EP0333532B1 - Tube en matériaux composites peu sensible à la variation d'allongement sous l'effet de la pression interne - Google Patents

Tube en matériaux composites peu sensible à la variation d'allongement sous l'effet de la pression interne Download PDF

Info

Publication number
EP0333532B1
EP0333532B1 EP89400473A EP89400473A EP0333532B1 EP 0333532 B1 EP0333532 B1 EP 0333532B1 EP 89400473 A EP89400473 A EP 89400473A EP 89400473 A EP89400473 A EP 89400473A EP 0333532 B1 EP0333532 B1 EP 0333532B1
Authority
EP
European Patent Office
Prior art keywords
tube
fibres
angle
layer
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400473A
Other languages
German (de)
English (en)
Other versions
EP0333532A1 (fr
Inventor
Charles Sparks
Pierre Odru
Marcel Auberon
Jean-François Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Airbus Group SAS
Original Assignee
IFP Energies Nouvelles IFPEN
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Airbus Group SAS filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0333532A1 publication Critical patent/EP0333532A1/fr
Application granted granted Critical
Publication of EP0333532B1 publication Critical patent/EP0333532B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S138/00Pipes and tubular conduits
    • Y10S138/02Glass fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1369Fiber or fibers wound around each other or into a self-sustaining shape [e.g., yarn, braid, fibers shaped around a core, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a new tube structure made of composite materials which does not have a significant variation in length under the effect of internal pressure.
  • composite material a material comprising fibers which are parallel to one another, such as glass fibers, carbon fibers, aramid fibers, coated in a matrix, such as a thermoplastic or thermosetting matrix, for example an epoxy resin.
  • a tube made of composite materials is for example known from the document GB-A-2,059,538 (& FR-A-2,464,423).
  • the invention applies in particular to the production of tubes for the transfer or retention of pressurized fluids, such as water or hydrocarbons.
  • the tubes according to the invention are intended to be used in oil exploration and exploitation operations at sea, for example as main or auxiliary rising and falling columns connecting the bottom of the sea to a surface support, such as a drilling or exploitation platform, or a subsurface buoy.
  • a surface support such as a drilling or exploitation platform, or a subsurface buoy.
  • Such columns are commonly designated by their English designation of "riser” or "tubing”.
  • the tube according to the invention which has significant flexibility in any tensile stress in the absence of internal pressure, is particularly suitable for this type of risers, because it allows the removal of all or part of the system of maintaining the column in tension as a function of the elongation.
  • the head tension in the absence of internal pressure, corresponds to that necessary to take up the self-weight of the tube multiplied by a certain factor greater than 1 (1, 7 for example), in order to maintain the profile of the column in acceptable limits, despite external stresses resulting, for example, from the current effect for a submerged line.
  • the tube, object of the present invention has a zero or very low longitudinal elongation, thereby eliminating the need for the tensioning system.
  • the tube according to the present invention can also be used as a production tube or production column ("riser") leading to a subsurface buoy: in these specific cases, the tubes are fixed at their lower and upper ends without permanent tensioning system .
  • the pressurization and temperature is accompanied by a tendency to buckling of the tubes according to the prior art which will react by taking support from surrounding systems (buckling guides specially provided) and possibly creating significant bending stresses. compression at the lower extremities.
  • the use of tubes according to the invention makes it possible to reduce or eliminate the guidance systems', to simplify the initial pretensioning, and to reduce the bending-compression constraints at the foot.
  • the tube according to the present invention can also be used as a tube for producing, or injecting water or gas (“tubing”), either inside one of the risers described above (“risers”) , either directly inside the well, both on land and at sea. Pressurization and / or temperature is accompanied by a tendency to buckling of the tubes according to the prior art which react by taking support on the walls external (“casings" in the well or “risers” in the risers) possibly creating significant bending-compression stresses at the lower ends.
  • tubing water or gas
  • the invention makes it possible to reduce or eliminate the initial tensioning, or to eliminate the system of sliding joints at the foot by replacing them with embedments, or to reduce the bending stresses at the foot.
  • the tube according to the present invention can also be used for the peripheral lines of offshore drilling columns, these columns serving to protect the drilling rods.
  • These peripheral lines can be safety lines ("Kill and Choke” lines) or, “mud injection lines ("Booster ").
  • the tubes according to the prior art are sliding at their ends. When they are put under internal pressure, a lateral instability equivalent to buckling develops which tends to force them out violently from their guidance system: the implementation of a tube according to the invention by embedding it at the ends, and by resuming the traction forces induced by end stops, eliminates any intermediate guide system.
  • the present invention can also be used to form tubes or casings for producing wells drilled from dry land.
  • the tube according to the present invention can be used as a production tube ("tubing") inside a well on land as at sea, or inside a riser (“riser” ) at sea.
  • the invention could also apply to underwater collection pipes to be buried, that is to say arranged at the bottom of a trench, to avoid the risks of deterioration due to navigation.
  • the tube according to the invention significantly reduces these risks.
  • Composite tubes generally comprise a superposition of layers, each of which comprises fibers arranged at angles equal to or symmetrical with respect to the axis of the tube and embedded in a matrix. This matrix adheres to the fibers.
  • Some of these layers can be adapted to resist more particularly the pressure prevailing inside the tube or pressure resistant pressure then comprise groups of fibers wound at a high angle relative to the axis of the tube, while the tensile-resistant layers have fibers wound at a small angle to the axis of the tube.
  • the composite tubes according to the teaching of the prior art are constructed to withstand the tensile and internal pressure forces and do not exhibit a substantially zero elongation under the effect of the internal pressure.
  • the composite tube according to the present invention has a much lower elongation, or even zero or negative.
