EP0341211B1 - Verfahren zum Biegen von Blech - Google Patents

Verfahren zum Biegen von Blech Download PDF

Info

Publication number
EP0341211B1
EP0341211B1 EP89810322A EP89810322A EP0341211B1 EP 0341211 B1 EP0341211 B1 EP 0341211B1 EP 89810322 A EP89810322 A EP 89810322A EP 89810322 A EP89810322 A EP 89810322A EP 0341211 B1 EP0341211 B1 EP 0341211B1
Authority
EP
European Patent Office
Prior art keywords
bending
angle
bottom die
curve
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810322A
Other languages
English (en)
French (fr)
Other versions
EP0341211A3 (en
EP0341211A2 (de
Inventor
Vaclav Zbornik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haemmerle AG Maschinenfabrik
Original Assignee
Haemmerle AG Maschinenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haemmerle AG Maschinenfabrik filed Critical Haemmerle AG Maschinenfabrik
Publication of EP0341211A2 publication Critical patent/EP0341211A2/de
Publication of EP0341211A3 publication Critical patent/EP0341211A3/de
Application granted granted Critical
Publication of EP0341211B1 publication Critical patent/EP0341211B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means

Definitions

  • the present invention relates to a method for bending sheet metal with the aid of a bending device which has a bending punch and a die with an adjustable bottom, into which die the bending punch penetrates, depending on the desired bending angle, until the sheet is driven onto the die bottom, the theoretical Bending angle with constant die opening is determined by the relative position of the die bottom to the die opening.
  • a method for bending sheet metal with the aid of a bending device which has a bending punch and a die with an adjustable bottom, into which die the bending punch penetrates, depending on the desired bending angle, until the sheet is driven onto the die bottom, the theoretical Bending angle with constant die opening is determined by the relative position of the die bottom to the die opening.
  • the desired angle could theoretically be set simply and repeatably.
  • deviations in the bending angle occur.
  • this is due to the fact that during the bending process in the sheet metal, the theoretical, sharp edge is never created, which is the working edge of the punch corresponds, but there are roundings during bending, which significantly influence the bending angle.
  • the two sheet metal legs spring back somewhat as soon as the sheet metal is released from the bending pressure. The size of the springback also depends on the sheet thickness and the material quality, so that the actual final bending angle can never be predicted theoretically with precision.
  • the aim of the invention is such a sheet metal bending process easier to design and still achieve a further increased accuracy with regard to the resulting final bending angle.
  • the proposed procedure has the features summarized in claim 1.
  • angle measurements during the bending process are used to determine the correct height of the die base. It is possible with the aid of the proposed method to set the floor to the correct penetration depth on the basis of the determined angle differences during the bending process, the actual setpoint angle being exactly maintained at the end of the bending process.
  • This process is significantly simpler than the known process and represents a major step forward.
  • a bending device For bending sheet metal pieces, a bending device is used, which is known per se and consists of a bending punch and a die with an adjustable bottom, into which the bending punch penetrates more or less depending on the bending angle.
  • the theoretical bending angle is given by the position of the die bottom relative to the die opening while the die opening remains the same.
  • a bending punch 1 is provided, which works together with the fixed bending die 2, which has an adjustable base 3.
  • the same is pressed against the adjustable base 3 along an edge 5 with the aid of the bending die 1.
  • the angle W formed is determined by the position of the edge 5 with respect to the contact edges 6 of the die 2.
  • the depth of penetration of the bending die 1 is designated E in FIG. 1.
  • the bending angle W is from the rounding radius depending on the bending edge. 2 schematically shows how the angle W changes.
