EP0338274A1 - Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage - Google Patents

Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0338274A1
EP0338274A1 EP89105072A EP89105072A EP0338274A1 EP 0338274 A1 EP0338274 A1 EP 0338274A1 EP 89105072 A EP89105072 A EP 89105072A EP 89105072 A EP89105072 A EP 89105072A EP 0338274 A1 EP0338274 A1 EP 0338274A1
Authority
EP
European Patent Office
Prior art keywords
data
transmission
frequency
phase
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89105072A
Other languages
English (en)
French (fr)
Other versions
EP0338274B1 (de
Inventor
Klaus Dr.-Ing. Von Pieverling
Gerhard Dipl.-Ing. Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0338274A1 publication Critical patent/EP0338274A1/de
Application granted granted Critical
Publication of EP0338274B1 publication Critical patent/EP0338274B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/06Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using power transmission lines

Definitions

  • the invention relates to a data transmission system for a wireless hazard detection system with a plurality of room control centers, each with associated hazard detection devices and a building alarm center, which are connected to one another via existing light mains cables.
  • a high level of interference immunity and sabotage security is required for the signal transmission of binary hazard detection data from the sensors or hazard detectors to the alarm center.
  • the data is transmitted between the room control center and the building control center via an existing lighting network. This places high demands on such a data transmission system with regard to a safe and reliable transmission of the hazard reporting data.
  • a carrier-frequency transmission system with phase modulation is formed by using the microprocessor system already present in the respective control centers for the processing of the binary hazard reporting data by means of additionally provided network transmission devices, that the adjustable carrier frequency is derived from the microprocessor quartz that the transmission in time-division multiplex operation takes place in selectively selectable frequency channels, and that the signal evaluation is carried out in the respective microprocessor system.
  • No separate microprocessor is required for the network transmission device for the data transmission system according to the invention, because the microprocessor already present in the room control centers and the building alarm center for the actual data transmission, i.e. Sending and receiving via the light network is used.
  • the signals are evaluated in the existing microprocessor.
  • the microprocessor quartz which is also present, is used as a further advantage for the derivation of the adjustable carrier frequency. This has the advantage of a very high frequency constancy of the carrier frequency and a very narrow bandwidth for the transmit and receive data, so that an optimal signal-to-noise ratio is achieved. This enables an optimal reduction of broadband interference and suppression of line interference, such as those caused by multiples of the line frequency of television sets.
  • the GM hazard detectors are connected via the associated infrared transmitter IRSn to the room control center RZi, which has correspondingly assigned infrared receivers IRIn.
  • This infrared transmission device within a room to be monitored is described in the above-mentioned German patent application P 37 39 042.
  • the data received in the room control center RZi and processed and processed with the microprocessor system MP there are transmitted via a network transmission device NUE to the building control center GZ via the existing light line network NL.
  • a network transmission device NUE In addition to a microprocessor system MP and other devices for alarm processing, alarm output AL and fault display ST, which are not shown here, this also has a network transmission device NUE.
  • the data transmission takes place by means of the network transmission device NUE, with the use of the microprocessor system MP of the respective center.