  • the composite material tube according to the present invention allows, in view of its performance, to envisage new applications for the composite material tubes, moreover it reduces the drawbacks mentioned above.
  • group of fibers means a set of fibers which are parallel to one another, of the same composition, embedded in a matrix, and by layer one or more groups of fibers wound at an angle. substantially constant in absolute value with respect to the winding axis and comprising an equal proportion of fibers wound in one direction at the angle indicated above, and fibers wound in the opposite direction at this same angle.
  • the cohesion of one or more layers is ensured by the matrix which adheres to the fibers and which substantially forms a continuous medium.
  • a structure such as: or, better still, a structure such as:
  • the reinforcing fibers may be made of glass, aramids, carbon or any other material taken alone or in combination. It will be possible to associate the groups of reinforcing fibers by pair of identical fiber groups, one of the groups making an angle + teta with the axis of the tube, the other group of the pair making an angle less teta.
  • the reinforcing fibers of at least one layer may be fibers comprising glass, carbon or aramid.
  • the tube according to the invention may comprise at least two layers, one of said layers may comprise fibers wound at a small angle relative to the axis of the tube and the other may comprise fibers wound at a high angle relative to to the axis of the tube.
  • the overall elastic modulus, in the natural direction of the fibers, of the layer with a low winding angle may be greater than the overall elastic modulus, in the natural direction of the fibers, of the layer with a high winding angle.
  • the tube according to the invention may comprise at least two layers, one of these layers may comprise fibers wound at an angle of between 55 ° and 90 ° other layer may comprise fibers wound at an angle whose absolute value is included between 10 ° and 45 °.
  • the overall proportion of one of the layers by volume with respect to the overall assembly of the two layers may be between 35 and 65%.
  • the tube according to the invention may comprise a layer with a winding angle substantially equal to 70 °, relative to the axis of the tube, the overall elastic modulus in the proper direction of these fibers being close to the range 50,000 -56,000 MPa, this tube may also have a layer with a winding angle substantially equal to 26 ° relative to the axis of the tube, the overall elastic modulus in the proper direction of this layer oriented at 26 ° being close 140,000 MPa, and the proportions of the 70 ° layer and the 26 ° layer may be respectively and substantially equal to 55% and 45%, by volume.
  • the composite tube according to the invention may comprise a layer with a winding angle substantially equal to 70 °, with respect to the axis of the tube, the overall elastic modulus in the proper direction of these fibers being close to the range 50 000-56,000 MPa, this tube may also comprise a layer with a winding angle substantially equal to 30 ° relative to the axis of the tube, the overall elastic modulus in the proper direction of this layer oriented at 30 ° close to 100,000 MPa, and the proportions of the layer at 70 ° and the layer at 30 ° may be respectively substantially equal to 50% and 50% by volume.
  • the composite tube according to the invention may comprise a layer having reinforcing fibers wound at an angle substantially equal in absolute value to 38 °, with respect to the axis of the tube, and at least one layer having reinforcing fibers wound under an angle substantially equal in absolute value to 62 °, with respect to the axis of the tube, and the overall volume proportions of the layer at 38 ° and of the layer at 62 ° with respect to all of these two layers are roughly equal to 45% and 55% respectively.
  • the tube according to the invention can be used in the constitution of a riser of a drilling or production platform. Just as it can be used as long as the production tube ("tubing") inside a well on land as at sea, or inside a riser ("riser”) at sea .
  • the appended figure shows an example of a composite tube to which the invention applies.
  • This tube has an internal sheath 1 on which a succession of composite layers 2, 3, 4, 5, 6, 7, 8 are stacked, each of which comprises groups of reinforcing fibers. These groups are, for example, arranged by alternating groups 2, 4, 6, 8 of reinforcement resistant to stresses due to pressure and groups 3, 5, 7 of reinforcement resistant to tensile forces.
  • the first series of these composite layers 3, 5, 7 consists of carbon fibers wound symmetrically with respect to the axis of the tube at angles of + 26 °, the composite material having a module along the axis of the fibers.
  • elasticity or Young's modulus E1 140,000 MPa.
  • the inner diameter of the tube is 23 centimeters.
  • the cumulative thicknesses for the series of layers are respectively 0.75 cm for the first series and 0.91 cm for the second series.
  • the proportions by volume of resin in each of the series of composite layers are respectively 40% for the first and 33% for the second.
  • the first series of layers has three layers sandwiched between four layers of the second series.
  • the volume proportions of the glass composite materials and of the carbon composite are 55% and 45% respectively.
  • a tube with very low elongation can be obtained by replacing, in the previous example, the glass fibers with aramid fibers with low modulus (KEVLAR 29). The proportions of the composites and the winding angles remain unchanged.
  • Another example for obtaining a tube with very low elongation consists in using a glass composite, the fibers of which are wound at 70 ° relative to the axis of the tube, and an aramid composite material with high elasticity modulus (Kevlar 49), the fibers are wound at 30 ° to the axis of the tube.
  • the proportions of glass composite material and Kevlar composite material are 50% and 50% respectively.
  • the longitudinal Young's modulus of the KEVLAR 49 composite is close to 100,000 MPa and that of the KEVLAR 29 composite material is close to 50,000 MPa.
  • the names KEVLAR 49 and KEVLAR 29 are trademarks registered by the company Du Pont de Nemours.
  • tubes having a very low elongation are produced with two composite materials
  • such tubes are produced with a single composite material. This is achieved, for example, by winding fibers at angles of + 38 ° and + 62 °, relative to the axis of the tube.
  • the volume proportions of the fibers at 38 ° and 62 ° and their associated matrix are 45% and 55% respectively, the nature of these fibers does not modify the characteristics of the tube.
  • the layers having the largest Young modulus in the natural direction of the fibers will be deposited with the small angle, and those having the Young modulus in the natural direction of the fibers the lower will be dropped with the high angle.
  • the same layer may comprise one or more groups of wound fibers so that these groups are adjacent side by side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Earth Drilling (AREA)

