EP1052672B1 - Time-of-flight mass spectrometer ion source for gas sample analysis - Google Patents

Time-of-flight mass spectrometer ion source for gas sample analysis Download PDF

Info

Publication number
EP1052672B1
EP1052672B1 EP00401028A EP00401028A EP1052672B1 EP 1052672 B1 EP1052672 B1 EP 1052672B1 EP 00401028 A EP00401028 A EP 00401028A EP 00401028 A EP00401028 A EP 00401028A EP 1052672 B1 EP1052672 B1 EP 1052672B1
Authority
EP
European Patent Office
Prior art keywords
electrons
ion source
flow
electron beam
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00401028A
Other languages
German (de)
French (fr)
Other versions
EP1052672A1 (en
Inventor
Didier Pierrejean
Bruno Galland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1052672A1 publication Critical patent/EP1052672A1/en
Application granted granted Critical
Publication of EP1052672B1 publication Critical patent/EP1052672B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/04Ion sources; Ion guns using reflex discharge, e.g. Penning ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/08Electron sources, e.g. for generating photo-electrons, secondary electrons or Auger electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/147Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]

Definitions

  • the present invention relates to ionization means of gaseous samples for analysis in a mass spectrometer.
  • a sample is analyzed gaseous by bombarding the sample with a stream of electrons, then moving the ions thus obtained to differentiate them then according to their trajectory or their speed.
  • the ions produced by the ion source are launched at the entrance to a tube of flight in which they maintain a constant speed, and detects at the exit of the flight tube the flight time corresponding to each type of ions in the gaseous sample to be analyzed, to deduce their nature. It is necessary for that to launch at the entrance of the flight tube a previously accelerated ion packet, identify the departure time of the packet of ions, and identify the arrival times of the different ions at the other end of the flight tube.
  • Ionic sources commonly used in mass spectrometers include an electron gun having a source of electrons and one or more electrodes of conditioning the electron flow to generate a flow of suitable electrons directed to a gas ionization zone in which ions are formed which are subjected to one or more electrodes ion flow conditioning.
  • the flow of electrons is usually directed to the gas ionization zone in a direction perpendicular to the direction of the flight tube of the mass spectrometer. This results in significant bulk, and a difficulty of integration. The quantity of ions produced is relatively low, which limits the sensitivity of the device.
  • the problem proposed by the present invention is design a new ion source structure for mass spectrometer, having a greater compactness and a greater sensitivity, being easily integrated with other components of a mass spectrometer.
  • a source ionic system for a mass spectrometer comprises a electron gun having an electron source and one or more electrons flow conditioning electrodes to generate a appropriate electron flow directed to a gas ionization zone in which ions are formed which are subject to one or more ion flow conditioning electrodes; downstream Electron flow conditioning electrodes, interposed in the electron stream one or more microchannel pancakes, so that from a pulsed primary electron beam relatively few electrons, a beam is generated secondary electronic pulsed containing a lot of electrons.
  • microchannel pancakes ensure a multiplication of flow of electrons, so the subsequent ionization of the gaseous sample is also multiplied. Sensitivity and resolving power of the device are thus greatly increased.
  • At least one additional electrode adapted to disperse the beam secondary electronics in order to preserve its qualities while improving its spatial qualities.
  • the increase of the ionization is still favored of the gaseous sample, and therefore the sensitivity of a device incorporating the ion source.
  • the gas ionization zone is located between an upstream repulsion electrode traversed by the beam secondary electronics and retaining the electrons by pushing back the ions, and a downstream acceleration electrode that attracts the ions.
  • the ionization zone should preferably be close immediate or microchannel slabs, so that the beam secondary electronics retains its temporal qualities and remains dense, so that all the ions in a packet of ions penetrate substantially at the same time in the flight tube.
  • the primary electron beam is then pulse modulated by a deflection electrode.