  • the network transmission device NUE provided for this purpose is shown with the existing microprocessor system MP and the coupling NKE to the light line network NL in FIG. 2 in the block diagram.
  • the network transmission device NUE has, inter alia, a frequency synthesizer FS which is supplied with a frequency divider FT by the microprocessor system MP and which controls the phase modulator PM with the selected carrier frequency PF, for example 100 kHz, and two phase detectors PT1 and PT2 via a phase splitter PSP.
  • a phase detector PT1 preferably by 90 ° phase shifted carrier frequency PF passes over the other phase detector PT2, which receives the carrier frequency TF to the neutral phase.
  • three channels with preferably 0 o / 120 o / 240 o phase can also be provided.
  • the data SD to be transmitted arrive in a coded form at the phase modulator PM, from which the modulated transmission data SDm run to a transmission stage SEN and from which they are transmitted to the light line network NL via the network coupling device NKE.
  • the frequency divider FT divides the processor clock frequency, for example 12 MHz, down to the 100 kHz carrier frequency in accordance with a desired division ratio of here, for example, 120: 1.
  • the hazard reporting data GMD which arrive from the individual infrared receivers, are processed and processed in the microprocessor system MP, but this need not be explained further here.
  • the received data EDm transmitted via the light network NL reach the receiver EMP via the network coupling device NKE.
  • the receiver has the two phase detectors PT1 and PT2, on which the carrier frequency TF with 0 o and 90 o phase is also present.
  • the received data are sent from the phase detectors to the microprocessor system MP according to the components X and Y, ie EDX and EDY, via respective filters F, preferably low-pass filters and A / D converters.
  • the analog-digital converters provided for this purpose are integrated in the microprocessor system MP.
  • the angle corresponding to the data content is calculated in the microprocessor system MP from the two quadrature components, the demodulated received data EDX and EDY.
  • phase modulator PM consists of an exclusive-OR gate EXOR, to which the carrier frequency TF, for example 100 kHz, is supplied.
  • the binary input data SD are fed to the second input of the exclusive odor, so that the exclusive-OR gate generates a phase shift of 90 o or 180 o , ie the modulated carrier, at the output.
  • the transmitter stage SEN has a field effect transistor FTR which is driven directly via an AND gate AND. The second input of the AND gate AND is acted upon by an on / off command I / O from the microprocessor system MP.
  • the output of the transmitter stage SEN leads to a downstream filter FF, which attenuates the harmonics generated by the rectangular carrier.
  • the filter FF which is no longer described here, also serves to roughly limit the receiver bandwidth in the case of reception.
  • filters are known per se and also the network connection NKE used here. It is also not necessary to describe the low-pass filter TPF and the sample-and-hold circuit in more detail.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Das Übertragungssystem weist eine Vielzahl von Raumzentralen mit jeweils zugehörigen Gefahrenmeldeeinrichtungen und eine Gebäude-Alarm-Zentrale (GZ) auf, welche über bestehende Licht-Netz-Leitungen (NL) miteinander verbunden sind. Von den Gefahrenmeldeeinrichtungen werden Gefahrenmeldedaten (GMD) von Gefahrenmeldern über Infrarot-Sender zu den Infrarot-Empfangseinrichtungen der Raumzentrale übertragen. Dort werden diese Daten in einem jeweiligen Mikroprozessorsystem (MP) verarbeitet und als binäre Daten zur Gebäudezentrale über das Leitungsnetz (NKE;NL) übertragen und umgekehrt. Dies geschieht mit der dafür vorgesehenen Netzübertragungseinrichtung (NUE), die unter Mitausnutzung des vorhandenen Mikroprozessorsystems (MP) ein trägerfrequentes Übertragungssystem mit Phasenmodulation (PM; PD1,PD2) bildet, wobei die einstellbare Trägerfrequenz (TF) von einem Quarz (MQ) stabilisiert ist. Die Übertragung erfolgt im Zeitmultiplexbetrieb in seltiv wählbaren Kanälen, die Signalauswertung wird im jeweiligen Mikroprozessorsystem (MP) durchgeführt.