Description

  • La présente invention concerne une nouvelle structure de tube en matériaux composites ne présentant pas de variation sensible de longueur sous l'effet de la pression interne.
  • Par matériau composite, il faut entendre un matériau comprenant des fibres parallèles entre elles, telles des fibres de verre, fibres de carbone, fibres aramides, enrobées dans une matrice, telles une matrice thermoplastique ou thermodurcissable, par exemple une résine époxy.
  • Un tube en materiaux composites est par exemple connu du document GB-A-2 059 538 (& FR-A-2 464 423).
  • L'invention s'applique notamment à la réalisation de tubes pour le transfert ou la rétention de fluides sous pression, tels que de l'eau ou des hydrocarbures.
  • Plus particulièrement, les tubes selon l'invention sont destinés a être utilisés dans les opérations de recherche et d'exploitation pétrolière en mer, par exemple comme colonnes principales ou auxiliaires montantes et descendantes reliant le fond de la mer à un support de surface, tel une plate-forme de forage ou d'exploitation, ou une bouée de subsurface. De telles colonnes sont couramment désignées par leur appellation anglaise de "riser" ou "tubing".
  • Les colonnes montantes ("risers") de production de plate-formes fixes ou à lignes tendues réalisent en service normal la protection des tubes de production (appelés aussi "tubings") sans être soumises à la pression régnant dans le gisement. Ces colonnes sont cependant conçues pour admettre accidentellement des pressions internes, par exemple en cas de fuite ou de rupture du tube de production.
  • Ces colonnes, compte-tenu de leur grande longueur, subissent des variations d'allongement importantes, dues notamment à la traction induite par l'effet de fond résultant d'éventuelles pressions qui règneront à l'intérieur de ces colonnes, à leur poids ou à leurs variations de températures. Pour compenser ces variations, les colonnes sont, soit soumises à une importante précontrainte en traction, soit maintenues tendues à l'aide de systèmes de tensionnement complexes assurant une traction pouvant être constante ou égale à une valeur minimale en fonction des conditions opératoires.
  • Le tube selon l'invention, qui présente une souplesse importante à toute sollicitation de traction en l'absence de pression interne, est particulièrement adapté à ce type de colonnes montantes, car il permet la suppression de tout ou d'une partie du système de maintien en traction de la colonne en fonction de l'allongement.
  • La traction en tête, en l'absence de pression interne, correspond à celle nécessaire pour reprendre le poids propre du tube multiplié par un certain facteur supérieur à 1 (1, 7 par exemple), afin de maintenir le profil de la colonne dans des limites acceptables, malgré des sollicitations externes résultant, par exemple, de l'effet de courant pour une ligne immergée.
  • En cas de mise en pression accidentielle d'un tube selon l'art antérieur, la pression va agir sur le sommet du tube et lui communiquer un effort important, ce qui va se traduire par un allongement du tube. Cet allongement nécessite d'être repris par un système de tensionnement afin d'éviter un effondrement dans la partie basse de la colonne.
  • Lors d'une mise en pression interne, le tube, objet de la présente invention, présente un allongement longitudinal nul ou très faible, supprimant par contrecoup la nécessité du système de tensionnement.
  • Le tube selon la présente invention peut également être utilisé comme tube de production ou colonne de production ("riser") aboutissant à une bouée de subsurface: dans ces cas précis, les tubes sont fixés à leurs extrémités inférieures et supérieures sans système de tensionnement permanent. La mise en pression et température s'accompagne d'une tendance au flambage des tubes selon l'art antérieur qui vont réagir en prenant appui sur des systèmes environnants (guides de flambage spécialement prévus) et en créant éventuellement d'importantes contraintes de flexion-compression aux extrémités inférieures. La mise en oeuvre de tubes selon l'invention permet de diminuer ou de supprimer les systèmes de guidage' de simplifier le prétensionnement initial, et de diminuer les contraintes de flexion-compression en pied.
  • Le tube selon la présente invention peut également être utilisé comme tube de production, ou d'injection d'eau ou de gaz ("tubing"), soit à l'intérieur de l'une des colonnes montantes précédemment décrites ("risers"), soit directement à l'intérieur du puits, et ce à terre comme en mer. La mise en pression et/ou température s'accompagne d'une tendance au flambage des tubes selon l'art antérieur qui réagissent en prenant appui sur les parois externes ("casings" dans le puits ou "risers" dans les colonnes montantes) en créant éventuellement d'importantes contraintes de flexion-compression aux extrémités inférieures.
  • L'invention permet de diminuer ou de supprimer le tensionnement initial, ou de supprimer les système de joints coulissants en pied en les remplaçant par des encastrements, ou de diminuer les contraintes de flexion en pied.
  • Le tube selon la présente invention peut aussi être utilisé pour les lignes périphériques des colonnes de forage en mer, ces colonnes servant à protéger les tiges de forage. Ces lignes périphériques peuvent être des lignes de sécurité (lignes "Kill and Choke") ou des, ' lignes d'injection de boue ("Booster"). Les tubes selon l'art antérieur sont coulissants à leur extrémités. Lorsqu'ils sont mis en pression interne, il se développe une instabilitè latérale équivalente à un flambage qui a tendance à les faire sortir violemment de leur système de guidage: la mise en oeuvre d'un tube selon l'invention en encastrant celui-ci aux extrémités, et en faisant reprendre les efforts de traction induits par des butées d'extrémité, permet de supprimer tout système de guidage intermédiaire.
  • La présente invention peut également être utilisée pour former les tubes ou tubages de production de puits forés depuis la terre ferme.