  • the electron source can advantageously to be a microtip field emission cathode, producing a pulse-modulated primary electron beam.
  • the invention can find particular application in the production of time-of-flight spectrometers incorporating such ion source.
  • a mass spectrometer to flight time comprises of generally an electron gun 1, followed by an ion gun 2, itself followed by a flight tube 3 whose output communicates with a ion detector 4.
  • the electron gun 1 comprises an electron source 5.
  • the electron source 5 is a filament such as a tungsten filament fed by a heating generator 6 to be heated to a temperature sufficient to provide ion thermoemission.
  • Electrons emitted by the electron source 5 are solicited by one or more electron flow conditioning electrodes 7, for example an acceleration electrode 71 and one or more electrodes of focus 72.
  • a deflection electrode 73 makes it possible to pulse modulating the outgoing electron flow 8.
  • a microtip field emission cathode comprising a conductive substrate on which microtips are made conductors engaged in cavities of an insulating layer interposed between the substrate and a positively polarized gate.
  • Such a microtip field emission cathode makes it possible to modulate by itself the outgoing flow of electrons, without requiring of deflection electrode 73.
  • microchannel slab 9 and 10 Downstream of the flow conditioning electrodes of electrons 7, one interposes according to the invention in the flow of electrons 8 one or more microchannel patties.
  • a first microchannel slab 9 and a second microchannel slab 10 separated from each other by an intergalette electrode 11.
  • a from an 8-pulsed primary electronic beam containing relatively few electrons, microchannel slabs 9 and 10 generate a pulsed secondary electron beam containing many electrons, giving a gain of 100 to several thousands.
  • the primary electron beam can be equivalent to an electric current of the order of 1 to 10 ⁇ A, and the secondary electron beam can correspond to several milliamps, according to the gain of the microchannel slabs 9 and 10.
  • Primary 8 and Secondary 12 electron beams can for example be formed of pulses whose duration is the order of the nanosecond.
  • a microchannel slab 9 is a generally flat element having a thickness E of the order of 0.5 mm, and consisting of side-by-side juxtaposition a very large number of very small glass capillary tubes diameter, comprising for example the tube 13, oriented according to axes perpendicular to the general plane of the slab 9.
  • the tubes capillaries may have a diameter e of about 12 microns, and they are open at both ends on the faces
  • the main faces of the slab 9 are metallized, to constitute, as illustrated in FIG. an input electrode 14 and an output electrode 15, subjected to a potential difference VD.
  • the potential of the electrode output 15 is greater than the potential of the input electrode 14.
  • the inner wall of the capillary tube 13 is treated to present a suitable resistance, and forms an electron multiplier independent secondary.
  • an electron beam primary electronics 8 gets into tube 13 it can come hit the wall of the tube 13 and pick up one or more others electrons that are accelerated by the present electric field between the input electrodes 14 and output 15.
  • the electrons thus detached will strike themselves the opposite wall of the tube 13, picking up other electrons that are themselves accelerated, and he results from step by step the multiplication of electrons in movement, producing a secondary electron beam 12 containing a lot of electrons.
  • the beam secondary electronics 12 propagates to an ionization zone 16 inside the ion gun 2.
  • the electrons hit the atoms of the gaseous sample at analyze, and transform them into ions.
  • the gas ionization zone 16 is located between a repulsive electrode 17 upstream traversed by the secondary electron beam 12 and which retains the electrons by repelling ions, and an accelerating electrode downstream 18 which attracts the ions.
  • the ion stream 19 thus produced is sent to the inlet 20 of the flight tube 3, then travels the length of the flight tube 3 to exit through its exit 21 and enter the ion detector 4.
  • the ion source is arranged in line at the entrance of flight tube 3 of the spectrometer of mass in flight time.
  • the ion detector 4 may comprise wafers to microchannels 22 and 23, generating a multiplied electron flow from strike a target electrode 24. The measurement is made by detecting the electrical pulses collected by the target electrode 24.
  • the ionization zone 16 is close immediate microchannel slab 10, of which it is separated by a reduced distance, for example from 1 to 2 mm approximately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

