EP0325702B1 - Mikrostreifenleiterantenne - Google Patents

Mikrostreifenleiterantenne Download PDF

Info

Publication number
EP0325702B1
EP0325702B1 EP88117440A EP88117440A EP0325702B1 EP 0325702 B1 EP0325702 B1 EP 0325702B1 EP 88117440 A EP88117440 A EP 88117440A EP 88117440 A EP88117440 A EP 88117440A EP 0325702 B1 EP0325702 B1 EP 0325702B1
Authority
EP
European Patent Office
Prior art keywords
base plate
substrate
radiation elements
depressions
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117440A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0325702A1 (de
Inventor
Rudolf Dr.-Ing. Zahn
Christian Dipl.-Ing. Borgwardt
Werner Dr.-Ing. Scherber
Dr.-Ing. Chung-Chi-Lin
Joachim Dr.-Ing. Boukamp
Hans Wolfgang Dr. rer. nat. Schröder
Günter Dr.-Ing. Helwig
Albert Dipl.-Ing. Braig
Oswald Dipl.-Ing. Bender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0325702A1 publication Critical patent/EP0325702A1/de
Application granted granted Critical
Publication of EP0325702B1 publication Critical patent/EP0325702B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas

Definitions

  • the invention relates to two microstrip antennas, which are intended in particular for aerospace applications.
  • Microstrip antennas have advantageous properties - such as a flat structure, inexpensive and precise manufacture of the radiator geometry using lithographic processes, possible implementation of the food network for group antennas on the same substrate - which make this antenna shape appear attractive for group antennas.
  • the small distance between the radiator and the conductive base plate in the conventional design has a negative effect on the radiator efficiency and the permissible dimensional and material tolerances.
  • An increase in the distance by using a thicker substrate material has the disadvantage of an increased weight.
  • the proportion of the power carried in surface waves increases with increasing thickness of the substrate material, which in turn reduces the efficiency and worsens the radiation pattern.
  • a thick, low density substrate or a multilayer, thick substrate is used using air or vacuum or a low density material such as e.g. Foam or honeycomb material is used, so the surface wave proportion is lower.
  • a low density material such as e.g. Foam or honeycomb material
  • Foam or honeycomb material is used, so the surface wave proportion is lower.
  • the feed-in of the electrical power is problematic due to the large distance between the radiator level and the base plate and leads to further undesired radiation.
  • the exact maintenance of the distance between the radiator level and the base plate requires a support structure, in particular when the substrate is assembled using air or vacuum.
  • active antennas in particular for aerospace antennas, good thermal conductivity from the transmitter / receiver modules arranged on the base plate to the antenna front is also required. This is not the case with substrates of low density, especially not if the substrate contains a vacuum area.
  • the object of the invention is - based on the generic arrangements - to further develop them in such a way that the antenna arrangements are suitable for space travel applications and stability and low weight are ensured.
  • the devices according to the invention have a high efficiency, a high bandwidth and a high tolerance insensitivity.
  • the feed line system remains largely radiation-free due to the higher capacitive coupling to the base plate.
  • the surface wave excitation is not reinforced.
  • the weight of the antenna remains low. Adequate thermal conductivity perpendicular to the antenna surface is given, since the antenna - except under the radiator elements - can be made very thin.
  • the greater the distance between the radiator and the base plate compared to the substrate thickness is only important under the radiators. This increase in distance can be achieved by deforming the base plate (tub structure) or the substrate (mesa structure). The resulting space between the substrate and base plate is filled with a foam material for mechanical stiffening.
  • the invention makes it possible to meet the opposing requirements for high efficiency and wide bandwidth of the radiator elements on the one hand - namely a large distance between the radiator and the base plate with a low dielectric constant - and for freedom from radiation (low stripline losses) and easy coupling of the feed lines to the power supply on the other hand - namely low substrate thickness medium to high dielectric constant - to combine on a substrate.
  • the weight remains low and heat conduction from the base plate to the radiator level is guaranteed. Due to the elevations or depressions, the antenna is light and yet mechanically stable.
  • the impedance is preferably adjusted where the distance between the top line and the base plate is changed (ie at e).
  • the fact that the matching lines and the feed line network are arranged in a preferred embodiment on the top of the substrate has the advantage that the production can be carried out in one operation. Because no transitions are required, the accuracy and the reproducibility of the production of the feed lines can be as great as in the production of the radiators (c).
  • the top of the substrate is coated with thermal paint in order to improve the radiation of heat or to minimize heat absorption by the sun or albedo.
  • the surface is highly electrically conductive or can be made highly conductive by a (metal) coating.
  • Carbon fiber reinforced plastic is well suited because this material has a very low coefficient of thermal expansion.
  • the base plate can also consist of a plastic (for example a fluorocarbon such as Teflon), which is coated with a highly conductive, resistant and well-adhering layer.
  • a plastic for example a fluorocarbon such as Teflon
  • Teflon a fluorocarbon
  • the metals chromium (Cr), copper (Cu), titanium (Ti), palladium (Pd) and gold (Au) are suitable.
  • reinforced or unreinforced plastics in particular thermoplastics, are suitable as material for the substrate b.
  • These materials have sufficiently low dielectric losses. Examples include all materials that are used for the production of high-quality radomes and printed circuit boards for microwave technology. From an electrical point of view, reinforced and unreinforced materials based on fluorocarbons such as PTFE, FEP or PFA and on the basis of polyethylene are particularly suitable.
  • a particularly suitable material for the substrate is polyethylene fiber reinforced polyethylene. With this material very low thermal expansion coefficients can be realized. In addition to its function as a dielectric, this material can also perform supporting functions.
  • the substrate b consists of a 1 mm thick plate made of polyethylene fiber reinforced polyethylene and the basic structure made of carbon fiber reinforced epoxy resin.
  • the elevations or depressions can be produced by thermomechanical forming of plates.
  • a 1.5 mm thick sheet of glass microfiber reinforced PTFE available under the trade name RT / Duroid 5780, RT / Duroid is a registered trademark of Rogers Corporation, Arizona, USA
  • RT / Duroid is a registered trademark of Rogers Corporation, Arizona, USA
  • shape of the substrate b or of the basic structure can be produced by mechanical processing (for example by milling).
  • the optically structured foils can be applied before or after the deformation of the Teflon substrate.
  • a dip coating with photoresist can also be used, with the dip coating being used to lift off the remaining Flat in acetone.
  • the radiator elements can also be coupled in that the feed line is not guided on the substrate, but in each case in the substrate to below the respective radiator element and the relative dielectric constant of the substrate material between the feed line and the radiator is locally increased.
  • Both figures each show a section of a group antenna with the base plates a, the electrically insulating substrate b and radiator elements c. Also drawn are the feed lines d and widening transition regions e which electrically connect the feed lines d to the radiator elements c.
  • the elevations or depressions can be, for example, between 0.5 and 10 mm high (deep).
  • Figure 1 shows the embodiment with a mesa-shaped increase in the substrate b.
  • Figure 2 shows the version with a trough-shaped depression of the base plate a.
EP88117440A 1987-11-13 1988-10-19 Mikrostreifenleiterantenne Expired - Lifetime EP0325702B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3738513 1987-11-13
DE19873738513 DE3738513A1 (de) 1987-11-13 1987-11-13 Mikrostreifenleiterantenne