  • De même le tube selon la présente invention peut être utilisé en tant que tube de production ("tubing") à l'intérieur d'un puits à terre comme en mer, ou à l'intérieur d'une colonne montante ("riser") en mer.
  • L'invention pourrait s'appliquer également aux conduites de collectes sous-marines devant être ensouillées, c'est-à-dire disposées au fond d'une tranchée, pour éviter les risques de détérioration dus à la navigation.
  • En effet les conduites selon l'art antérieur, une fois ensouillées, ont tendance à s'allonger lorsqu'elles sont mises en pression et de ce fait elles risquent de se déformer et de resurgir verticalement hors de la tranchée, ce qui annule évidemment l'effet de l'ensouillage.
  • Le tube selon l'invention réduit notablement ces risques.
  • Les exemples d'application donnés précédemment ne sont nullement limitatifs.
  • Les tubes composites comportent généralement une superposition de couches dont chacune comporte des fibres disposées sous des angles égaux ou symétriques par rapport à l'axe du tube et noyées dans une matrice. Cette matrice adhère aux fibres.
  • Certaines de ces couches peuvent être adaptées à résister plus particulièrement à la pression régnant à l'intérieur du tube ou pression résistant à la pression comportent alors des groupes de fibres enroulées sous un angle élevé par rapport à l'axe du tube, alors que les couches résistant à la traction comportent des fibres enroulées sous un angle faible par rapport à l'axe du tube.
  • Les tubes composites selon l'enseignement de l'art antérieur sont construits pour résister aux efforts de traction et de pression interne et ne présentent par un allongement sensiblement nul sous l'effet de la pression interne.
  • En effet, d'une manière générale, des tubes traditionnels résistant à la pression interne en fibres de carbone, fibres aramides ou fibres de verre s'allongent, sous l'effet de la pression interne, respectivement d'environ 0,4%, 0,6%, 0,8% à leur limite de service en pression.
  • Le tube composite seon la présente invention présente un allongement beaucoup plus faible, voire nul ou négatif.
  • Le tube en matériau composite selon la présente invention permet, compte tenu de ses performances, d'envisager de nouvelles applications pour les tubes en matériau composite, de plus il réduit les inconvénients cités, ci-avant.
  • Dans la description qui suit de la présente invention, sauf spécification contraire, on entend par groupe de fibres un ensemble de fibres parallèles entre elles, de même compositions, noyées dans une matrice, et par couche un ou plusieurs groupes de fibres enroulés suivant un angle sensiblement constant en valeur absolue par rapport à l'axe d'enroulement et comprenant une proportion égale de fibres enroulées dans un sens sous l'angle indiqué précédemment, et de fibres enroulées dans le sens opposé sous ce même angle.
  • Ainsi pour une même couche il y a autant de fibres enroulées sous l'angle têta par rapport à l'axe d'enroulement que de fibres enroulées sous l'angle -têta par rapport à l'axe d'enroulement.
  • Enfin la cohésion d'une ou de plusieurs couches est assurée par la matrice qui adhère aux fibres et qui forme sensiblement un milieu continu.
  • Ainsi la présente invention concerne un tube en matériaux composites, peu sensible à la variation d'allongement sous l'effet de la pression interne, comportant un nombre n de couches stables de fibres de renfort, les fibres de chaque couche (i) étant placées sous un même angle d'enroulement en valeur absolue noté têta par rapport à l'axe du tube avec une proportion égale de fibres enroulées sous ledit angle dans un sens (| têta |) que de fibres enroulées dans le sens opposé (-1 téta 1). Les fibres de chaque couche sont noyées dans une matrice qui adhère à ces fibres, les fibres d'une même couche et la matrice associée ayant un volume noté Y. Les fibres parallèles d'une même couche et la matrice associée ayant globalement un module d'élasticité dans la direction propre des fibres noté E selon la présente invention les n couches de fibres respectent ensemble la relation suivante:
    • 0,35 ≤ A ; 0,60 où A est égal à l'expression suivante:
      Figure imgb0001
      i étant l'indice de sommation sur les différentes couches de fibres.
  • Afin de réduire l'influence d'une erreur sur l'angle de placement des fibres d'un groupe, c'est-à-dire d'accroître la tolérance acceptable sur ce paramètre de fabrication, on préférera une structure telle que:
    Figure imgb0002
    ou, mieux encore, une structure telle que:
    Figure imgb0003
  • Les fibres de renfort pourront être en verre, en aramides, en carbone ou tous autres matériaux pris seuls ou en combinaison. On pourra associer les groupes de fibres de renfort par paire de groupes de fibres identiques, l'un des groupes faisant un angle +têta avec l'axe du tube, l'autre groupe de la paire faisant un angle moins têta.
  • Suivant le tube selon l'invention, les fibres de renfort d'au moins une couche pourront être des fibres comportant du verre, du carbone ou de l'aramide.
  • Le tube selon l'invention pourra comporter au moins deux couches, l'une desdites couches pourra comporter des fibres enroulées sous un angle faible par rapport à l'axe du tube et l'autre pourra comporter des fibres enroulées sous un angle élevé par rapport à l'axe du tube. Le module d'élasticité globale, dans la direction propre des fibres, de la couche à angle d'enroulement faible pourra être supérieur au module d'élasticité globale, dans la direction propre des fibres, de la couche à angle d'enroulement élevé.
  • Le tube selon l'invention pourra comporter au moins deux couches, l'une de ces couches pourra comporter des fibres enroulées sous un angle compris entre 55° et 90° autre couche pourra comporter des fibres enroulées sous un angle dont la valeur absolue est comprise entre 10° et 45°. Lorsque le tube ne comporte que deux couches la proportion globale de l'une des couches en volume par rapport à l'ensemble global des deux couches pourra être comprise entre 35 et 65%.