In accordance with the invention, the ion source of a time-of-flight mass spectrometer includes an electron gun having an electron source and at least one electrode for conditioning the flow of electrons, followed by at least one microchannel wafer for generating a pulsed secondary electron beam containing a greater number of electrons from a pulsed primary electron beam. The secondary electron beam enters a gas ionization area of an ion gun which produces a flow of ions which is then passed through the flight tube in order to be analyzed by an ion detector. This provides a high-performance ion source which is compact, sensitive and easy to integrate.

Description

La présente invention concerne les moyens d'ionisation d'échantillons gazeux pour analyse dans un spectromètre de masse.The present invention relates to ionization means of gaseous samples for analysis in a mass spectrometer.

Dans un spectromètre de masse, on analyse un échantillon gazeux en bombardant l'échantillon par un flux d'électrons, puis en mettant en mouvement les ions ainsi obtenus pour les différencier ensuite en fonction de leur trajectoire ou de leur vitesse.In a mass spectrometer, a sample is analyzed gaseous by bombarding the sample with a stream of electrons, then moving the ions thus obtained to differentiate them then according to their trajectory or their speed.

Il y a un intérêt à produire une ionisation importante de l'échantillon gazeux, afin d'augmenter la sensibilité de la mesure, et d'augmenter la résolution du spectromètre de masse.There is interest in producing an important ionization of the gaseous sample, in order to increase the sensitivity of the measurement, and increase the resolution of the mass spectrometer.

Dans les spectromètres de masse à temps de vol, les ions produits par la source ionique sont lancés à l'entrée d'un tube de vol dans lequel ils conservent une vitesse constante, et on détecte en sortie du tube de vol le temps de vol correspondant à chaque type d'ions de l'échantillon gazeux à analyser, pour en déduire leur nature. Il faut pour cela lancer à l'entrée du tube de vol un paquet d'ions préalablement accéléré, repérer le temps de départ du paquet d'ions, et repérer les instants d'arrivée des différents ions à l'autre extrémité du tube de vol.In time-of-flight mass spectrometers, the ions produced by the ion source are launched at the entrance to a tube of flight in which they maintain a constant speed, and detects at the exit of the flight tube the flight time corresponding to each type of ions in the gaseous sample to be analyzed, to deduce their nature. It is necessary for that to launch at the entrance of the flight tube a previously accelerated ion packet, identify the departure time of the packet of ions, and identify the arrival times of the different ions at the other end of the flight tube.

Il est alors avantageux de générer des paquets d'ions de durée la plus faible possible, comprenant un nombre maximum d'ions. Cela est obtenu par une source ionique impulsionnelle.It is then advantageous to generate ion packets of lowest possible duration, including a maximum number of ions. This is achieved by a pulsed ion source.

Les sources ioniques habituellement utilisées dans les spectromètres de masse comprennent un canon à électrons ayant une source d'électrons et une ou plusieurs électrodes de conditionnement du flux d'électrons pour générer un flux d'électrons approprié dirigé vers une zone d'ionisation de gaz dans laquelle se forment des ions soumis à une ou plusieurs électrodes de conditionnement de flux d'ions. Le flux d'électrons est généralement dirigé vers la zone d'ionisation de gaz dans une direction perpendiculaire à la direction du tube de vol du spectromètre de masse. Il en résulte un encombrement important, et une difficulté d'intégration. La quantité d'ions produite est relativement faible, ce qui limite la sensibilité de l'appareil.Ionic sources commonly used in mass spectrometers include an electron gun having a source of electrons and one or more electrodes of conditioning the electron flow to generate a flow of suitable electrons directed to a gas ionization zone in which ions are formed which are subjected to one or more electrodes ion flow conditioning. The flow of electrons is usually directed to the gas ionization zone in a direction perpendicular to the direction of the flight tube of the mass spectrometer. This results in significant bulk, and a difficulty of integration. The quantity of ions produced is relatively low, which limits the sensitivity of the device.

Le problème proposé par la présente invention est de concevoir une nouvelle structure de source ionique pour spectromètre de masse, présentant une plus grande compacité et une plus grande sensibilité, étant facilement intégrable avec les autres composants d'un spectromètre de masse.The problem proposed by the present invention is design a new ion source structure for mass spectrometer, having a greater compactness and a greater sensitivity, being easily integrated with other components of a mass spectrometer.

Pour atteindre ces objets ainsi que d'autres, une source ionique pour spectromètre de masse selon l'invention comprend un canon à électrons ayant une source d'électrons et une ou plusieurs électrodes de conditionnement de flux d'électrons pour générer un flux d'électrons approprié dirigé vers une zone d'ionisation de gaz dans laquelle se forment des ions soumis à une ou plusieurs électrodes de conditionnement de flux d'ions ; en aval des électrodes de conditionnement de flux d'électrons, on interpose dans le flux d'électrons une ou plusieurs galettes à microcanaux, de sorte que, à partir d'un faisceau électronique primaire pulsé contenant relativement peu d'électrons, on génère un faisceau électronique secondaire pulsé contenant beaucoup d'électrons.To reach these objects as well as others, a source ionic system for a mass spectrometer according to the invention comprises a electron gun having an electron source and one or more electrons flow conditioning electrodes to generate a appropriate electron flow directed to a gas ionization zone in which ions are formed which are subject to one or more ion flow conditioning electrodes; downstream Electron flow conditioning electrodes, interposed in the electron stream one or more microchannel pancakes, so that from a pulsed primary electron beam relatively few electrons, a beam is generated secondary electronic pulsed containing a lot of electrons.