  • the sheet metal piece 4a has (theoretically) a very sharp edge in the form of a line, while the sheet metal piece 4b has a rounded bending edge. It can be clearly seen that the angle which the two legs of the sheet metal piece 4a enclose is somewhat larger than the angle enclosed by the legs of the sheet metal piece 4b. The following generally applies (with unchanged die setting): The larger the rounding radius of the bending edge, the smaller the resulting bending angle.
  • Fig. 3 the springback behavior of a bent plate 4 is shown, greatly exaggerated. It is clearly evident that the sheet metal, relieved of the bending force exerted by the punch 1, springs back somewhat with its two legs, so that the bending angle when the sheet is relieved (punch 1 withdrawn) is somewhat larger than the theoretical bending angle in the situation, when the punch presses the sheet 4 completely against the die bottom.
  • the springback rate depends on the sheet thickness and the material of the sheet and can hardly be predicted with the required accuracy.
  • curve 8 The practical bending curve of a piece of sheet metal is shown in FIG. 4 by curve 8, which indicates the relationship between the penetration depth E and the angle W.
  • curve 8 In addition to the thickness tolerance of the curve 8 exert an influence on the course of the curve the yield strength, the modulus of elasticity and the hardening behavior of the piece of sheet metal.
  • this practical bending curve 8 of the piece of sheet metal is first determined by bending a sample sheet piece of a certain thickness and with a certain material quality in a series of tests. A large number of value pairs E / W are recorded, displayed in the form of a curve and saved as a reference curve for the above-mentioned, specific material quality and thickness.
  • the position of the adjustable die base 3 and thus the depth of penetration is set to a value E s which, according to the stored comparison curve 8, should result in the desired angle W s . Then the bending process is started and continued continuously.
  • E5 the effective bending angle W5 is measured and compared with the bending angle W6, which results from the comparison curve 8.
  • the difference W5-W6 shows that the effective bending angle W5 is larger than the theoretically expected bending angle W6.
  • the same procedure is used for the penetration depths E3 and E1:
  • the effective bending angle W3 or W1 is measured and in each case with the assigned bending angle W4 or W2 the curve 8 compared.
  • Based on the determined angle differences W5-W6, W3-W4 and W1-W2 it can be seen that there is a deviating from the comparison curve 8 bending curve 9 for the sheet metal just processed, which is shown in dashed lines in Fig. 4.
  • the course of this curve 9 shows that the actual angle is greater than the expected angle with the same penetration depth. For this reason, the position of the adjustable bottom 3 of the die 2 must be corrected because the target angle will not be reached at the penetration depth E s according to the comparison curve 8, but only at the corrected penetration depth E k .
  • the corrected penetration depth E k ie the corrected position of the bottom 3 of the die, can be determined and set immediately.
  • this can be done, for example, by adding a piece of curve 8 from angle W 1 to the previous, practically determined bending curve 9.
  • the die bottom 3 is set to the new value E k of the penetration depth; all of this takes place while the bending process continues. By the end of the bending process, the actual target angle W s will be reached exactly.
  • this extrapolation of the bending curve 9 takes place on the basis of the known bending curve 8, of course, in a computer-aided control device in which the curve 8 is also stored.
  • the extrapolation is readily permissible, since in practice the deviation of curve 9 from curve 8 is very small and is greatly exaggerated in the drawing for reasons of clarity.
  • the theoretically resulting inaccuracy due to extrapolation of curve 9 on the basis of curve 8 is so small that it can easily be neglected.
  • a further embodiment of the proposed method can consist in that, in addition to the theoretical bending curve, the size and the curve of the force practically required for the deformation of the sheet metal piece are determined on a sample sheet of the same thickness and the same quality and stored as a function of the penetration depth or the deformation angle. It has been shown that with the same depth of penetration of the punch 1, even when using the same die with the same support edges, the angle does not remain the same, but changes as a result of manufacturing tolerances of the sheet, since one sheet has less force and the other sheet has more force needed for bending.