Description

  • Die Erfindung bezieht sich auf ein Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage mit einer Vielzahl von Raumzentralen mit jeweils zugehörigen Gefahrenmeldeein­richtungen und einer Gebäude-Alarm-Zentrale, welche über bestehende Licht-Netzleitungen miteinander verbunden sind.
  • Gefahrenmeldeanlagen und Übertragungseinrichtungen über Netz­leitungen sind an sich bekannt. In der deutschen Patent­anmeldung P 37 39 042.2 vom 17.11.87 wurde bereits ein kabel­loses Gefahrenmeldesystem mit mindestens einer Raumzentrale, die über vorhandene Netzleitungen mit einer Gebäudezentrale verbunden ist, vorgeschlagen. Dazu ist für die Datenüber­tragung zwischen den jeweiligen Raumzentralen und der Gebäude­zentrale eine jeweilige Netzübertragungseinrichtung erforder­lich, die dort jedoch nicht beschrieben ist.
  • Für den Intrusionsschutz ist für die Signalübertragung binärer Gefahrenmeldedaten von den Sensoren bzw. Gefahrenmeldern zur Alarmzentrale eine hohe Störsicherheit und Sabotagesicherheit erforderlich. Um den hohen Installationsaufwand für die Er­richtung einer Gefahrenmeldeanlage zu vermeiden, werden die Daten zwischen der Raumzentrale und der Gebäudezentrale über ein bestehendes Lichtnetz übertragen. Dies erfordert hohe An­forderungen an ein derartiges Datenübertragungssystem im Hin­blick auf eine sichere und zuverlässige Übertragung der Ge­fahrenmeldedaten.
  • Es ist daher Aufgabe der Erfindung, für eine eingangs beschrie­bene Gefahrenmeldeanlage ein Datenübertragungssystem zu schaffen, welches eine hohe Ausfallsicherheit und Störsicher­heit und einen geringen Energieverbrauch aufweist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß unter Mitausnutzung des bereits in den jeweiligen Zentralen vor­handenen Mikroprozessorsystems für die Verarbeitung der binären Gefahrenmeldedaten mittels zusätzlich vorgesehener Netzüber­tragungseinrichtungen ein trägerfrequentes Übertragungssystem mit Phasen-Modulation gebildet ist, daß die einstellbare Trägerfrequenz vom Mikroprozessor-Quarz abgeleitet wird, daß die Übertragung im Zeitmultiplexbetrieb in selektiv wählbaren Frequenzkanälen erfolgt, und daß die Signalauswertung im jeweiligen Mikroprozessorsystem durchgeführt wird.
  • Für das erfindungsgemäße Datenübertragungssystem ist kein je­weiliger eigener Mikroprozessor für die Netzübertragungsein­richtung erforderlich, weil in vorteilhafter Weise der bereits vorhandene Mikroprozessor in den Raumzentralen und der Gebäude-­Alarm-Zentrale für die eigentliche Datenübertragung, d.h. Senden und Empfangen über das Lichtnetz, herangezogen wird. Dabei erfolgt die Signalauswertung im vorhandenen Mikro­prozessor. Zudem wird als weiterer Vorteil der ebenfalls vorhandene Mikroprozessor-Quarz für die Ableitung der ein­stellbaren Trägerfrequenz mitgenutzt. Das hat den Vorteil einer sehr großen Frequenzkonstanz der Trägerfrequenz und einer sehr schmalen Bandbreite für die Sende- bzw. Empfangsdaten, so daß ein optimaler Störabstand erzielt wird. Damit ist eine optimale Reduzierung von Breitbandstörungen sowie Ausblendung von Linienstörungen, wie sie beispielsweise durch Vielfache der Zeilenfrequenz von Fernsehgeräten hervorgerufen werden, möglich.