Les galettes à microcanaux assurent une multiplication du flux d'électrons, de sorte que l'ionisation ultérieure de l'échantillon gazeux est également multipliée. La sensibilité et le pouvoir de résolution de l'appareil s'en trouvent ainsi considérablement augmentés.The microchannel pancakes ensure a multiplication of flow of electrons, so the subsequent ionization of the gaseous sample is also multiplied. Sensitivity and resolving power of the device are thus greatly increased.

On peut avantageusement disposer, en aval de la zone occupée par la ou les galettes à microcanaux, au moins une électrode supplémentaire adaptée pour disperser le faisceau électronique secondaire afin de lui conserver ses qualités temporelles tout en améliorant ses qualités spatiales.It is advantageous to dispose, downstream of the zone occupied by the microchannel pancake (s), at least one additional electrode adapted to disperse the beam secondary electronics in order to preserve its qualities while improving its spatial qualities.

Ainsi, on favorise encore l'augmentation de l'ionisation de l'échantillon gazeux, et donc la sensibilité d'un appareil incorporant la source ionique.Thus, the increase of the ionization is still favored of the gaseous sample, and therefore the sensitivity of a device incorporating the ion source.

De préférence, la zone d'ionisation de gaz est située entre une électrode de répulsion amont, traversée par le faisceau électronique secondaire et retenant les électrons en repoussant les ions, et une électrode d'accélération aval qui attire les ions.Preferably, the gas ionization zone is located between an upstream repulsion electrode traversed by the beam secondary electronics and retaining the electrons by pushing back the ions, and a downstream acceleration electrode that attracts the ions.

Grâce à cette disposition, on peut placer la source ionique en alignement avec l'axe du tube de vol à l'entrée du tube de vol d'un spectromètre de masse à temps de vol. On obtient ainsi une meilleure intégration de la source ionique, et une plus grande compacité de l'appareil. Thanks to this arrangement, we can place the source Ionic in alignment with the axis of the flight tube at the entrance of the tube theft of a time-of-flight mass spectrometer. We obtain better integration of the ion source, and greater compactness of the device.

La zone d'ionisation doit de préférence être à proximité immédiate de la ou des galettes à microcanaux, afin que le faisceau électronique secondaire garde ses qualités temporelles et reste dense, de sorte que tous les ions d'un paquet d'ions pénètrent sensiblement en même temps dans le tube de vol.The ionization zone should preferably be close immediate or microchannel slabs, so that the beam secondary electronics retains its temporal qualities and remains dense, so that all the ions in a packet of ions penetrate substantially at the same time in the flight tube.

On peut utiliser comme source d'électrons un filament chauffé à une température appropriée pour générer un flux d'électrons par thermoémission, de façon traditionnelle. Le faisceau électronique primaire est alors modulé en impulsion par une électrode de déviation.One can use as a source of electrons a filament heated to a suitable temperature to generate a flow of electrons by thermoemission, in a traditional way. The primary electron beam is then pulse modulated by a deflection electrode.

En alternative, la source d'électrons peut avantageusement être une cathode à émission de champ à micropointes, produisant un faisceau électronique primaire modulé en impulsion.Alternatively, the electron source can advantageously to be a microtip field emission cathode, producing a pulse-modulated primary electron beam.

L'invention peut trouver notamment application dans la réalisation de spectromètres à temps de vol incorporant une telle source ionique.The invention can find particular application in the production of time-of-flight spectrometers incorporating such ion source.

D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:

  • la figure 1 illustre le schéma de principe d'un spectromètre de masse à temps de vol selon un mode de réalisation de la présente invention ;
  • la figure 2 est une vue schématique en perspective en partie découpée d'une galette à microcanaux pour amplification du flux d'électrons ; et
  • la figure 3 est une coupe longitudinale d'un canal de la galette à microcanaux de la figure 2, illustrant le principe de l'amplification du flux d'électrons.
Other objects, features and advantages of the present invention will become apparent from the following description of particular embodiments, with reference to the accompanying drawings, in which:
  • Fig. 1 illustrates the block diagram of a time-of-flight mass spectrometer according to an embodiment of the present invention;
  • Figure 2 is a schematic perspective partially cut away view of a microchannel wafer for amplification of the electron flow; and
  • Figure 3 is a longitudinal section of a channel of the microchannel wafer of Figure 2, illustrating the principle of the amplification of the electron flow.

En se référant à la figure 1, un spectromètre de masse à temps de vol selon le mode de réalisation représenté comprend de façon générale un canon à électrons 1, suivi d'un canon à ions 2, lui-même suivi d'un tube de vol 3 dont la sortie communique avec un détecteur d'ions 4.Referring to Figure 1, a mass spectrometer to flight time according to the embodiment shown comprises of generally an electron gun 1, followed by an ion gun 2, itself followed by a flight tube 3 whose output communicates with a ion detector 4.