  • the bending punch 1 is made in two parts and consists of an upper part 1a and a lower part 1b, a measuring device 10 being accommodated between the two parts.
  • This measuring device can be designed, for example, as an electrical load cell and is used to measure the pressure exerted on the sheet metal piece 4 by the stamp 1. The measured values are registered and processed in a computer which can act on the adjusting device of the die base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Biegen von Blechen mit Hilfe einer Biegeeinrichtung, die einen Biegestempel sowie eine Matrize mit verstellbarem Boden aufweist, in welche Matrize der Biegestempel je nach erwünschtem Biegewinkel bis zum Auffahren des Bleches auf den Matrizenboden eindringt, wobei der theoretische Biegewinkel bei gleichbleibender Matrizenöffnung durch die relative Stellung des Matrizenbodens zur Matrizenöffnung bestimmt ist. Ein derartiges Verfahren wird in der EP-A-0 096 278 beschrieben.
  • Es ist bekannt, dass der Biegewinkel beim Blechbiegen mit einem Biegestempel und einer Matrize, bei einer gegebenen Breite der Matrize, durch die Festlegung der Eindringtiefe des Biegestempels in die Matrize theoretisch angenähert bestimmt werden kann. Die Praxis hat aber gezeigt, dass der tatsächliche Biegewinkel, je nach Materialqualität und Dickentoleranz des zu biegenden Blechstückes, kleinere oder grössere Abweichungen vom theoretischen Wert aufweist.
  • Durch die Höhenverstellung des Matrizenbodens konnte der gewünschte Winkel theoretisch einfach und wiederholbar festgelegt werden. Bei der Wiederholung des Biegevorganges an verschiedenen, qualitativ gleichwertigen Blechstücken treten jedoch Abweichungen im Biegewinkel auf. Dies hängt zum einen damit zusammen, dass beim Biegevorgang im Blech nie die theoretische, scharfe Kante entsteht, welche der Arbeitskante des Biegestempels entspricht, sondern es entstehen beim Biegen Abrundungen, welche den Biegewinkel erheblich beeinflussen. Zum anderen federn die beiden Blechschenkel etwas zurück, sobald das Blech vom Biegedruck befreit ist. Die Grösse der Rückfederung hängt ebenfalls von der Blechdicke und der Materialqualität ab, so dass der tatsächliche Endbiegewinkel nie theoretisch genau vorherbestimmt werden kann.
  • Dies bedeutet in der Praxis, dass zwei von verschiedenen Fabrikanten hergestellte oder aus verschiedenen Produktionsserien stammende, qualitativ gleichwertige und gleich dicke Bleche nach der Bearbeitung an derselben Maschine mit derselben Einstellung abweichende Biegewinkel aufweisen können, da das Materialverhalten bezüglich der resultierenden Abrundung des Bugs und der Grösse der Rückfederung geringfügig unterschiedlich sein kann.
  • Zur Verbesserung der Genauigkeit beim Biegevorgang wurde von der Anmelderin bereits ein Verfahren vorgeschlagen, gemäss welchem die während der Deformation des Blechstücks auftretenden Kräfte kontinuierlich ermittelt und die ermittelten Werte einer Steuereinrichtung zugeführt werden, welche diese mit gespeicherten Sollwerten vergleicht und in Abhängigkeit der Abweichungen den Stempelvorschub beeinflusst. (EP-PS 0 096 278).
  • Mit diesem Verfahren konnten gute Resultate erzielt werden. Es ist hingegen das Ziel der Erfindung, ein solches Blechbiegeverfahren einfacher zu gestalten und trotzdem eine nochmals gesteigerte Genauigkeit bezüglich des resultierenden Endbiegewinkels zu erreichen.
  • Um dieses Ziel zu erreichen, weist das vorgeschlagene Vorgehen die in Patentanspruch 1 zusammengefassten Merkmale auf. In dieser Weise werden Winkelmessungen während des Biegevorgangs dazu benutzt, um die richtige Höhenstellung des Matrizenbodens zu bestimmen. Es ist mit Hilfe des vorgeschlagenen Verfahrens möglich, aufgrund der ermittelten Winkeldifferenzen den Boden während des Biegevorganges auf korrekte Eindringtiefe einzustellen, wobei am Ende des Biegevorgangs der tatsächliche Sollwinkel genau eingehalten wird. Dieses Verfahren weist gegenüber dem bekannten Verfahren eine wesentliche Vereinfachung auf und stellt einen grossen Fortschritt dar.
  • Bevorzugte Weiterbildungen des Verfahrens sind in den abhängigen Ansprüchen definiert. So ist es beispielsweise ferner möglich, neben der Vergleichskurve des Biegeverlaufs auch die Grösse und den Verlauf der zur Deformation des Blechstücks benötigten Biegekraft zu ermitteln. Diese wird dann in Funktion der Eindringtiefe des Biegestempels oder des Deformationswinkels gespeichert, worauf der tatsächliche Kräfteverlauf beim Biegen des Blechs mit dem gespeicherten Kräfteverlauf verglichen und die festgestellten Unterschiede zur zusätzlichen Korrektur der Eindringtiefe verwendet werden.
