the performance of the apparatuses that use them, such as the atomic clock or the mass spectrometer.
  • FIG. 1 represents a system for detecting and counting ions, according to one aspect of the invention
  • FIG. 1 illustrates a portion of the filament of Figure 1, according to one aspect of the invention.
  • FIG. 1 are represented a source of atoms 1, an enclosure
  • the source of atoms 1 comprises a chamber in which there is a gas atmosphere consisting of atoms to be ionized, conventionally cesium atoms. Said atoms are attracted into the enclosure 2 under vacuum in because of the pressure difference between the chamber 2 under vacuum and the source of atoms 1. Atoms near the hot filament 4 are ionized. The ions thus formed are torn from the filament using a difference of acceleration potential on the ion trajectories with the aid of one or more extracting electrodes 6a, 6b which surround the filament 4 in the example proposed on Figure 1. The trajectory of the emitted ion beam is already concentrated due to the curvature of the filament 4.
  • the ion beam is then subjected to a transverse magnetic field perpendicular to the ion trajectories and parallel to the plane of the detector in order to filter the ions according to their nature and to bend the ion beam towards the means 7 for detecting and counting ions.
  • the magnetic field is created by means 5 of magnetic field generation located on either side of the extraction electrodes 6a, 6b. For the sake of clarity, only one of the two means for generating the magnetic field is shown in FIG.
  • the filament 4 of the ion source 3 comprises a refractory-type material whose melting temperature T f is greater than 1600 ° C. in order to withstand the strong rise in temperature.
  • the filament 4 comprises a material whose work output value is greater than the cesium ionization energy of 1.8 eV.
  • the material of the filament 4 comprises at least one of the following elements: niobium, iridium, platinum, molybdenum, tantalum, tungsten or rhenium.
  • the filament 4 is of parallelepipedal geometry, in the form of a flat ribbon.
  • the length L f and the width l f of the filament 4 depend on the length L s and the width 1 s of the source of atoms 1.
  • the filament 4 must have a sufficient thickness to mechanically resist the high temperature rise of the filament 4 while remaining sufficiently resistive.
  • the thickness of the filament is between 10 and 100 ⁇ .
  • the filament 4 has a concave portion along its longitudinal axis and / or its transverse axis.
  • the radius of curvature of said filament depends on the electric field and the magnetic field applied, the distance to be covered by the re-emitted ions and the diameter of the orifice of the ion detection and counting means 7, preferably the radius of curvature belongs to at an interval between 15 and 50 mm.
  • the detected ionic current with a longitudinal radius of curvature of 25 mm equal to the transverse radius of curvature and an acceleration voltage of 12 V.
  • the transverse radius of curvature r of said filament 4 may depend on the longitudinal radius of curvature R of said filament 4, as illustrated in FIG. 2 which represents an enlargement of the filament 4 of FIG.
  • the curvature along the transverse axis of the filament plays a role in improving the focus of the thermal ions, the thermal ions are ions with thermal agitation, their velocity vector, when reemitted from the filament, is not normal to the surface 4.
  • the transverse curvature improves the mechanical strength of the filament when the latter is heated.
  • the radius of curvature along the transverse axis r of the filament of the ion source 3 is advantageously between 0.5 R and 1.5 R.
  • the radius of curvature along the transverse axis r of the filament of the ion source 3 may be identical to the radius of curvature along the longitudinal axis R of the filament of the ion source 3 .
  • the detection and counting system according to the invention makes it possible to improve the focusing of the ions reemitted on the ion detection and counting means, which makes it possible to improve the performance of the apparatuses which use them.

Abstract

The system for detecting and counting ions comprises a source of atoms (1), a source of ions (3) based on a hot filament (4), means for generating an electric field and a magnetic field (5) and means for detecting and counting (6) said ions, the filament (4) comprises a concave portion along its axis, longitudinal and/or transverse.