  • Le tube selon l'invention pourra comporter une couche à angle d'enroulement sensiblement égal à 70°, par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de ces fibres étant voisin de la plage 50 000-56 000 MPa, ce tube pourra également comporter une couche à angle d'enroulement sensiblement égal à 26° par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de cette couche orientées à 26° étant voisin de 140 000 MPa, et les proportions de la couche à 70° et de la couche à 26° pourront être respectivement et sensiblement égales à 55% et 45%, en volume.
  • Le tube composite selon l'invention pourra comporter une couche à angle d'enroulement sensiblement égal à 70°, par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de ces fibres étant voisin de la plage 50 000-56 000 MPa, ce tube pourra également comporter une couche à angle d'enroulement sensiblement égal à 30° par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de cette couche orientée à 30° étant voisin de 100 000 MPa, et les proportions de la couche à 70° et de la couche à 30° pourront être respectivement sensiblement égales à 50% et 50% en volume.
  • Le tube composite selon l'invention pourra comporter une couche ayant des fibres de renfort enroulées sous un angle sensiblement égal en valeur absolue à 38°, par rapport à l'axe du tube, et au moins une couche ayant des fibres de renfort enroulées sous un angle sensiblement égal en valeur absolue à 62°, par rapport à l'axe du tube, et les proportions globales en volume de la couche à 38° et de la couche à 62° par rapport à l'ensemble de ces deux couches sont respectivement sensiblement égales à 45% et 55%.
  • Ainsi que cela a été dit le tube selon l'invention peut être utilisé dans la constitution d'une colonne montante d'une plate forme de forage ou de production. De même qu'il peut être utilisé tant que le tube de production ("tubing") à l'intérieur d'un puits à terre comme en mer, ou à l'intérieur d'une colonne montante ("riser") en mer.
  • La figure annexée montre un exemple de tube composite auquel s'applique l'invention.
  • Ce tube comporte une gaine interne 1 sur laquelle s'empile une succession de couches composites 2, 3, 4, 5, 6, 7, 8 dont chacune comporte des groupes de fibres de renforts. Ces groupes sont, par exemple, disposés en alternant les groupes 2, 4, 6, 8 de renfort résistant aux efforts dus à la pression et les groupes 3, 5, 7 de renfort résistant aux efforts de traction.
  • Ainsi, on peut avoir un tube comportant deux séries de couches composites. La première série de ces couches composites 3, 5, 7 est constituée de fibres de carbone enroulées symétriquement par rapport à l'axe du tube sous des angles de + 26°, le matériau composite ayant selon l'axe des fibres un module d'élasticité ou module d'Young E1 = 140 000 MPa.
  • La deuxième série de ces couches composites 2, 4, 6, 8 est constituée de fibres de verre enroulées symétriquement par rapport à l'axe du tube sous des angles de +70°, le matériau composite ayant selon l'axe des fibres un module d'élasticité E2 = 56000 MPa. Le diamètre intérieur du tube est de 23 centimètres.
  • Les épaisseurs cumulées pour les séries de couches sont respectivement de 0,75 cm pour la première série et 0,91 cm pour la deuxième série.
  • Les proportions en volume de résine dans chacune des séries de couches composites sont respectivement de 40% pour le premier et 33% pour la deuxième. La première série de couches comporte trois couches intercalées entre quatre couches de la deuxième série.
  • Les proportions en volume des matériaux composites verre et du composite carbone sont respectivement de 55% et 45%.
  • L'allongement relatif à ce tube est de 3.10-4 lorsque la pression auquel il est soumis est de 350 bars.
  • On pourra obtenir un tube à très faible allongement en remplaçant dans l'exemple précédent les fibres de verre par des fibres aramides à faible module (KEVLAR 29). Les proportions des composites et les angles d'enroulement restent inchangées.
  • Un autre exemple pour obtenir un tube à très faible allongement consiste à utiliser un composite verre dont les fibres sont enroulées à 70° par rapport à l'axe du tube et un matériau composite aramide à haut module d'élasticité (Kevlar 49) dont les fibres sont enroulées à 30° par rapport à l'axe du tube. Les proportions de matériau composite verre et de matériau composite Kevlar sont respectivement de 50% et 50%.
  • On pourra également obtenir un tube possédant un allongement très faible en substituant dans l'exemple précédant aux fibres de verre des fibres aramides bas module (ex. Kevlar 29).
  • Les proportions des matériaux composites et les angles d'enroulement restent inchangées.
  • Le module d'Young longitudinal du composite KEVLAR 49 est voisin de 100 000 MPa et celui du matériau composite KEVLAR 29 voisin de 50 000 MPa. Les appellations KEVLAR 49 et KEVLAR 29 sont des marques déposées par la société Du Pont de Nemours.
  • Le tableau donné ci-dessous résume les exemples donnés précédemment.
    Figure imgb0004
  • De la même manière que l'on réalise des tubes possédant un allongement très faible avec deux matériaux composites, on réalise de tels tubes avec un seul matériau composite. Ceci est obtenu, par exemple, en enroulant des fibres sous des angles de +38° et +62°, par rapport à l'axe du tube. Les proportions en volume des fibres à 38° et 62° et de leur matrice associée sont respectivement de 45% et 55%la nature de ces fibres ne modifie pas les caractéristiques du tube.
  • Enfin, d'une manière plus générale, lorsque l'on utilise deux couches comportant des fibres de natures différentes on aura de préférence:
    • une couche comportant des fibres placées sous un angle compris entre 55° et 90°, et,
    • une autre couche comportant des fibres placées sous un angle compris entre 10 et 45°.
  • Dans le cas de deux types de fibres différentes, les couches présentant dans la direction propre des fibres le module d'Young le plus important seront déposées avec l'angle faible, et celles présentant le module d'Young dans la direction propre des fibres le plus faible seront déposées avec l'angle élevé.
  • Enfin il convient de noter que, de préférence, une même couche pourra comporter un ou plusieurs groupes de fibres bobinées de manière à ce que ces groupes soient adjacents côte à côte.