  • Das vorgeschlagene Verfahren wird anhand der Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1-3
    schematische Querschnittsskizzen durch eine Biegeeinrichtung;
    Fig. 4
    ein Diagramm des Biegewinkelverlaufs; und
    Fig. 5
    ein Diagramm des Kräfteverlaufs.
  • Zum Biegen von Blechstücken wird eine Biegeeinrichtung verwendet, welche an und für sich bekannt ist und aus einem Biegestempel sowie aus einer Matrize mit verstellbarem Boden besteht, in welche der Biegestempel je nach Biegewinkel mehr oder weniger eindringt. Der theoretische Biegewinkel wird bei gleichbleibender Matrizenöffnung durch die relative Stellung des Matrizenbodens zur Matrizenöffnung gegeben. Gemäss der schematischen Skizze in Fig. 1 ist ein Biegestempel 1 vorgesehen, welcher mit der festen Biegematrize 2 zusammenarbeitet, die einen verstellbaren Boden 3 besitzt. Zum Biegen des Blechs 4 wird dasselbe, mit Hilfe des Biegestempels 1, entlang einer Kante 5 gegen den verstellbaren Boden 3 gepresst. Der gebildete Winkel W wird durch die Lage der Kante 5 bezüglich der Auflagekanten 6 der Matrize 2 bestimmt. Die Eindringtiefe des Biegestempels 1 ist in der Fig. 1 mit E bezeichnet.
  • Wie schon eingangs erwähnt ist der Biegewinkel W vom Verrundungsradius der Biegekante abhängig. In der Fig. 2 ist schematisch dargestellt, wie sich der Winkel W ändert. Das Blechstück 4a weist (theoretisch) eine sehr scharfe Kante in Form einer Linie auf, während das Blechstück 4b eine verrundete Biegekante besitzt. Es ist deutlich zu sehen, dass der Winkel, den die beiden Schenkel des Blechstückes 4a einschliessen, etwas grösser ist als der von den Schenkeln des Blechstückes 4b eingeschlossene Winkel. Generell gilt (bei unveränderter Matrizeneinstellung): Je grösser der Verrundungsradius der Biegekante, desto kleiner der resultierende Biegewinkel.
  • In der Fig. 3 ist, stark übertrieben gezeichnet, das Rückfederungsverhalten eines gebogenen Bleches 4 dargestellt. Es ist klar ersichtlich, dass das von der Biegekraft, die vom Stempel 1 ausgeübt wird, entlastete Blech mit seinen beiden Schenkeln etwas zurückfedert, so dass der Biegewinkel bei entlastetem Blech (Stempel 1 zurückgezogen) etwas grösser ist als der theoretische Biegewinkel in der Situation, wenn der Stempel das Blech 4 vollends gegen den Matrizenboden presst. Die Rückfederungsrate ist von der Blechdicke und vom Material des Bleches abhängig und kann kaum mit der erforderlichen Genauigkeit vorausberechnet werden.
  • Der praktische Biegeverlauf eines Musterblechstücks ist in der Fig. 4 durch die Kurve 8 dargestellt, welche den Zusammenhang zwischen Eindringtiefe E und Winkel W angibt. Einen Einfluss auf den Verlauf der Kurve 8 üben neben der Dickentoleranz des zu biegenden Bleches auch die Streckgrenze, der Elastizitätsmodul und das Verfestigungsverhalten des Blechstückes aus.
  • Nach dem erfindungsgemässen Verfahren wird also zunächst dieser praktische Biegeverlauf 8 des Blechstückes ermittelt, indem ein Musterblechstück einer bestimmten Dicke und mit einer bestimmten Materialqualität in einer Versuchsreihe gebogen wird. Dabei werden eine Vielzahl von Wertepaaren E/W aufgenommen, in Form einer Kurve dargestellt und als Referenzkurve für die obengenannte, bestimmte Materialqualität und Dicke gespeichert.
  • Bei der Ausübung des tatsächlichen Biegevorganges unter Verwendung von Blechen gleichwertiger Qualität und Dicke wird die Position des verstellbaren Matrizenbodens 3 und damit die Eindringtiefe auf einen Wert Es eingestellt, der gemäss der gespeicherten Vergleichskurve 8 den Sollwinkel Ws ergeben sollte. Dann wird der Biegevorgang gestartet und kontinuierlich weitergeführt. Wenn der Stempel eine erste Eindringtiefe E₅ erreicht hat, wird der effektive Biegewinkel W₅ gemessen und mit dem Biegewinkel W₆ verglichen, welcher sich aus der Vergleichskurve 8 ergibt. Die Differenz W₅-W₆ zeigt, dass der effektive Biegewinkel W₅ grösser ist als der theoretisch erwartete Biegewinkel W₆.
  • Entsprechend wird bei den Eindringtiefen E₃ und E₁ vorgegangen: Der effektive Biegewinkel W₃ bzw. W₁ wird gemessen und jeweils mit dem zugeordneten Biegewinkel W₄ bzw. W₂ aus der Kurve 8 verglichen. Aufgrund der ermittelten Winkeldifferenzen W₅-W₆, W₃-W₄ und W₁-W₂ ist erkennbar, dass sich für das eben bearbeitete Blech eine von der Vergleichskurve 8 abweichende Biegekurve 9 ergibt, die in der Fig. 4 gestrichelt eingezeichnet ist. Der Verlauf dieser Kurve 9 zeigt, dass bei gleicher Eindringtiefe der tatsächliche Winkel grösser als der erwartete Winkel ist. Aus diesem Grund muss die Lage des verstellbaren Bodens 3 der Matrize 2 korrigiert werden, weil der Sollwinkel nicht bei der Eindringtiefe Es gemäss Vergleichskurve 8 erreicht sein wird, sondern erst bei der korrigierten Eindringtiefe Ek.