Le canon à électrons 1 comprend une source d'électrons 5. Dans la réalisation illustrée sur la figure, la source d'électrons 5 est un filament tel qu'un filament de tungstène alimenté par un générateur de chauffage 6 pour être portée à une température suffisante assurant une thermoémission d'ions. Les électrons émis par la source d'électrons 5 sont sollicités par une ou plusieurs électrodes de conditionnement de flux d'électrons 7, par exemple une électrode d'accélération 71 et une ou plusieurs électrodes de focalisation 72.The electron gun 1 comprises an electron source 5. In the embodiment illustrated in the figure, the electron source 5 is a filament such as a tungsten filament fed by a heating generator 6 to be heated to a temperature sufficient to provide ion thermoemission. Electrons emitted by the electron source 5 are solicited by one or more electron flow conditioning electrodes 7, for example an acceleration electrode 71 and one or more electrodes of focus 72.

Dans le cas d'une source d'électrons 5 sous forme de filament à thermoémission, une électrode de déviation 73 permet de moduler de façon impulsionnelle le flux d'électrons sortant 8.In the case of an electron source 5 in the form of thermoemission filament, a deflection electrode 73 makes it possible to pulse modulating the outgoing electron flow 8.

En alternative, on peut utiliser comme source d'électrons 5 une cathode à émission de champ à micropointes, comprenant un substrat conducteur sur lequel sont réalisées des micropointes conductrices engagées dans des cavités d'une couche isolante interposée entre le substrat et une grille polarisée positivement. Une telle cathode à émission de champ à micropointes permet de moduler par elle-même le flux sortant d'électrons, sans nécessiter d'électrode de déviation 73.Alternatively, we can use as a source of electrons A microtip field emission cathode, comprising a conductive substrate on which microtips are made conductors engaged in cavities of an insulating layer interposed between the substrate and a positively polarized gate. Such a microtip field emission cathode makes it possible to modulate by itself the outgoing flow of electrons, without requiring of deflection electrode 73.

En aval des électrodes de conditionnement de flux d'électrons 7, on interpose selon l'invention dans le flux d'électrons 8 une ou plusieurs galettes à microcanaux. Dans la réalisation illustrée sur la figure 1, on utilise une première galette à microcanaux 9 et une seconde galette à microcanaux 10, séparées l'une de l'autre par une électrode intergalette 11. A partir d'un faisceau électronique primaire 8 pulsé contenant relativement peu d'électrons, les galettes à microcanaux 9 et 10 génèrent un faisceau électronique secondaire 12 pulsé contenant beaucoup d'électrons, procurant un gain de 100 à plusieurs milliers.Downstream of the flow conditioning electrodes of electrons 7, one interposes according to the invention in the flow of electrons 8 one or more microchannel patties. In the embodiment illustrated in Figure 1, a first microchannel slab 9 and a second microchannel slab 10, separated from each other by an intergalette electrode 11. A from an 8-pulsed primary electronic beam containing relatively few electrons, microchannel slabs 9 and 10 generate a pulsed secondary electron beam containing many electrons, giving a gain of 100 to several thousands.

En pratique, le faisceau électronique primaire peut être équivalent à un courant électrique de l'ordre de 1 à 10 µ A, et le faisceau électronique secondaire peut correspondre à plusieurs milliampères, suivant le gain des galettes à microcanaux 9 et 10.In practice, the primary electron beam can be equivalent to an electric current of the order of 1 to 10 μ A, and the secondary electron beam can correspond to several milliamps, according to the gain of the microchannel slabs 9 and 10.

Les faisceaux électroniques primaire 8 et secondaire 12 peuvent par exemple être formés d'impulsions dont la durée est de l'ordre de la nanoseconde.Primary 8 and Secondary 12 electron beams can for example be formed of pulses whose duration is the order of the nanosecond.