Claims (12)

1. Tube en matériaux composites, peu sensible à la variation d'allongement sous l'effet de la pression interne, comportant un nombre n de couches stables de fibres de renfort, les fibres de chaque couche (i) étant placées sous un même angle d'enroulement en valeur absolue noté têta par rapport à l'axe du tube, avec une proportion égale de fibres enroulées sous ledit angle dans un sens (1 têta 1) que de fibres enroulées dans le sens opposé (-| têta |), les fibres de chaque couche étant noyées dans une matrice qui adhère à ces fibres, les fibres d'une même couche et la matrice associée ayant un volume noté Y, les fibres parallèles d'une même couche et la matrice associée ayant globalement un module d'élasticité dans la direction propre des fibres noté E, caractérisé en ce que les n couches de fibres respectent ensemble la relation suivante:
0,35 ≤ A ≤ 0,60 où A est égal à l'expression suivante:
Figure imgb0005
i étant l'indice de sommation sur les différentes couches de fibres.
2. Tube selon la revendication 1, caractérisé en ce que 0,40 ≤ A < 0,55.
3. Tube selon la revendication 1, caractérisé en ce que 0,43 < A < 0,52.
4. Tube selon l'une des revendications 1 à 3, caractèrisé en ce que les fibres de renfort d'au moins une couche sont des fibres comportant du verre, du carbone ou de l'aramide.
5. Tube selon l'une des revendications 1 à 4, comportant au moins deux couches, caractérisé en ce que l'une desdites couches comporte des fibres enroulées sous un angle faible par rapport à l'axe du tube et l'autre comporte des fibres enroulées sous un angle élevé par rapport à l'axe du tube et en ce que le module d'élasticité globale' dans la direction propre des fibres, de la couche à angle d'enroulement faible est supérieur au module d'élasticité globale, dans la direction propre des fibres, de la couche à angle d'enroulement élevé.
6. Tube selon l'une des revendications 1 à 5, comportant au moins deux couches, caractérisé en ce que l'une desdites couches comporte des fibres enroulées sous un angle compris entre 55° et 90° et en ce que l'autre couche comporte des fibres enroulées sous un angle dont la valeur absolue est comprise entre 10° et 45°.
7. Tube selon la revendication 6, caractérisé en ce que ledit tube ne comporte que deux couches et en ce que la proportion globale de l'une des couches en volume par rapport à l'ensemble global des deux couches est compris entre 35 et 65%,.
8. Tube selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte une couche à angle d'enroulement sensiblement égal à 70°, par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de ces fibres étant voisin de la plage 50 000-56 000 MPa, en ce qu'il comporte une couche à angle d'enroulement sensiblement égal à 26° par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de cette couche orientées à 26° étant voisin de 140 000 MPa, et en ce que les proportions de la couche à 70° et de la couche à 26° sont respectivement sensiblement égales à 55% et 45%, en volume.
9. Tube selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte une couche à angle d'enroulement sensiblement égal à 70°, par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de ces fibres étant voisin de la plage 50 000-56 000 MPa, en ce qu'il comporte une couche à angle d'enroulement sensiblement égal à 30° par rapport à l'axe du tube, le module d'élasticité globale dans la direction propre de cette couche orientée à 30° étant voisin de 100 000 MPa, et en ce que les proportions de la couche à 70° et de la couche à 30° sont respectivement sensiblement égales à 50% et 50% en volume.
10. Tube selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte au moins une couche ayant des fibres de renfort enroulées sous un angle sensiblement égal en valeur absolue à 38°, par rapport à l'axe du tube, et au moins une couche ayant des fibres de renfort enroulées sous un angle sensiblement égal en valeur absolue à 62°, par rapport à l'axe du tube, et en ce que les proportions globales en volume de la couche à 38° et de la couche à 62° par rapport à l'ensemble de ces deux couches sont respectivement sensiblement égales à 45% et 55%.
11. Utilisation du tube selon l'une des revendications 1 à 10 dans la constitution d'une colonne montante d'une plate forme de forage ou de production.
12. Utilisation du tube selon l'une des revendicaitons 1 à 10 en tant que tube de production ("tubing") à l'intérieur d'un puits à terre comme en mer, ou à l'intérieur d'une colonne montante ("riser") en mer.
EP89400473A 1988-02-29 1989-02-21 Tube en matériaux composites peu sensible à la variation d'allongement sous l'effet de la pression interne Expired - Lifetime EP0333532B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8802500 1988-02-29
FR8802500A FR2627840B1 (fr) 1988-02-29 1988-02-29 Tube en materiaux composites peu sensible a la variation d'allongement sous l'effet de la pression interne

Publications (2)

Publication Number Publication Date
EP0333532A1 EP0333532A1 (fr) 1989-09-20
EP0333532B1 true EP0333532B1 (fr) 1991-02-06

Family

ID=9363746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400473A Expired - Lifetime EP0333532B1 (fr) 1988-02-29 1989-02-21 Tube en matériaux composites peu sensible à la variation d'allongement sous l'effet de la pression interne

Country Status (11)