  • Weitere Einzelheiten und Vorteile des erfindungsgemäßen Daten­übertragungssystems ergeben sich aus den Unteransprüchen und den Erläuterungen zu einem möglichen Ausführungsbeispiel, welches anhand der Zeichnung im folgenden erläutert wird.
  • Dabei zeigen
    • Fig. 1 ein Blockschaltbild einer kabellosen Gefahrenmelde­anlage,
    • Fig. 2 ein Blockschaltbild einer Netzübertragungseinrichtung (Sender/Empfänger) mit bereits vorhandenem Mikroprozessor und
    • Fig. 3 ein Schaltbeispiel eines Phasenmodulators mit nachgeschalteter Senderstufe.
  • In Fig. 1 ist schematisch eine kabellose Gefahrenmeldeanlage mit einer Vielzahl (z.B. i = 16) von Raumzentralen RZ1 bis RZi mit jeweils zugehörigen Infrarotsendern IRSn (z.B. n = 8 pro Raumzentrale RZ) und zugehörigen Gefahrenmeldern GM und mit einer Gebäude-Alarm-Zentrale GZ gezeigt. Die Gefahrenmelder GM sind über den zugehörigen Infrarotsender IRSn mit der Raumzentrale RZi, die entsprechend zugeordnete Infrarot­empfänger IRIn aufweist, verbunden. Diese Infrarotübertragungs­einrichtung innerhalb eines zu überwachenden Raumes ist in der oben bereits genannten deutschen Patentanmeldung P 37 39 042 beschrieben. Die in der Raumzentrale RZi empfangenen und mit dem dortigen Mikroprozessorsystem MP verarbeiteten und aufbe­reiteten Daten werden über eine Netzübertragungseinrichtung NUE über das vorhandene Licht-Leitungsnetz NL zur Gebäudezentrale GZ übertragen. Diese weist neben einem Mikroprozessorsystem MP und weiteren, hier nicht näher dargestellten Einrichtungen für die Alarmbearbeitung, Alarmausgabe AL und Störungsanzeige ST ebenfalls eine Netzübertragungseinrichtung NUE auf.
  • Erfindungsgemäß erfolgt die Datenübertragung mittels der Netz­übertragungseinrichtung NUE unter Mitausnützung des Mikro­prozessorsystems MP der jeweiligen Zentrale. Die dafür vorgesehene Netzübertragungseinrichtung NUE ist mit dem vorhandenen Mikroprozessorsystem MP und der Ankopplung NKE an das Licht-Leitungsnetz NL in der Fig. 2 im Blockschaltbild dargestellt.
  • Gemäß der Fig. 2 weist die Netzübertragungseinrichtung NUE u.a. einen vom Mikroprozessorsystem MP mit einem Frequenzteiler FT beaufschlagten Frequenzsynthesizer FS auf, der mit der ausgewählten Trägerfrequenz PF, z.B. 100 kHz, den Phasen­modulator PM und über einen Phasensplitter PSP zwei Phasen­detektoren PT1 und PT2 ansteuert. An den einen Phasen­detektor PT1 gelangt die vorzugsweise um 90o phasenver­schobene Trägerfrequenz PF gegenüber dem anderen Phasen­detektor PT2, der die Trägerfrequenz TF mit der Nullphase erhält. In einem derartigen Übertragungssystem können auch drei Kanäle mit vorzugsweise 0o/120o/240o-Phase vorgesehen werden. Die zu sendenden Daten SD gelangen in einer codierten Form an den Phasenmodulator PM, von dem die modulierten Sendedaten SDm zu einer Sendestufe SEN laufen und von der sie über die Netzankopplungseinrichtung NKE auf das Licht-Leitungsnetz NL gegeben werden. Der Frequenzteiler FT teilt die Prozessor-Taktfrequenz, beispielsweise 12 MHz, entsprechend einem gewünschten Teilungsverhältnis von hier beispielsweise 120 : 1 auf die 100 kHz-Trägerfrequenz herunter. Die Gefahren­meldedaten GMD, die von den einzelnen Infrarotempfängern ankommen, werden im Mikroprozessorsystem MP verarbeitet und aufbereitet, was hier jedoch nicht weiter erläutert werden muß.