  • Aufgrund der ermittelten Winkeldifferenzen kann die korrigierte Eindringtiefe Ek, d.h. die korrigierte Stellung des Bodens 3 der Matrize, sofort ermittelt und eingestellt werden. Dies kann, bildlich gesprochen, z.B. dadurch geschehen, dass man ein Stück der Kurve 8 ab dem Winkel W₁ an die bisherige, praktisch ermittelte Biegeverlaufskurve 9 anfügt. Dadurch ergibt sich ein Schnittpunkt K dieses (in Fig. 4 stärker gezeichneten) angefügten Kurvenstücks 9a mit der dem Endsollwinkel Ws zugeordneten Geraden, so dass sich die zugehörige, korrigierte Eindringtiefe Ek ermitteln lässt. Schliesslich wird der Matrizenboden 3 auf den neuen Wert Ek der Eindringtiefe eingestellt; dies alles erfolgt, während der Biegevorgang kontinuierlich weiterläuft. Bis zum Ende des Biegevorganges wird der tatsächliche Sollwinkel Ws genau erreicht sein.
  • In der praktischen Ausführung erfolgt diese Extrapolation der Biegeverlaufskurve 9 auf der Grundlage der bekannten Biegeverlaufskurve 8 natürlich in einem Rechner-gestützten Steuergerät, in dem auch die Kurve 8 gespeichert ist. Die Extrapolation ist ohne weiteres zulässig, da in der Praxis die Abweichung der Kurve 9 von der Kurve 8 sehr gering und in der Zeichnung aus Deutlichkeitsgründen stark übertrieben gezeigt ist. Die theoretisch resultierende Ungenauigkeit durch Extrapolation der Kurve 9 auf der Basis der Kurve 8 ist dermassen klein, dass sie ohne weiteres vernachlässigt werden kann.
  • Bei der praktischen Ausführung des Verfahrens ist es vorteilhaft, die Winkelbestimmungen in Abhängigkeit der Eindringtiefe jeweils bei mit dem Biegedruck belastetem Blech durchzuführen, und zwar sowohl bei der Ermittlung der Referenzkurve 8 als auch bei der tatsächlichen Kontrollmessung bei der Eindringtiefe E₁. Dies gestattet ein kontinuierliches Arbeiten, ohne dass der Biegevorgang zur Messung der Biegewinkel unterbrochen werden muss.
  • Des weiteren ist es vorteilhaft, die letzte Kontrollmessung des Biegewinkels soweit rechtzeitig vor Erreichen des (erwarteten) Sollwinkels durchzuführen, dass noch genügend Zeit verbleibt, den Matrizenboden auf den korrigierten Höhenlagewert einzustellen. Andererseits soll aber die letzte Kontrollmessung möglichst spät erfolgen, so dass nur ein verhältnismässig kleiner Bereich der Kurve 9 aus der Referenzkurve 8 extrapoliert werden muss, wodurch die Genauigkeit weiter ansteigt.
  • Eine weitere Ausbildung des vorgeschlagenen Verfahrens kann darin bestehen, dass neben dem theoretischen Biegeverlauf auch die Grösse und der Verlauf dem praktisch zur Deformation des Blechstückes benötigten Kraft an einem Musterblech gleicher Dicke und gleicher Qualität ermittelt und in Funktion der Eindringtiefe oder des Deformationswinkels gespeichert wird. Es hat sich nämlich gezeigt, dass bei gleichbleibender Eindringtiefe des Stempels 1 auch bei der Verwendung der gleichen Matrize mit den gleichen Auflagekanten der Winkel nicht gleich bleibt, sondern sich infolge von Herstellungstoleranzen des Blechs ändert, da das eine Blech weniger und das andere Blech mehr Kraft zum Biegen benötigt.
  • Zwischen dem Biegewinkel und der Eindringtiefe besteht also eine Funktion, welche vom jeweiligen Kräfteverlauf abhängt. In der Vervollkommnung des Verfahrens wird deshalb die Grösse der Biegekraft im Biegestempel entlang des Stempelweges gemessen und ein Rechner mit den Messwerten gespeist. Es ergibt sich so eine Kurve 11 (Fig. 5), welche den tatsächlichen Kräfteverlauf in Funktion des Weges des Biegestempels beim Biegen darstellt. Dieser Kräfteverlauf wird mit dem gespeicherten Referenz-Kräfteverlauf verglichen, wobei die festgestellten Unterschiede zur zusätzlichen Korrektur der Eindringtiefe, d.h. zur zusätzlichen Korrektur der Stellung des verstellbaren Bodens 3 verwendet wird.
  • In der praktischen Ausführung wird der Biegestempel 1 zweiteilig ausgeführt und besteht aus einem oberen Teil 1a und aus einem unteren Teil 1b, wobei zwischen den beiden Teilen eine Messeinrichtung 10 Aufnahme findet. Diese Messeinrichtung kann zum Beispiel als elektrische Kraftmessdose ausgebildet sein und dient zum Messen des durch den Stempel 1 ausgeübten Drucks auf das Blechstück 4. Die Messwerte werden in einem Rechner registriert und verarbeitet, welcher auf die Verstellvorrichtung des Matrizenbodens einwirken kann.