Country Link
US (1) US5110644A (fr)
EP (1) EP0333532B1 (fr)
JP (1) JP2709500B2 (fr)
CA (1) CA1320455C (fr)
DE (1) DE68900034D1 (fr)
DK (1) DK170580B1 (fr)
ES (1) ES2022753B3 (fr)
FR (1) FR2627840B1 (fr)
GR (1) GR3001837T3 (fr)
IN (1) IN171732B (fr)
NO (1) NO176529C (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376455B2 (ja) * 1990-06-14 2003-02-10 ファイバー スパー インコーポレイテッド 大きな曲げ強さを持つ複合構造部材
FR2678703B1 (fr) * 1991-07-01 1994-07-01 Inst Francais Du Petrole Procede de fabrication d'une ligne a raideur variable et element associe.
DE69207366T2 (de) * 1991-07-01 1996-05-15 Aerospatiale, Paris Verfahren zur herstellung einer leitung mit veränderlicher steifheit und damit verbundenes element
US5351752A (en) * 1992-06-30 1994-10-04 Exoko, Incorporated (Wood) Artificial lifting system
US5557982A (en) * 1992-09-21 1996-09-24 Klein Bicycle Corporation Composite bicycle handlebar
IT1264905B1 (it) * 1993-07-09 1996-10-17 Saipem Spa Metodo per posare condotte sottomarine in acque profonde
US6710600B1 (en) 1994-08-01 2004-03-23 Baker Hughes Incorporated Drillpipe structures to accommodate downhole testing
GB2295875B (en) * 1994-12-06 1999-04-21 Conoco Inc Spoolable composite tubular member
US5511619A (en) * 1994-12-07 1996-04-30 Jackson; William E. Polymer liners in rod pumping wells
DE69604856T2 (de) * 1995-04-28 2000-04-13 The Yokohama Rubber Co., Ltd. Verstärkter Druckschlauch
US5727357A (en) * 1996-05-22 1998-03-17 Owens-Corning Fiberglas Technology, Inc. Composite reinforcement
US5731527A (en) * 1996-09-20 1998-03-24 Micro Motion, Inc. Coriolis flowmeters using fibers and anisotropic material to control selected vibrational flowmeter characteristics
GB9621235D0 (en) * 1996-10-11 1996-11-27 Head Philip Conduit in coiled tubing system
JP3296328B2 (ja) * 1999-05-11 2002-06-24 株式会社豊田自動織機 繊維強化プラスチック製パイプ
FR2799789B1 (fr) 1999-09-24 2002-02-01 Inst Francais Du Petrole Element de riser avec conduites auxiliaires integres
UA37756C2 (en) * 2000-04-11 2005-06-15 Tsev Volodymyr Hryhorovy Danil Structural layer of pipe made of composite material
KR100402973B1 (ko) * 2000-12-01 2003-10-22 (주)애드컴텍 섬유강화 복합재료 파이프 및 그 제조방법
FR2824124B1 (fr) * 2001-04-27 2003-09-19 Inst Francais Du Petrole Tube en materiau composite comportant une carcasse interne
FR2828121B1 (fr) * 2001-08-01 2003-10-24 Inst Francais Du Petrole Methode de dimensionnement d'un tube frette
FR2837899B1 (fr) * 2002-03-28 2004-07-30 Coflexip Dispositif pour limiter le flambage lateral des nappes d'armures d'une conduite flexible
US7402981B2 (en) * 2003-07-02 2008-07-22 Sigmatel, Inc. Method and apparatus to perform battery charging using a DC-DC converter circuit
US20050067037A1 (en) * 2003-09-30 2005-03-31 Conocophillips Company Collapse resistant composite riser
US20070051418A1 (en) * 2005-09-02 2007-03-08 Rowles Brian A Multilayer tubes
KR100783905B1 (ko) * 2006-08-18 2007-12-10 현대자동차주식회사 복합재료로 구성된 자동차용 하이브리드 드라이브샤프트
US8413396B2 (en) * 2009-08-11 2013-04-09 Wisconsin Alumni Research Foundation Splice system for connecting rebars in concrete assemblies
US8607868B2 (en) * 2009-08-14 2013-12-17 Schlumberger Technology Corporation Composite micro-coil for downhole chemical delivery
CA2834810A1 (fr) * 2011-05-10 2012-11-15 National Oilwell Varco Denmark I/S Tuyau souple sans collage
CN103085411B (zh) * 2013-01-25 2015-05-20 合肥海银杆塔有限公司 一种复合材料管道及其制备方法与应用
CN103912154A (zh) * 2014-04-12 2014-07-09 北京大唐恒通机械输送技术有限公司 一种阻燃防腐玻璃钢结构烟囱材料
CN107009648B (zh) * 2016-09-30 2017-12-15 席小平 一种多层耐磨擦碳纤维连续抽油杆的制备装置
CN106523801A (zh) * 2016-10-19 2017-03-22 安徽杰蓝特新材料有限公司 一种玻纤增强聚乙烯给水管
CN106761441B (zh) * 2016-12-16 2018-04-03 席小平 一种抗剪耐磨防劈裂的碳纤维连续抽油杆
EP3608092B1 (fr) 2018-08-10 2023-06-28 Crompton Technology Group Limited Connecteur composite et son procédé de fabrication
EP3608091A1 (fr) 2018-08-10 2020-02-12 Crompton Technology Group Limited Connecteur composite et son procédé de fabrication
EP3608094B1 (fr) * 2018-08-10 2024-09-25 Crompton Technology Group Limited Connecteur composite et son procédé de fabrication
EP3608095A1 (fr) 2018-08-10 2020-02-12 Crompton Technology Group Limited Connecteurs composites et leurs procédés de fabrication
EP3608089B1 (fr) 2018-08-10 2022-10-12 Crompton Technology Group Limited Connecteur composite et son procédé de fabrication
EP3608093B1 (fr) 2018-08-10 2024-04-17 Crompton Technology Group Limited Connecteur composite et son procédé de fabrication
CN110778805A (zh) * 2019-08-01 2020-02-11 安徽万安环境科技股份有限公司 一种非金属固化复合管及生产方法
EP3805623B1 (fr) 2019-10-07 2023-11-29 Crompton Technology Group Limited Tuyaux composites en polymère renforcé de fibres et procédé de fabrication
CN111550612B (zh) * 2020-05-11 2022-02-08 福建路通管业科技股份有限公司 一种抗冲击耐应变腐蚀连续缠绕玻璃钢复合管道及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212582A (en) * 1959-02-09 1965-10-19 Kenard D Brown Plastic drill pipes and sucker rods for oil wells
US3234723A (en) * 1959-08-03 1966-02-15 Kenard D Brown Elongated tension load carrying element for oil wells and the like
US3220437A (en) * 1963-03-28 1965-11-30 Zapata Lining Corp Blast coating and method of applying the same to tubing
US3481369A (en) * 1967-06-16 1969-12-02 Ganahl Carl De Reinforced plastic pipe
DE2135377C3 (de) * 1971-07-15 1975-04-24 Orszagos Gumiipari Vallalat, Budapest Hochdruckgummischlauch
DE2217311A1 (de) * 1972-04-11 1973-10-25 Continental Gummi Werke Ag Biegsamer schlauch
FR2229912A2 (en) * 1973-05-16 1974-12-13 Inst Francais Du Petrole Flexible tube with spiral reinforcements - of shaped sections in special arrangement and material for max bending strength
JPS5021065A (fr) * 1973-06-25 1975-03-06
US4024913A (en) * 1974-03-25 1977-05-24 Grable Donovan B Well installations employing non-metallic lines, tubing casing and machinery
US4023801A (en) * 1974-09-24 1977-05-17 Exxon Research And Engineering Company Golf shaft and method of making same
GB1531732A (en) * 1975-06-06 1978-11-08 Goodyear Tire & Rubber Hose structure
DE2626217C2 (de) * 1976-06-11 1978-08-10 Phoenix Gummiwerke Ag, 2100 Hamburg Fadengelege für Schläuche
JPS5398289A (en) * 1977-02-03 1978-08-28 Dainippon Ink & Chemicals Method for producing angling rods
US4173670A (en) * 1977-05-27 1979-11-06 Exxon Research & Engineering Co. Composite tubular elements
JPS5440329A (en) * 1977-09-06 1979-03-29 Kakuichi Seisakushiyo Kk Foldable flat synthetic resin tube with fiber reinforcement embedded
US4308917A (en) * 1978-01-09 1982-01-05 Dismukes Newton B Buoyant tubulars and method for installing same in a well bore
ES241999Y (es) * 1978-03-14 1979-12-16 Una tuberia para transportar petroleo crudo.
US4171626A (en) * 1978-03-27 1979-10-23 Celanese Corporation Carbon fiber reinforced composite drive shaft
EP0009007B1 (fr) * 1978-09-07 1982-06-23 Ciba-Geigy Ag Procédé de fabrication d'un tube en résine armée de fibres et tube fabriqué d'après ce procédé
DE3041452C2 (de) * 1979-04-02 1986-07-03 Institut matematiki i mechaniki Akademii Nauk Azerbajd&zcaron;anskoj SSR, Baku Schlauch
SU941768A1 (ru) * 1979-04-02 1982-07-07 Институт Математики И Механики Ан Азсср Гибкий шланг
US4214932A (en) * 1979-05-17 1980-07-29 Exxon Research & Engineering Co. Method for making composite tubular elements
US4622254A (en) * 1981-08-31 1986-11-11 Toray Industries, Inc. Fiber material for reinforcing plastics
GB2133499B (en) * 1982-11-16 1985-10-09 Honda Motor Co Ltd Shafts incorporating fibre-reinforced plastics
US4555113A (en) * 1983-04-06 1985-11-26 Komei Shibata Shaft and a method for producing the same
FR2546473B1 (fr) * 1983-05-24 1987-12-11 Verre Tisse Sa Materiau tubulaire a base d'une resine renforcee par une matiere textile et cadre de bicyclette ou vehicule similaire realise a partir d'un tel materiau
DE3408251A1 (de) * 1984-03-07 1985-09-12 Phoenix Ag, 2100 Hamburg Schlauch aus gummi oder gummiaehnlichem werkstoff
US4621980A (en) * 1984-09-19 1986-11-11 United Technologies Corporation Fiber reinforced composite spar for a rotary wing aircraft
JPS621812A (ja) * 1985-06-26 1987-01-07 Nippon Steel Corp 溶鋼の二次精錬法
US4649963A (en) * 1986-01-31 1987-03-17 Flow Industries, Inc. Ultra-high pressure hose assembly
DE3744349A1 (de) * 1987-12-28 1989-07-06 Stamicarbon Verbundkoerper zum absorbieren von energie