  • Die über das Lichtnetz NL übertragenen Empfangsdaten EDm gelangen tiber die Netzankopplungseinrichtung NKE an den Empfänger EMP. Der Empfänger weist die beiden Phasendetektoren PT1 und PT2 auf, an denen auch die Trägerfrequenz TF mit 0o- und 90o-Phase ansteht. Von den Phasendetektoren werden die Empfangsdaten nach den Komponenten X und Y, also EDX und EDY, über jeweilige Filter F, vorzugsweise Tiefpässe, und A/D-­Wandler an das Mikroprozessorsystem MP gegeben. Die hierfür vorgesehenen Analog-Digital-Wandler sind in dem Mikro­prozessorsystem MP integriert. Aus den beiden Quadratur­komponenten, den demodulierten Empfangsdaten EDX und EDY, wird im Mikroprozessorsystem MP der Winkel berechnet, der dem Dateninhalt entspricht.
  • Bei diesem Datenübertragungssystem ist es möglich, in der Gebäude-Alarm-Zentrale durch kurzen Testbetrieb, der regel­ mäßig für alle vorgesehenen Übertragungskanäle, z.B. 20, durch­geführt wird, das Signal-Rausch-Verhältnis des Systems zu ermitteln und in Abhängigkeit vom optimalen Verhältnis einen betreffenden Kanal auszuwählen. Eine solche Frequenz-Kanal­optimierung ist nicht nur vor Inbetriebnahme des Übertragungs­systems möglich, sondern auch während des Betriebes, so daß dieses Übertragungssystem immer selbsttätig den optimalen Kanal auswählen kann. Es ist damit auch möglich, in einem Gebäude­komplex mehrere Übertragungskanäle gleichzeitig auf verschie­denen Kanälen zu betreiben.
  • In Fig. 3 ist ein Schaltbeispiel des Phasenmodulators PM und der schaltbaren Senderstufe SEN gezeigt. Der Phasenmodulator PM besteht aus einem Exclusiv-Oder-Gatter EXOR, dem die Träger­frequenz TF, z.B. 100 kHz, zugeführt wird. Dem zweiten Eingang des Exclusiv-Oders werden die binären Sendedaten SD zugeführt, so daß das Exclusiv-Oder-Gatter am Ausgang eine Phasendrehung von 90o oder 180o, d.h. den modulierten Träger, erzeugt. Die Senderstufe SEN weist einen Feldeffekttransistor FTR auf, der über ein UND-Gatter AND direkt angesteuert wird. Der zweite Eingang des UND-Gatters AND ist mit einem Ein/Ausschaltbefehl E/A vom Mikroprozessorsystem MP beaufschlagt. Der Ausgang der Senderstufe SEN führt auf ein nachgeschaltetes Filter FF, welches die Oberwellen, die vom rechteckigen Träger erzeugt werden, bedämpft. Das Filter FF, das hier nicht mehr beschrieben ist, dient im Falle des Empfangs zugleich zur groben Begrenzung der Empfängerbrandbreite. Derartige Filter sind an sich bekannt sowie auch die hier verwendete Netzankopplung NKE. Ebenso ist es nicht erforderlich, die Tiefpaßfilter TPF und die Sample-and-Hold-Schaltung näher zu beschreiben.
  • Mit diesem Übertragungssystem ist es möglich, digitale Daten über das Lichtnetz innerhalb eines Gebäudekomplexes zuver­lässig zu übertragen, so daß es für die besonderen An­forderungen in einem Intrusionsschutzsystem besonders geeignet ist.