Description

Système de détection et de comptage d'ions  Ion detection and counting system
L'invention concerne un système de détection et de comptage d'ions. Ce type de système est couramment utilisé pour la détection et le comptage des ions dans des spectromètres de masse ou des horloges atomiques. The invention relates to a system for detecting and counting ions. This type of system is commonly used for the detection and counting of ions in mass spectrometers or atomic clocks.
Il est connu d'utiliser une source d'ions à filament chaud à l'intérieur d'un système de détection et de comptage d'ions. Les atomes, provenant d'une source d'atomes, se trouvant à proximité du filament chaud sont ionisés et les ions formés sont réémis. Les ions réémis forment un faisceau qui est focalisé en direction des modules de détection et de comptage d'ions, à l'aide d'électrodes extractrices d'ions et d'un champ magnétique. It is known to use a source of hot filament ions within an ion detection and counting system. The atoms from a source of atoms in the vicinity of the hot filament are ionized and the ions formed are re-emitted. The re-emitted ions form a beam which is focused towards the ion detection and counting modules, using ion-extracting electrodes and a magnetic field.
Le document « Optimisation of a Langmuir-Taylor detector for lithium » de R. Delhuille et al. (Rev. Sci. Instrum. 73, 2249 (2002)) décrit un système de détection et de comptage d'ions comprenant une source d'atomes, une source d'ions à filament chaud, des électrodes extractrices d'ions et des modules de détection et de comptage des ions. Le filament de la source d'ions est réalisé sous la forme d'un ruban sensiblement planaire, en d'autres termes, le filament est un ruban plat droit. The document "Optimization of a Langmuir-Taylor detector for lithium" by R. Delhuille et al. (Rev. Sci Instrum 73, 2249 (2002)) discloses an ion detection and counting system comprising an atom source, a hot filament ion source, ion extracting electrodes, and modules. detection and counting of ions. The filament of the ion source is in the form of a substantially planar ribbon, in other words, the filament is a straight flat ribbon.
Le principe de fonctionnement de ce système de détection et de comptage d'ions peut se résumer comme suit : une source d'atomes émet un gaz composé d'atomes. Les atomes du gaz heurtent le filament chaud, ledit filament a un travail de sortie supérieur à l'énergie d'ionisation de l'atome. Une ou plusieurs électrodes extractrices, judicieusement disposées, pouvant entourer ou non le filament, facilitent la réémission des ions, la trajectoire de ces derniers étant orientée vers la source d'atomes. Un champ magnétique dévie ensuite la trajectoire des ions en direction des modules de détection et de comptage. The operating principle of this ion detection and counting system can be summarized as follows: a source of atoms emits a gas composed of atoms. The atoms of the gas strike the hot filament, said filament has a work output greater than the ionization energy of the atom. One or more extraction electrodes, judiciously arranged, which may or may not surround the filament, facilitate the retransmission of the ions, the trajectory of the latter being oriented towards the source of atoms. A magnetic field then deflects the path of the ions towards the detection and counting modules.
Un inconvénient de ce système, tel que décrit dans le document, cité précédemment, réside dans le fait que seulement un certain pourcentage des ions, typiquement 50 %, émis par le filament chaud est focalisé vers les modules de détection et de comptage des ions, ce qui entraîne une importante perte desdits ions au niveau des modules de détection. Un but de l'invention est l'élaboration d'un système de détection et de comptage des ions qui permette une meilleure détection et un meilleur comptage des ions réémis par la source d'ions à filament chaud. A disadvantage of this system, as described in the document cited above, lies in the fact that only a certain percentage of ions, typically 50%, emitted by the hot filament is focused towards the ion detection and counting modules. which causes a significant loss of said ions at the detection modules. An object of the invention is the development of an ion detection and counting system which allows better detection and counting of the ions reemitted by the source of hot filament ions.
Il est proposé, selon un aspect de l'invention, un système de détection et de comptage d'ions comprenant une source d'atomes, une source d'ions à filament chaud, des moyens de génération d'un champ magnétique et des moyens de détection et de comptage desdits ions caractérisé en ce que ledit filament comprend une portion concave selon son axe, longitudinal et/ou transverse. Le rayon de courbure est continu selon l'axe longitudinal et/ou transversal. According to one aspect of the invention, there is provided an ion detection and counting system comprising a source of atoms, a source of hot filament ions, means for generating a magnetic field and means detection and counting of said ions characterized in that said filament comprises a concave portion along its axis, longitudinal and / or transverse. The radius of curvature is continuous along the longitudinal axis and / or transverse.