Claims (5)

  1. Verfahren zum Biegen von Blechen mit Hilfe einer Biegeeinrichtung, die einen Biegestempel (1) sowie eine Matrize (2) mit verstellbarem Boden (3) aufweist, in welche Matrize (2) der Biegestempel (1) je nach erwünschtem Biegewinkel (W) mehr oder weniger eindringt, wobei der theoretische Biegewinkel bei gleichbleibender Matrizenöffnung durch die relative Stellung des Matrizenbodens (3) zur Matrizenöffnung (6-6) bestimmt ist, dadurch gekennzeichnet, dass zunächst in einer Versuchsreihe mit einer bestimmten Blechqualität der effektive Biegewinkel (W) in Funktion der Eindringtiefe (E) des Biegestempels (1) in die Matrize (2) ermittelt und als Vergleichskurve (8) gespeichert wird, worauf im tatsächlichen Biegevorgang von weiteren, gleichwertigen Blechen der Winkel (W₁) des belasteten Blechs (4) im Verlauf des Biegevorgangs bei mindestens einer ausgewählten Eindringtiefe (E₁) gemessen und mit dem sich aus der Vergleichskurve (8) ergebenden entsprechenden Winkel (W₂) verglichen wird, und dass die Stellung des Matrizenbodens (3) aufgrund der ermittelten Winkeldifferenz (W₁-W₂) korrigiert wird, worauf der Biegevorgang bis zum Erreichen der korrigierten Stellung des Bodens (3) der Matrize (2) fertig ausgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Messung der Biegewinkel (W₁) des belasteten Blechs (4) und der Vergleich mit den sich aus der Vergleichskurve (8) ergebenden, entsprechenden Biegewinkeln (W₂, W₄, W₆) bei mindestens zwei, vorzugsweise drei verschiedenen Eindringtiefen (E₁, E₃, E₅) erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die letzte Messung des Biegewinkels (W₁) und der Vergleich desselben mit dem Winkelwert (W₂) aus der Vergleichskurve (8) im Verlauf des tatsächlichen Biegevorgangs so weit vor Erreichen des Sollbiegewinkels (Ws) erfolgt, dass für die Korrektur der Stellung des Matrizenbodens (3) genügend Zeit verbleibt.
  4. Verfahren nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass der Korrekturwert für die Verstellung des Matrizenbodens (3) durch Extrapolation der gemessenen Winkeldifferenz-Werte auf der Basis der gespeicherten Vergleichskurve (8) ermittelt wird.
  5. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass neben der Vergleichskurve (8) des Biegeverlaufs auch die Grösse und der Verlauf der zur Deformation des Musterblechs (4) benötigten Biegekraft ermittelt und in Funktion der Eindringtiefe des Biegestempels (1) oder des Biegewinkels (W) als weitere Vergleichskurve (11) gespeichert wird, worauf der tatsächliche Kräfteverlauf beim Biegen von weiteren, gleichwertigen Blechen (4) mit dem gespeicherten Kräfteverlauf verglichen und die festgestellten Unterschiede zur zusätzlichen Korrektur der Stellung des Matrizenbodens (3) verwendet werden.
EP89810322A 1988-05-03 1989-04-28 Verfahren zum Biegen von Blech Expired - Lifetime EP0341211B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1140/88 1988-05-03
AT0114088A AT389829B (de) 1988-05-03 1988-05-03 Verfahren zum biegen von blechstuecken mit hilfe einer biegeeinrichtung