Claims (7)

1. Datenübertragungssystem für eine kabellose Gefahren­meldeanlage mit einer Vielzahl (i) von Raumzentralen (RZi) mit jeweils zugehörigen Gefahrenmeldeeinrichtungen (IRSn, GM) und einer Gebäude-Alarm-Zentrale (GZ), welche über bestehende Licht-Netzleitungen (NL) miteinander verbunden sind, wobei jede Raumzentrale (RZ) neben Infrarot-Empfangsein­richtungen und die Gebäudezentrale (GZ) jeweils ein Mikro­prozessorsystem (MP) zur Verarbeitung der Gefahrenmeldedaten (GMD) aufweisen,
dadurch gekennzeichnet,
daß unter Mitaus­nutzung des Mikroprozessorsystems (MP) mittels zusätzlicher vorgesehener Netzübertragungseinrichtungen (NUE) ein träger­frequentes Übertragungssystem mit Phasen-Modulation gebildet ist, daß die einstellbare Trägerfrequenz von einem Schwing-­Quarz stabilisiert ist, daß die Übertragung im Zeitmultiplex­betrieb in selektiv wählbaren Frequenz-Kanälen erfolgt, und daß die Signalauswertung im jeweiligen Mikroprozessorsystem (MP) durchgeführt wird.
2. Datenübertragungssystem nach Anspruch 1,
dadurch gekennzeichnet, daß die Netz­übertragungseinrichtung (NUE) im wesentlichen folgende Kompo­nenten aufweist:
a) einen Frequenzsynthesizer (FS), der von einem Phased-Looked-­Loop-System oder einem Frequenzteiler gebildet und von einem Quarzgenerator synchronisiert ist, wobei die erzeugte Träger­frequenz (TF) einem Phasenmodulator (PM) und einem Phasensplit­ter (PSP) zugeführt wird;
b) einen Phasenmodulator (PM), der die Sendedaten (SD) in der Phase und Amplitude moduliert, wobei die Phase und Amplitude von den zu übertragenden Sendedaten abgeleitet sind;
c) einen Sender (SEN), der die modulierten Sendedaten (SDm) vom Modulator (PM) verstärkt und über eine Netzankopplungsein­richtung (NKE), die den Trägerfrequenzbereich von der Netz­frequenz trennt, auf die Licht-Netzleitung (NL) gibt;
d) einen Empfänger (EMP), der mindestens zwei Phasendetektoren (PD1 und PD2) und nachgeschaltete Filter (F) sowie A/D-Wandler (A/D) aufweist und die Daten dem Mikroprozessorsystem (MP) zuführt, wobei die Phasendetektoren jeweils von den modulierten Empfangsdaten (EDm) und von dem Phasensplitter (PSP) mit (Δφ1 - φ2) beaufschlagt sind.
3. Datenübertragungssystem nach Anspruch 2,
dadurch gekennzeichnet, daß der Quarz­generator von dem Mikroprozessor-Quarz (MQ) und einem Frequenzteiler (FT) des Mikroprozessorsystems (MP) gebildet ist.
4. Datenübertragungssystem nach Anspruch 2,
dadurch gekennzeichnet, daß die Amplitude vom Mikroprozessorsystem her ein-/ausgeschaltet wird.
5. Datenübertragungssystem nach Anspruch 2,
dadurch gekennzeichnet, daß die Amplitude zum Erreichen eines schmalbandigen Sendespektrums eine spezielle Kurvenform erhält.
6. Datenübertragungssystem nach Anspruch 2,
dadurch gekennzeichnet, daß zur Digitali­sierung der demodulierten Empfangsdaten (EDX, EDY) Analog-­Digital-Wandler (A/D) vorgesehen sind, die im Mikroprozessor­system (MP) integriert sind.
7. Datenübertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß bei Eintreten von Übertragungsstörungen eine automatische Frequenz-Störanalyse durch das Mikroprozessorsystem (MP) durchgeführt wird und aufgrund dieser Analyse ein automatischer Wechsel auf den optimalen Frequenz-Kanal erfolgt.
EP89105072A 1988-04-19 1989-03-21 Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage Expired - Lifetime EP0338274B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3813075 1988-04-19
DE3813075 1988-04-19

Publications (2)

Publication Number Publication Date
EP0338274A1 true EP0338274A1 (de) 1989-10-25
EP0338274B1 EP0338274B1 (de) 1994-08-31

Family

ID=6352357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89105072A Expired - Lifetime EP0338274B1 (de) 1988-04-19 1989-03-21 Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage

Country Status (3)

Country Link
EP (1) EP0338274B1 (de)
AT (1) ATE110870T1 (de)
DE (1) DE58908251D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609583U1 (de) * 1996-05-30 1996-08-22 Röhrig, Karl Heinz, 53229 Bonn Alarmanlage
US6327245B1 (en) 1995-06-30 2001-12-04 Philips Electronics North America Corporation Automatic channel switching for jamming avoidance in burst-mode packet data wireless communication networks
WO2003098845A2 (fr) * 2002-05-16 2003-11-27 Michel Cuvelier Dispositif de connexion a infrarouge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266985A1 (en) * 1974-04-03 1975-10-31 Orion Radio Radio communication method for service conversations - has message and distance monitoring signal transmission in digital form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266985A1 (en) * 1974-04-03 1975-10-31 Orion Radio Radio communication method for service conversations - has message and distance monitoring signal transmission in digital form