La constitution et le fonctionnement de principe des galettes à microcanaux sont expliqués en relation avec les figures 2 et 3. Comme on le voit sur la figure 2, une galette à microcanaux 9 est un élément généralement plat, ayant une épaisseur E de l'ordre de 0,5 mm, et constitué de la juxtaposition côte à côte d'un très grand nombre de tubes capillaires en verre à très petit diamètre, comprenant par exemple le tube 13, orientés selon des axes perpendiculaires au plan général de la galette 9. Les tubes capillaires peuvent présenter un diamètre e d'environ 12 microns, et ils sont ouverts à leur deux extrémités sur les faces principales de la galette 9. Les faces principales de la galette 9 sont métallisées, pour constituer, comme illustré sur la figure 3, une électrode d'entrée 14 et une électrode de sortie 15, soumises à une différence de potentiel VD. Le potentiel de l'électrode de sortie 15 est supérieur au potentiel de l'électrode d'entrée 14. La paroi intérieure du tube capillaire 13 est traitée pour présenter une résistance appropriée, et forme un multiplicateur d'électrons secondaires indépendant. Lorsqu'un électron du faisceau électronique primaire 8 pénètre dans le tube 13, il peut venir frapper la paroi du tube 13 et décrocher un ou plusieurs autres électrons qui se trouvent accélérés par le champ électrique présent entre les électrodes d'entrée 14 et de sortie 15. Les électrons ainsi détachés vont frapper eux-mêmes la paroi opposée du tube 13, décrochant d'autres électrons qui sont eux-mêmes accélérés, et il en résulte de proche en proche la multiplication des électrons en mouvement, produisant un faisceau électronique secondaire 12 contenant beaucoup d'électrons.The constitution and the principle functioning of microchannel patties are explained in connection with the figures 2 and 3. As seen in Figure 2, a microchannel slab 9 is a generally flat element having a thickness E of the order of 0.5 mm, and consisting of side-by-side juxtaposition a very large number of very small glass capillary tubes diameter, comprising for example the tube 13, oriented according to axes perpendicular to the general plane of the slab 9. The tubes capillaries may have a diameter e of about 12 microns, and they are open at both ends on the faces The main faces of the slab 9. The main faces of the slab 9 are metallized, to constitute, as illustrated in FIG. an input electrode 14 and an output electrode 15, subjected to a potential difference VD. The potential of the electrode output 15 is greater than the potential of the input electrode 14. The inner wall of the capillary tube 13 is treated to present a suitable resistance, and forms an electron multiplier independent secondary. When an electron beam primary electronics 8 gets into tube 13 it can come hit the wall of the tube 13 and pick up one or more others electrons that are accelerated by the present electric field between the input electrodes 14 and output 15. The electrons thus detached will strike themselves the opposite wall of the tube 13, picking up other electrons that are themselves accelerated, and he results from step by step the multiplication of electrons in movement, producing a secondary electron beam 12 containing a lot of electrons.

En se référant à nouveau à la figure 1, le faisceau électronique secondaire 12 se propage jusqu'à une zone d'ionisation 16 à l'intérieur du canon à ions 2. Dans cette zone d'ionisation 16, les électrons frappent les atomes de l'échantillon gazeux à analyser, et les transforment en ions. La zone d'ionisation de gaz 16 est située entre une électrode de répulsion 17 amont traversée par le faisceau électronique secondaire 12 et qui retient les électrons en repoussant les ions, et une électrode d'accélération aval 18 qui attire les ions.Referring again to Figure 1, the beam secondary electronics 12 propagates to an ionization zone 16 inside the ion gun 2. In this ionization zone 16, the electrons hit the atoms of the gaseous sample at analyze, and transform them into ions. The gas ionization zone 16 is located between a repulsive electrode 17 upstream traversed by the secondary electron beam 12 and which retains the electrons by repelling ions, and an accelerating electrode downstream 18 which attracts the ions.

Le flux d'ions 19 ainsi produit est envoyé à l'entrée 20 du tube de vol 3, puis parcourt la longueur du tube de vol 3 pour sortir par sa sortie 21 et pénétrer dans le détecteur d'ions 4. Ainsi, comme illustré sur la figure 1, la source d'ions est disposée en ligne à l'entrée du tube de vol 3 du spectromètre de masse à temps de vol.The ion stream 19 thus produced is sent to the inlet 20 of the flight tube 3, then travels the length of the flight tube 3 to exit through its exit 21 and enter the ion detector 4. Thus, as illustrated in FIG. 1, the ion source is arranged in line at the entrance of flight tube 3 of the spectrometer of mass in flight time.

Le détecteur d'ions 4 peut comprendre des galettes à microcanaux 22 et 23, générant un flux d'électrons multiplié venant frapper une électrode cible 24. La mesure s'effectue en détectant les impulsions électriques recueillies par l'électrode cible 24.The ion detector 4 may comprise wafers to microchannels 22 and 23, generating a multiplied electron flow from strike a target electrode 24. The measurement is made by detecting the electrical pulses collected by the target electrode 24.