Ainsi, la trajectoire du faisceau d'ions réémis par le filament est déjà concentrée vers les moyens de détection et de comptage. La focalisation du faisceau d'ions vers ces moyens permet, alors, l'utilisation d'un champ électrique réduit. De plus, une meilleure focalisation du faisceau d'ions réémis sur les moyens de détection et de comptage permet d'améliorer les performances des appareillages qui les utilisent, tels que l'horloge atomique ou le spectromètre de masse. Thus, the trajectory of the ion beam reemitted by the filament is already concentrated towards the detection and counting means. Focusing the ion beam towards these means then allows the use of a reduced electric field. In addition, a better focusing of the re-emitted ion beam on the detection and counting means makes it possible to improve the performance of the apparatuses that use them, such as the atomic clock or the mass spectrometer.
L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs, et illustrés par les dessins annexés sur lesquels : The invention will be better understood by studying a few embodiments described by way of non-limiting examples, and illustrated by the appended drawings in which:
- la figure 1 représente un système de détection et de comptage d'ions, selon un aspect de l'invention,  FIG. 1 represents a system for detecting and counting ions, according to one aspect of the invention,
- la figure 2 illustre une portion du filament de la figure 1 , selon un aspect de l'invention. Sur la figure 1 sont représentés une source d'atomes 1 , une enceinte - Figure 2 illustrates a portion of the filament of Figure 1, according to one aspect of the invention. In FIG. 1 are represented a source of atoms 1, an enclosure
2 sous vide comprenant une source d'ions 3 à filament 4 chaud dont une portion du filament 4 est concave, des moyens 5 de génération d'un champ magnétique, une ou plusieurs électrodes extractrices d'ions 6a, 6b génératrices d'un champ électrique et des moyens 7 de détection et de comptage des ions. 2 under vacuum comprising a source of ions 3 to 4 hot filament of which a portion of the filament 4 is concave, means 5 for generating a magnetic field, one or more ion extraction electrodes 6a, 6b generating a field and means 7 for detecting and counting ions.
La source d'atomes 1 comprend une enceinte où règne une atmosphère de gaz constitué des atomes à ioniser, classiquement des atomes de césium. Lesdits atomes sont attirés dans l'enceinte 2 sous vide en raison de la différence de pression entre l'enceinte 2 sous vide et la source d'atomes 1 . Les atomes se trouvant à proximité du filament 4 chaud sont ionisés. Les ions ainsi formés sont arrachés au filament à l'aide d'une différence de potentiel d'accélération sur les trajectoires ioniques à l'aide d'une ou plusieurs électrodes extractrices 6a, 6b qui entourent le filament 4 dans l'exemple proposé sur la figure 1 . La trajectoire du faisceau d'ions émis est déjà concentrée en raison de la courbure du filament 4. Le faisceau d'ions est ensuite soumis à un champ magnétique transverse perpendiculaire aux trajectoires des ions et parallèle au plan du détecteur afin de filtrer les ions selon leur nature et de courber le faisceau d'ions en direction des moyens 7 de détection et de comptage des ions. Le champ magnétique est créé par des moyens 5 de génération de champ magnétique situés de part et d'autre des électrodes extractrices 6a, 6b. Par soucis de clarté, seul un des deux moyens de génération du champ magnétique est représenté sur la figure 1 . The source of atoms 1 comprises a chamber in which there is a gas atmosphere consisting of atoms to be ionized, conventionally cesium atoms. Said atoms are attracted into the enclosure 2 under vacuum in because of the pressure difference between the chamber 2 under vacuum and the source of atoms 1. Atoms near the hot filament 4 are ionized. The ions thus formed are torn from the filament using a difference of acceleration potential on the ion trajectories with the aid of one or more extracting electrodes 6a, 6b which surround the filament 4 in the example proposed on Figure 1. The trajectory of the emitted ion beam is already concentrated due to the curvature of the filament 4. The ion beam is then subjected to a transverse magnetic field perpendicular to the ion trajectories and parallel to the plane of the detector in order to filter the ions according to their nature and to bend the ion beam towards the means 7 for detecting and counting ions. The magnetic field is created by means 5 of magnetic field generation located on either side of the extraction electrodes 6a, 6b. For the sake of clarity, only one of the two means for generating the magnetic field is shown in FIG.