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELEKTRONIK, Band 32, Nr. 20, 7. Oktober 1983, Seiten 100-104, München, DE; R. KÜNZEL: "Datenübertragung über das 220-V-Netz" *
T.N. NACHRICHTEN, Nr. 90, September 1986, Seiten 24-29, Frankfurt au Main, DE; U. OPPELT: "Das Meldesystem MZ 1000" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327245B1 (en) 1995-06-30 2001-12-04 Philips Electronics North America Corporation Automatic channel switching for jamming avoidance in burst-mode packet data wireless communication networks
DE29609583U1 (de) * 1996-05-30 1996-08-22 Röhrig, Karl Heinz, 53229 Bonn Alarmanlage
WO2003098845A2 (fr) * 2002-05-16 2003-11-27 Michel Cuvelier Dispositif de connexion a infrarouge
WO2003098845A3 (fr) * 2002-05-16 2004-01-15 Michel Cuvelier Dispositif de connexion a infrarouge

Also Published As

Publication number Publication date
EP0338274B1 (de) 1994-08-31
DE58908251D1 (de) 1994-10-06
ATE110870T1 (de) 1994-09-15

Similar Documents

Publication Publication Date Title
DE3883381T2 (de) Optische drahtlose nachrichtenanlage.
DE3313245C2 (de)
DE3401762A1 (de) Anlage zur erfassung des betriebszustandes von fernsehgeraeten
DE2450860C2 (de) Verfahren zur Sicherung eines der Frequenzregelung dienenden Pilotsignals in einem Nachrichtenübertragungssystem und Einrichtung in einer Bodenstation zur Durchführung des Verfahrens
DE1541384A1 (de) Diskriminatorschaltung
EP0200016B1 (de) Verfahren zur Übertragung von Information über elektrische Energieversorgungsnetze
DE3008076C2 (de) Einrichtung zur Empfängerabschaltung bei kleinem Signal-Geräusch-Abstand für ein digital moduliertes Funksystem mit Frequenzmodulation
CH652543A5 (de) Verfahren und einrichtung zur ueberwachung einer uebertragungsanlage.
DE3889476T2 (de) Überwachungssystem für eine digitale Übertragungsverbindung für eine primäre Gruppe.
EP0338274B1 (de) Datenübertragungssystem für eine kabellose Gefahrenmeldeanlage
DE4201542C2 (de) Anordnung zum Unterdrücken von im Empfangssignal des Empfängers eines Hochfrequenz-Nachrichten-Übertragungssystems auftretenden Störsignalen
DE3010957C2 (de) Funkpeiler
DE2627409C2 (de)
EP0170793B1 (de) Durch binäre Datensignale modulierbarer Hochfrequenzsender
WO2020120071A1 (de) Netzwerkkommunikationssystem mit bidirektionaler strommodulation zur datenübertragung
EP0003308B1 (de) Schaltungsanordnung zum Korrigieren von Frequenzfehlern bei einer Übertragung von Daten
WO1995034823A1 (de) Verfahren und vorrichtung zur messung der feldstärke in einem funkkanal und dessen nachbarkanälen mittels zero-if
EP0796521B1 (de) Vorrichtung zur störsicheren modulation und demodulation von analogen signalen zur nachrichtenübertragung über die schirmungen von energieübertragungskabeln
DE2725152C2 (de) Überwachungssystem für elektronische Baugruppen oder Geräte in drahtgebundenen Fernmeldeanlagen
DE2102511A1 (de) Verfahren zum Messen der frequenz abhangigen Dampfung einer Fernmelde leitung, insbesondere einer Zweidraht leitung
DE2801451A1 (de) Alarmvorrichtung
DE3311097A1 (de) Fernwirksystem
DE2522441A1 (de) Ueberwachungssystem fuer elektronische baugruppen oder geraete in drahtgebundenen fernmeldeanlagen
EP0087637B1 (de) Anordnung zur Erfassung von Verbrauchswerten, insbesondere an Heizkörpern und/oder Warmwandzählern in Wohnungen
DE69818417T2 (de) Sender zum Übertragen von digitalen Daten an einen Empfänger mittels eines frequenzmodulierten Signals über ein Wechselstromversorgungsnetz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900410

17Q First examination report despatched

Effective date: 19920520

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 110870

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908251

Country of ref document: DE

Date of ref document: 19941006

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941103

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 89105072.6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980312

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990321

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030307

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030310

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030314

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030318

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030519

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030612

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040321

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050321