Dans la réalisation illustrée sur la figure 1, on a prévu en outre, en aval de la zone occupée par la ou les galettes à microcanaux 9 et 10 du canon à électrons, au moins une électrode supplémentaire 25 adaptée pour disperser le faisceau électronique secondaire 12 afin de lui conserver ses qualités temporelles tout en améliorant ses qualités spatiales. On augmente ainsi l'ionisation dans la zone d'ionisation 16.In the embodiment illustrated in FIG. 1, provision is made further downstream of the area occupied by the at least one microchannels 9 and 10 of the electron gun, at least one electrode additional 25 adapted to disperse the electron beam secondary 12 in order to preserve its temporal qualities while by improving its spatial qualities. We thus increase ionization in the ionization zone 16.

De préférence, la zone d'ionisation 16 est à proximité immédiate de la galette à microcanaux 10, de laquelle elle est séparée par une distance réduite, par exemple de 1 à 2 mm environ.Preferably, the ionization zone 16 is close immediate microchannel slab 10, of which it is separated by a reduced distance, for example from 1 to 2 mm approximately.

La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations couverts par les revendications.The present invention is not limited to the modes of which have been explicitly described, but include the various variants and generalizations covered by the claims.

Claims (8)

  1. An ion source for mass spectrometers, the source including an electron gun (1) having an electron source (5) and at least one electrode (7) for conditioning the flow of electrons to generate an appropriate flow of electrons directed towards a gas ionization area (16) in which ions are formed which are acted on by at least one electrode (17, 18) for conditioning the flow of ions, the source being characterized in that at least one microchannel wafer (9, 10) is disposed in the flow of electrons (8) downstream of the electrodes (7) for conditioning the flow of electrons so that a pulsed secondary electron beam (12) containing many electrons is generated from a pulsed primary electron beam (8) containing relatively few electrons.
  2. An ion source according to claim 1, characterized in that it includes an additional electrode (25) downstream of the area occupied by the microchannel wafer(s) (9, 10) for dispersing the secondary electron beam (12) to retain its temporal properties and improve its spatial properties.
  3. An ion source according to either claim 1 or claim 2, characterized in that the gas ionization area (16) is between an upstream repulsion electrode (17) through which the secondary electron beam (12) is passed and which retains the electrons by repelling the ions and a downstream acceleration electrode (18) which attracts the ions.
  4. An ion source according to any one of claims 1 to 3, characterized in that it is aligned with the entry of the flight tube (3) of a time-of-flight mass spectrometer.
  5. An ion source according to any one of claims 1 to 4, characterized in that the gas ionization area (16) is in the immediate vicinity of the microchannel wafer(s) (9, 10).
  6. An ion source according to any one of claims 1 to 5, characterized in that the electron source (5) is a filament heated to an appropriate temperature to generate a flow of electrons by thermal emission and the primary electron beam (8) is pulse modulated by a deflector electrode (73).
  7. An ion source according to any one of claims 1 to 5, characterized in that the electron source (5) is a micropoint-type field-emission cathode producing a pulse modulated primary electron beam.
  8. A time-of-flight mass spectrometer characterized in that it includes an ion source according to any one of claims 1 to 7.
EP00401028A 1999-04-22 2000-04-13 Time-of-flight mass spectrometer ion source for gas sample analysis Expired - Lifetime EP1052672B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9905088 1999-04-22
FR9905088A FR2792773B1 (en) 1999-04-22 1999-04-22 ION SOURCE FOR TIME OF FLIGHT MASS SPECTROMETER ANALYZING GASEOUS SAMPLES

Publications (2)

Publication Number Publication Date
EP1052672A1 EP1052672A1 (en) 2000-11-15
EP1052672B1 true EP1052672B1 (en) 2004-10-13

Family

ID=9544732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401028A Expired - Lifetime EP1052672B1 (en) 1999-04-22 2000-04-13 Time-of-flight mass spectrometer ion source for gas sample analysis

Country Status (6)