Le filament 4 de la source d'ions 3 comprend un matériau de type réfractaire dont la température de fusion Tf est supérieure à 1600°C afin de résister à la forte élévation de température. De plus, le filament 4 comprend un matériau dont la valeur du travail de sortie est supérieure à l'énergie d'ionisation du césium de 1 ,8 eV. Préférentiellement, le matériau du filament 4 comprend au moins l'un des éléments suivants : le niobium, l'iridium, le platine, le molybdène, le tantale, le tungstène ou le rhénium. The filament 4 of the ion source 3 comprises a refractory-type material whose melting temperature T f is greater than 1600 ° C. in order to withstand the strong rise in temperature. In addition, the filament 4 comprises a material whose work output value is greater than the cesium ionization energy of 1.8 eV. Preferably, the material of the filament 4 comprises at least one of the following elements: niobium, iridium, platinum, molybdenum, tantalum, tungsten or rhenium.
Le filament 4 est de géométrie parallélépipédique, en forme de ruban plat. Afin d'ioniser le maximum des atomes incidents, la longueur Lf et la largeur lf du filament 4 dépendent de la longueur Ls et de la largeur ls de la source d'atomes 1 . Le filament 4 doit avoir une épaisseur suffisante pour résister mécaniquement à la forte élévation de température du filament 4 tout en restant suffisamment résistif. Préférentiellement, l'épaisseur du filament est comprise entre 10 et 100 μιτι. The filament 4 is of parallelepipedal geometry, in the form of a flat ribbon. In order to ionize the maximum of the incident atoms, the length L f and the width l f of the filament 4 depend on the length L s and the width 1 s of the source of atoms 1. The filament 4 must have a sufficient thickness to mechanically resist the high temperature rise of the filament 4 while remaining sufficiently resistive. Preferably, the thickness of the filament is between 10 and 100 μιτι.
Par exemple, le filament 4 présente une portion concave selon son axe longitudinal et/ou son axe transverse. Le rayon de courbure dudit filament dépend du champ électrique et du champ magnétique appliqués, de la distance à parcourir par les ions réémis et du diamètre de l'orifice des moyens 7 de détection et de comptage des ions, préférentiellement, le rayon de courbure appartient à un intervalle compris entre 15 et 50 mm. Par ce moyen nous avons augmenté de 20 à 30 % le courant ionique détecté avec un rayon de courbure longitudinal de 25 mm égal au rayon de courbure transverse et une tension d'accélération de 12 V. For example, the filament 4 has a concave portion along its longitudinal axis and / or its transverse axis. The radius of curvature of said filament depends on the electric field and the magnetic field applied, the distance to be covered by the re-emitted ions and the diameter of the orifice of the ion detection and counting means 7, preferably the radius of curvature belongs to at an interval between 15 and 50 mm. By We increased by 20 to 30% the detected ionic current with a longitudinal radius of curvature of 25 mm equal to the transverse radius of curvature and an acceleration voltage of 12 V.
En variante, le rayon de courbure transverse r dudit filament 4 peut dépendre du rayon de courbure longitudinal R dudit filament 4, comme l'illustre la figure 2 qui représente un agrandissement du filament 4 de la figure 1 . La courbure selon l'axe transverse du filament joue un rôle en améliorant la focalisation des ions thermiques, les ions thermiques sont des ions sous agitation thermique, leur vecteur vitesse, lorsqu'ils sont réémis du filament, n'est pas normal à la surface d'émission du filament 4. De plus la courbure transverse améliore la tenue mécanique du filament lorsque ce dernier est chauffé. Le rayon de courbure selon l'axe transverse r du filament de la source d'ions 3 est avantageusement compris entre 0,5R et 1 ,5R.  Alternatively, the transverse radius of curvature r of said filament 4 may depend on the longitudinal radius of curvature R of said filament 4, as illustrated in FIG. 2 which represents an enlargement of the filament 4 of FIG. The curvature along the transverse axis of the filament plays a role in improving the focus of the thermal ions, the thermal ions are ions with thermal agitation, their velocity vector, when reemitted from the filament, is not normal to the surface 4. Moreover, the transverse curvature improves the mechanical strength of the filament when the latter is heated. The radius of curvature along the transverse axis r of the filament of the ion source 3 is advantageously between 0.5 R and 1.5 R.
Selon une autre variante de l'invention, le rayon de courbure selon l'axe transverse r du filament de la source d'ions 3 peut être identique au rayon de courbure selon l'axe longitudinal R du filament de la source d'ions 3.  According to another variant of the invention, the radius of curvature along the transverse axis r of the filament of the ion source 3 may be identical to the radius of curvature along the longitudinal axis R of the filament of the ion source 3 .
Le système de détection et de comptage, selon l'invention, permet d'améliorer la focalisation des ions réémis sur les moyens de détection et de comptage des ions ce qui permet d'améliorer les performances des appareillages qui les utilisent.  The detection and counting system according to the invention makes it possible to improve the focusing of the ions reemitted on the ion detection and counting means, which makes it possible to improve the performance of the apparatuses which use them.