Publications (3)

Publication Number Publication Date
EP0341211A2 EP0341211A2 (de) 1989-11-08
EP0341211A3 EP0341211A3 (en) 1990-10-24
EP0341211B1 true EP0341211B1 (de) 1993-04-14

Family

ID=3507465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810322A Expired - Lifetime EP0341211B1 (de) 1988-05-03 1989-04-28 Verfahren zum Biegen von Blech

Country Status (6)

Country Link
US (1) US4962654A (de)
EP (1) EP0341211B1 (de)
JP (1) JP2556994B2 (de)
AT (2) AT389829B (de)
DE (1) DE58904039D1 (de)
ES (1) ES2039935T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009811A1 (de) * 2010-03-02 2011-09-08 Mtu Aero Engines Gmbh Biegevorrichtung zum Biegen einer Schaufel eines Schaufelrings

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505985C2 (sv) * 1989-11-14 1997-10-27 Amada Co Ltd Sätt och anordning för avkänning av bockningsvinklar för en metallplåt under bockningen
US5148693A (en) * 1989-11-14 1992-09-22 Amada Company, Limited Method and a device for detecting folding angles of a metal sheet during the folding and a method for folding of a metal sheet
EP0459224B1 (de) * 1990-05-31 1995-08-16 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Presse
BE1007424A5 (nl) * 1993-08-27 1995-06-13 Lvd Co Adaptief plooien.
US5572896A (en) * 1994-02-25 1996-11-12 Aluminum Company Of America Strain path control in forming processes
US5969973A (en) * 1994-11-09 1999-10-19 Amada Company, Ltd. Intelligent system for generating and executing a sheet metal bending plan
EP1236546A3 (de) * 1994-11-09 2002-12-11 Amada Company, Ltd. Verfahren und Vorrichtung zur Steuerung eines Greifers
DE69529607T2 (de) 1994-11-09 2003-09-18 Amada Co., Ltd. Intelligentes system zur herstellung und ausführung eines metallplattenbiegeplans
US5835684A (en) 1994-11-09 1998-11-10 Amada Company, Ltd. Method for planning/controlling robot motion
US5761940A (en) * 1994-11-09 1998-06-09 Amada Company, Ltd. Methods and apparatuses for backgaging and sensor-based control of bending operations
US5729462A (en) * 1995-08-25 1998-03-17 Northrop Grumman Corporation Method and apparatus for constructing a complex tool surface for use in an age forming process
IT1311827B1 (it) * 1999-04-16 2002-03-19 Luciano Gasparini Forchetta a forcella del tipo basculante autocentrante,particolarmente per la misurazione su quattro punti dell'angolo di
US7089802B2 (en) * 2003-09-05 2006-08-15 The Boeing Company Method and apparatus for determining hydrogen embrittlement
US7330338B1 (en) 2004-05-05 2008-02-12 Hutchinson Technology Incorporated Method for adjusting pitch and roll in a head suspension
DE102005012384A1 (de) 2005-03-17 2006-07-13 Siemens Ag Verfahren zum Freibiegen
DE102006014093A1 (de) * 2006-03-24 2007-09-27 Kleiner, Matthias, Prof. Dr.-Ing. Verfahren und Biegevorrichtung zum Biegen von flächigen metallischen Werkstücken
PT1961502E (pt) 2007-02-23 2014-11-06 Bystronic Laser Ag Método e dispositivo para a dobragem de peças de trabalho
ES2362764B1 (es) * 2009-10-05 2012-03-06 Abengoa Solar New Technologies, S.A Sistema de soporte de indicador de vac�?o o getter evaporable.
CN103264078B (zh) * 2013-05-06 2016-04-27 上海飞机制造有限公司 一种考虑回弹补偿的数控闸压加工方法
DE102017006218A1 (de) 2017-06-28 2019-01-03 Technische Universität Dortmund Vorrichtung und Verfahren zum Biegen von blechartigen Werkstücken bei gleichzeitiger Druckspannungsüberlagerung
EP3511085B1 (de) * 2018-01-16 2024-08-14 Outokumpu Oyj Biegeumgeformte tragstruktur eines personenkraftwagens
CN110026484B (zh) * 2019-04-29 2020-10-09 中电建武汉铁塔有限公司 开合角模具
JP7778042B2 (ja) * 2022-06-24 2025-12-01 三菱電機株式会社 曲げ加工方法
FR3139017B1 (fr) 2022-08-26 2024-07-26 Axone Ind Dispositif de pliage de plats épais jusque 100 mm de large pour obtenir un angle fermé à 30° et un très faible rayon de courbure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552182A (en) * 1968-11-20 1971-01-05 Wisconsin Machine Corp Press brake with hydraulic ram adjustment
JPS5311273B2 (de) * 1973-12-27 1978-04-20
US3978706A (en) * 1974-12-24 1976-09-07 Nippon Kokan Kabushiki Kaisha Precision bending work method for metallic materials
NL179349C (nl) * 1975-06-24 Haemmerle Ag Maschf Buigwerktuig.
IT1072273B (it) * 1977-02-01 1985-04-10 Selecontrol Sas Dispositivo per la rilevazione e regolazione di angoli di piega particolarmente adatto per presse-piegatrici
DE2952108C2 (de) * 1979-12-22 1983-11-24 Hämmerle AG, Zofingen Anordnung zur Höhenverstellung des Matrizenbodens von Biegewerkzeugen zum Biegen von Blechen
AT374706B (de) * 1982-06-07 1984-05-25 Haemmerle Ag Verfahren zum blechbiegen und biegeeinrichtung zur ausuebung des verfahrens
EP0166351A3 (de) * 1984-06-27 1986-09-17 Arnold Stucki Vorrichtung an einer Maschine für Umformarbeiten an blechförmigen Materialien
AT381251B (de) * 1984-10-18 1986-09-25 Haemmerle Ag Verfahren zur korrektur des biegewinkels beim blechbiegen mit einem biegestempel
US4819467A (en) * 1986-09-17 1989-04-11 Cincinnati Incorporated Adaptive control system for hydraulic press brake
US4802357A (en) * 1987-05-28 1989-02-07 The Boeing Company Apparatus and method of compensating for springback in a workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009811A1 (de) * 2010-03-02 2011-09-08 Mtu Aero Engines Gmbh Biegevorrichtung zum Biegen einer Schaufel eines Schaufelrings
DE102010009811B4 (de) * 2010-03-02 2013-05-16 Mtu Aero Engines Gmbh Biegevorrichtung zum Biegen einer Schaufel eines Schaufelrings