Country Link
US (1) US6545269B1 (en)
EP (1) EP1052672B1 (en)
JP (1) JP4395584B2 (en)
AT (1) ATE279783T1 (en)
DE (1) DE60014758T2 (en)
FR (1) FR2792773B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806467B1 (en) * 2003-07-24 2004-10-19 The Regents Of The University Of California Continuous time-of-flight ion mass spectrometer
US7420472B2 (en) * 2005-10-16 2008-09-02 Bao Tran Patient monitoring apparatus
CN104380425B (en) 2012-06-29 2017-05-31 Fei 公司 Multiple types ion gun
KR101786950B1 (en) 2014-12-30 2017-10-19 한국기초과학지원연구원 Time of flight mass spectrometer
US9899181B1 (en) 2017-01-12 2018-02-20 Fei Company Collision ionization ion source
US9941094B1 (en) 2017-02-01 2018-04-10 Fei Company Innovative source assembly for ion beam production
CN109461642B (en) * 2018-12-07 2024-04-02 中国烟草总公司郑州烟草研究院 Ion-initiated electron bombardment ionization source
US11854777B2 (en) * 2019-07-29 2023-12-26 Thermo Finnigan Llc Ion-to-electron conversion dynode for ion imaging applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852595A (en) * 1972-09-21 1974-12-03 Stanford Research Inst Multipoint field ionization source
US3819941A (en) * 1973-10-15 1974-06-25 Bendix Corp Mass dependent ion microscope having an array of small mass filters
FR2294539A1 (en) * 1974-12-13 1976-07-09 Labo Electronique Physique Gas ioniser - with microchannel disc for emission of secondary electrons giving ion discharge
US5659170A (en) * 1994-12-16 1997-08-19 The Texas A&M University System Ion source for compact mass spectrometer and method of mass analyzing a sample
JP3778664B2 (en) * 1997-07-24 2006-05-24 浜松ホトニクス株式会社 Ion source using microchannel plate

Also Published As

Publication number Publication date
JP4395584B2 (en) 2010-01-13
ATE279783T1 (en) 2004-10-15
EP1052672A1 (en) 2000-11-15
FR2792773A1 (en) 2000-10-27
US6545269B1 (en) 2003-04-08
JP2000348665A (en) 2000-12-15
DE60014758D1 (en) 2004-11-18
DE60014758T2 (en) 2006-03-09
US20030057378A1 (en) 2003-03-27
FR2792773B1 (en) 2001-07-27

Similar Documents

Publication Publication Date Title
EP1676291B1 (en) Ion mobility tof/maldi/ms using drift cell alternating high and low electric field regions
JP3801866B2 (en) Time-of-flight mass spectrometer
US6323482B1 (en) Ion mobility and mass spectrometer
US7385185B2 (en) Molecular activation for tandem mass spectroscopy
US8101923B2 (en) System and method for spatially-resolved chemical analysis using microplasma desorption and ionization of a sample
US8648295B2 (en) Combined distance-of-flight and time-of-flight mass spectrometer
EP1994545B1 (en) Mass spectrometer for trace gas leak detection with suppression of undesired ions
EP1052672B1 (en) Time-of-flight mass spectrometer ion source for gas sample analysis
FR2461351A1 (en) ION SOURCE AT PLASMA UHF
US6781122B2 (en) Time of flight mass spectrometry apparatus
US7838820B2 (en) Controlled kinetic energy ion source for miniature ion trap and related spectroscopy system and method
JP5504969B2 (en) Mass spectrometer
US20040119014A1 (en) Ion trap mass spectrometer and method for analyzing ions
US6469296B1 (en) Ion acceleration apparatus and method
EP0295743A1 (en) Ion source with four electrodes
JPH07307140A (en) Mass spectrometer and ion source
JPH11288683A (en) Atmospheric pressure ionization mass spectrometer
EP0362953A1 (en) Sealed neutron tube provided with an ion source with electrostatic confinement
JP2000011947A (en) Time-of-flight mass spectrometer
JP2002532845A (en) In-line reflection time-of-flight mass spectrometer for molecular structure analysis using collision-induced dissociation
Just et al. Selective elimination of low‐molecular‐weight ions in MALDI‐TOF mass spectrometry using a bipolar pulsed electrostatic particle guide
FR2645676A1 (en) CATHODE HAVING IMPROVED SECONDARY TRANSMISSION SURFACE AND CROSS-FIELD AMPLIFIER CONTAINING SUCH A CATHODE
JP2008084850A (en) Ion trap time-of-flight mass spectroscope
Hang et al. Evaluation of ion transport processes in a heated capillary tube interface for electrospray ionization time-of-flight mass spectrometryPresented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehammer, Norway, February 4–8, 2001. Invited Lecture
FR2599891A1 (en) Mass spectrometer, in particular, for detecting leaks under high vacuum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010515

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60014758

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041230

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050413

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

BERE Be: lapsed

Owner name: ALCATEL

Effective date: 20050430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060411

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070413

BERE Be: lapsed

Owner name: *ALCATEL

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070413