Also Published As

Publication number Publication date
NO176529B (no) 1995-01-09
GR3001837T3 (en) 1992-11-23
IN171732B (fr) 1992-12-26
US5110644A (en) 1992-05-05
DE68900034D1 (de) 1991-03-14
JPH0276989A (ja) 1990-03-16
NO890798L (no) 1989-08-30
ES2022753B3 (es) 1991-12-01
FR2627840B1 (fr) 1990-10-26
DK95089A (da) 1989-08-30
FR2627840A1 (fr) 1989-09-01
DK170580B1 (da) 1995-10-30
EP0333532A1 (fr) 1989-09-20
NO176529C (no) 1995-04-19
DK95089D0 (da) 1989-02-28
JP2709500B2 (ja) 1998-02-04
NO890798D0 (no) 1989-02-24
CA1320455C (fr) 1993-07-20

Similar Documents

Publication Publication Date Title
EP0333532B1 (fr) Tube en matériaux composites peu sensible à la variation d&#39;allongement sous l&#39;effet de la pression interne
EP0331571B1 (fr) Tube comportant des couches composites à module d&#39;élasticité différent
EP0937932B1 (fr) Conduite flexible pour colonne montante dans une exploitation pétrolière en mer
EP0937933B1 (fr) Conduite flexible pour grande profondeur
EP1104527B1 (fr) Conduite flexible resistante a fluage limite de la gaine d&#39;etancheite
CA2519181C (fr) Conduite tubulaire flexible pour le transport d`un fluide
FR3064711A1 (fr) Conduite flexible avec nappes d&#39;armures metalliques et nappes d&#39;armures composites
EP2329175B1 (fr) Installation de conduite montante flexible de transport d&#39;hydrocarbures pour grande profondeur
WO2003083343A1 (fr) Dispositif pour limiter le flambage lateral des nappes d&#39;armures d&#39;une conduite flexible
WO2006030012A1 (fr) Dispositif d&#39;etancheite servant a obturer un puits ou une canalisation
FR2766869A1 (fr) Dispositif de transfert de fluide entre un equipement de fond sous-marin et une unite de surface
EP0474851A1 (fr) Conduite tubulaire flexible de man uvre, dispositif et procede utilisant une telle conduite.
WO2003056225A1 (fr) Conduite flexible aplatissable
EP3004709B1 (fr) Conduite flexible de transport de fluide, utilisation et procédé associés
WO2005008117A1 (fr) Conduite flexible non liee destinee a la realisation de flexible dynamique de transport de fluide sous pression, et notamment flexible d’injection de boue pour forage petrolier rotatif
EP2148974B1 (fr) Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l&#39;extremite superieure d&#39;une conduite rigide en subsurface
EP0287442B1 (fr) Tube en acier précontraint, notamment pour la réalisation de lignes d&#39;ancrage de plates-formes de production du type à lignes tendues, procédé de manutention et de mise en place d&#39;un tel tube, et plate-forme comprenant un tel tube
EP1154184A1 (fr) Conduite fléxible à enroulement de fil ou de bande pour le maintien des armures
FR2857690A1 (fr) Systeme de forage en mer comprenant une colonne montante haute pression
FR2678703A1 (fr) Procede de fabrication d&#39;une ligne a raideur variable et element associe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB GR IT NL

17Q First examination report despatched

Effective date: 19900627

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB GR IT NL

REF Corresponds to:

Ref document number: 68900034

Country of ref document: DE

Date of ref document: 19910314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3001837

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19950116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950117

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950207

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960228

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19960228

Owner name: AEROSPATIALE

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3001837

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080310

Year of fee payment: 20

Ref country code: IT

Payment date: 20080221

Year of fee payment: 20

Ref country code: GB

Payment date: 20080219

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090220