Claims

REVENDICATIONS
1 . Système de détection et de comptage d'ions comprenant une source d'atomes (1 ), une source d'ions (3) à filament (4) chaud, des moyens de génération d'un champ magnétique (5) et des moyens de détection et de comptage (6) desdits ions caractérisé en ce que ledit filament (4) comprend une portion concave selon son axe, longitudinal et/ou transverse. 1. An ion detection and counting system comprising a source of atoms (1), a source of ions (3) with a hot filament (4), means for generating a magnetic field (5) and means for detecting and counting (6) said ions characterized in that said filament (4) comprises a concave portion along its axis, longitudinal and / or transverse.
Système selon la revendication 1 dans lequel le rayon de courbure dudit filament (4) dépend de la distance à parcourir par les ions, de l'intensité du champ électrique et du champ magnétique appliqués et de la surface de l'orifice du détecteur. The system of claim 1 wherein the radius of curvature of said filament (4) is dependent upon the distance to be traveled by the ions, the intensity of the electric field and magnetic field applied and the surface of the detector orifice.
3. Système selon les revendications 1 ou 2 dans lequel le rayon de courbure dudit filament (4) est compris entre 15 et 50 mm. 3. System according to claims 1 or 2 wherein the radius of curvature of said filament (4) is between 15 and 50 mm.
4. Système selon l'une des revendications 1 à 3 dans lequel le rayon de courbure transverse (r) dudit filament (4) dépend du rayon de courbure longitudinal (R) dudit filament (4) selon la relation 0,5R<r<1 ,5R. 4. System according to one of claims 1 to 3 wherein the transverse radius of curvature (r) of said filament (4) depends on the longitudinal radius of curvature (R) of said filament (4) in the relation 0.5R <r < 1, 5R.
5. Système selon l'une des revendications 1 et 4 dans lequel le rayon de courbure transverse (r) dudit filament (4) est égal au rayon de courbure longitudinal (R) dudit filament (4) 5. System according to one of claims 1 and 4 wherein the transverse radius of curvature (r) of said filament (4) is equal to the longitudinal radius of curvature (R) of said filament (4)
6. Système selon l'une des revendications 1 à 5 dans lequel ledit filament (4) est un ruban plat. 6. System according to one of claims 1 to 5 wherein said filament (4) is a flat ribbon.
7. Système selon l'une des revendications 1 à 6 dans lequel la longueur (Lf) et la largeur (lf) dudit filament (4) dépendent de la longueur (Ls) et de la largeur (ls) du faisceau d'atomes émis par la source d'atomes (3). 7. System according to one of claims 1 to 6 wherein the length (L f ) and the width (l f ) of said filament (4) depend on the length (L s ) and the width (l s ) of the beam of atoms emitted by the source of atoms (3).
8. Système selon l'une des revendications 1 à 7 dans lequel l'épaisseur dudit filament (4) est supérieure à 10 μιτι. 8. System according to one of claims 1 to 7 wherein the thickness of said filament (4) is greater than 10 μιτι.
9. Système selon l'une des revendications 1 à 8 dans lequel ledit filament (4) comprend un matériau réfractaire, dont le point de fusion est supérieur à 1600 °C. 9. System according to one of claims 1 to 8 wherein said filament (4) comprises a refractory material, whose melting point is greater than 1600 ° C.
10. Système selon l'une des revendications 1 à 9 dans lequel ledit filament (4) comprend un matériau dont la valeur du travail de sortie est supérieure au potentiel d'ionisation des atomes à ioniser. 10. System according to one of claims 1 to 9 wherein said filament (4) comprises a material whose output work value is greater than the ionization potential of the atoms to be ionized.
EP12806407.8A 2011-12-15 2012-12-11 System for detecting and counting ions Withdrawn EP2791664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103864A FR2984593B1 (en) 2011-12-15 2011-12-15 ION DETECTION AND COUNTING SYSTEM
PCT/EP2012/075102 WO2013087635A1 (en) 2011-12-15 2012-12-11 System for detecting and counting ions