Also Published As

Publication number Publication date
ES2039935T3 (es) 1993-10-01
EP0341211A3 (en) 1990-10-24
JP2556994B2 (ja) 1996-11-27
DE58904039D1 (de) 1993-05-19
AT389829B (de) 1990-02-12
US4962654A (en) 1990-10-16
JPH02142620A (ja) 1990-05-31
ATA114088A (de) 1989-07-15
ATE88117T1 (de) 1993-04-15
EP0341211A2 (de) 1989-11-08

Similar Documents

Publication Publication Date Title
EP0341211B1 (de) Verfahren zum Biegen von Blech
DE69108497T2 (de) Programmierbare Blechbiegemaschine.
DE69710101T2 (de) Biegepresse
DE3519382C2 (de) Mehrwalzenbiegevorrichtung
DE60204568T2 (de) Verfahren zur einstellung der bahn einer abkantpresse
AT401484B (de) Verfahren und vorrichtung zum einstellen eines biegeprozesses sowie verfahren zum vorbereiten von biegedaten
EP0096278B1 (de) Verfahren zum Blechbiegen und Einrichtung zur Ausübung des Verfahrens
DE69011077T2 (de) Regelanordnung für abkantpresse.
DE69004234T2 (de) Hydraulische Biegepresse mit beweglichem Unterbalken.
DE3211489A1 (de) Verfahren und vorrichtung zur korrektur von sollform-abweichungen platisch verformbarer gegenstaende
EP0340167A2 (de) Verfahren zum Biegen eines Werkstückes
AT521529B1 (de) Biegevorrichtung und Verfahren zur Ermittlung zumindest eines Materialparameters bzw. Bearbeitungsparameters für eine Werkstückbearbeitungsvorrichtung
DE69401594T2 (de) Adaptives biegen
EP1641575B1 (de) Verfahren zum richten von warmen profilen
DE3422998C2 (de)
EP0371280A2 (de) Verfahren zum Richten von Blechen, Bändern, Tafeln, Profilen, Trägern etc.
DE1527973A1 (de) Verfahren zur Herstellung von Rotationsflaechen
EP3643418B1 (de) Biegemaschine und verfahren zur steuerung der biegemaschine
DE2818909C2 (de) Richtmaschine für Stangen, Rohre oder dergleichen Werkstücke
CH695668A5 (de) Mess- und Steuervorrichtung in einer Abkantfpresse.
DE3309570A1 (de) Schrittbiegemaschine
DE3915855C2 (de)
AT381251B (de) Verfahren zur korrektur des biegewinkels beim blechbiegen mit einem biegestempel
DE2305283C3 (de) Verfahren und Vorrichtung zum Messen der bleibenden Durchbiegung eines Werkstückes bei einer Blechbiegepresse
DE3245753A1 (de) Verfahren zum einstellen eines masshaltigen eintauchweges des oberwerkzeuges einer biegepresse, insbesondere abkantpresse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901122

17Q First examination report despatched

Effective date: 19920120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 88117

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904039

Country of ref document: DE

Date of ref document: 19930519

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930426

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039935

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89810322.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960318

Year of fee payment: 8

Ref country code: SE

Payment date: 19960318

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960402

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960411

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970429

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

BERE Be: lapsed

Owner name: HAEMMERLE A.G.

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 89810322.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050308

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080320

Year of fee payment: 20