Publications (1)

Publication Number Publication Date
EP2791664A1 true EP2791664A1 (en) 2014-10-22

Family

ID=47435920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12806407.8A Withdrawn EP2791664A1 (en) 2011-12-15 2012-12-11 System for detecting and counting ions

Country Status (4)

Country Link
US (1) US9558913B2 (en)
EP (1) EP2791664A1 (en)
FR (1) FR2984593B1 (en)
WO (1) WO2013087635A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146070B (en) * 2019-12-25 2023-06-16 兰州空间技术物理研究所 Small-size high performance space detection mass spectrometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792687A (en) * 1987-04-30 1988-12-20 Mobley Richard M Freeman ion source

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151414A (en) * 1974-04-29 1979-04-24 Extranuclear Laboratories, Inc. Method and apparatus for detection of extremely small particulate matter and vapors
DE2805273C3 (en) 1978-02-08 1982-03-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Device for generating a beam of accelerated ions by contact ionization
WO1986006836A1 (en) * 1985-05-17 1986-11-20 Shimadzu Corporation Detector for gas chromatograph
US4742232A (en) * 1987-03-03 1988-05-03 United States Of America As Represented By The Adminstrator, National Aeronautics And Space Administration Ion generator and ion application system
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
JPH11345590A (en) * 1998-06-01 1999-12-14 Shimadzu Corp Surface ionization type ionization detector
US7427751B2 (en) * 2006-02-15 2008-09-23 Varian, Inc. High sensitivity slitless ion source mass spectrometer for trace gas leak detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792687A (en) * 1987-04-30 1988-12-20 Mobley Richard M Freeman ion source

Also Published As

Publication number Publication date
US20140339435A1 (en) 2014-11-20
US9558913B2 (en) 2017-01-31
FR2984593A1 (en) 2013-06-21
WO2013087635A1 (en) 2013-06-20
FR2984593B1 (en) 2014-09-12

Similar Documents

Publication Publication Date Title
EP3344873B1 (en) Gridded ion thruster with integrated solid propellant
JP5771458B2 (en) Mass spectrometer and mass spectrometry method
WO2014020177A1 (en) Gas analysis system comprising a gas spectrometer equipped with a micro-reflectron
EP3389081B1 (en) Ion source and method for generating elemental ions from aerosol particles
US20130118523A1 (en) Methods and apparatuses for cleaning at least one surface of an ion source
EP1115132B1 (en) Pole for electrical circuit breaker with arc extinguishing chamber provided with dielectric shields
US20150155152A1 (en) Mass spectrometry apparatus
FR2920539A1 (en) LOW PRESSURE GAS ANALYSIS SYSTEM BY OPTICAL TRANSMISSION SPECTROSCOPY
EP2541578A1 (en) Electrical protection device comprising at least one cut-off module controlled by a control device with an electromagnetic coil
EP2791664A1 (en) System for detecting and counting ions
EP2457248A1 (en) Device and method for measuring an energy particle beam
EP3087580B1 (en) Microwave wave generator device with oscillating virtual cathode, with axial geometry, comprising at least one reflector and a magnetic ring, which is configured to be powered by a high-impedance generator
EP0077738B1 (en) Ion source having a gas ionization chamber with oscillations of electrons
EP1052672B1 (en) Time-of-flight mass spectrometer ion source for gas sample analysis
EP3086140B1 (en) Spherical device for detecting particles or radiation
JP5164478B2 (en) Ion trap time-of-flight mass spectrometer
JP6536313B2 (en) Mass spectrometer components
US20080245962A1 (en) Ion trap time-of-flight mass spectrometer
EP2406811B1 (en) Ionization cell for a mass spectrometer, and corresponding leak detector
AU2005284150B2 (en) Flight time mass spectrometer
FR2637727A1 (en) NEUTRONIC TUBE WITH ION SOURCE WITH ELECTROSTATIC ELECTRONIC CONFINEMENT
Das et al. Ionisation of methyl iodide clusters using nanosecond laser pulses: detection of multiply charged positive ions, negative ions and energetic electrons
WO2014016473A1 (en) Smoke detector
EP0300932B1 (en) Electron source
WO2021001383A1 (en) Pulsed generator of electrically charged particles and method of use of a pulsed generator of electrically charged particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180425