Publications (2)

Publication Number Publication Date
EP0325702A1 EP0325702A1 (de) 1989-08-02
EP0325702B1 true EP0325702B1 (de) 1993-09-08

Family

ID=6340391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117440A Expired - Lifetime EP0325702B1 (de) 1987-11-13 1988-10-19 Mikrostreifenleiterantenne

Country Status (4)

Country Link
US (1) US5061938A (ja)
EP (1) EP0325702B1 (ja)
JP (1) JP2774116B2 (ja)
DE (2) DE3738513A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914445A (en) * 1988-12-23 1990-04-03 Shoemaker Kevin O Microstrip antennas and multiple radiator array antennas
US5200756A (en) * 1991-05-03 1993-04-06 Novatel Communications Ltd. Three dimensional microstrip patch antenna
US7429262B2 (en) 1992-01-07 2008-09-30 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
DE4240104A1 (de) * 1992-11-28 1994-06-01 Battelle Institut E V Vorrichtung zum Erwärmen/Trocknen mit Mikrowellen
US5316361A (en) * 1993-01-25 1994-05-31 Plasta Fiber Industries Corp. Expandable visor
FR2701168B1 (fr) * 1993-02-04 1995-04-07 Dassault Electronique Dispositif d'antenne microruban perfectionné notamment pour récepteur hyperfréquence.
DE69422327T2 (de) * 1993-04-23 2000-07-27 Murata Manufacturing Co Oberflächenmontierbare Antenneneinheit
US5442366A (en) * 1993-07-13 1995-08-15 Ball Corporation Raised patch antenna
FR2711845B1 (fr) * 1993-10-28 1995-11-24 France Telecom Antenne plane et procédé de réalisation d'une telle antenne.
US5468561A (en) * 1993-11-05 1995-11-21 Texas Instruments Incorporated Etching and patterning an amorphous copolymer made from tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole (TFE AF)
JP3185513B2 (ja) * 1994-02-07 2001-07-11 株式会社村田製作所 表面実装型アンテナ及びその実装方法
US5786792A (en) * 1994-06-13 1998-07-28 Northrop Grumman Corporation Antenna array panel structure
US5559521A (en) * 1994-12-08 1996-09-24 Lucent Technologies Inc. Antennas with means for blocking current in ground planes
US5767808A (en) * 1995-01-13 1998-06-16 Minnesota Mining And Manufacturing Company Microstrip patch antennas using very thin conductors
US5633646A (en) * 1995-12-11 1997-05-27 Cal Corporation Mini-cap radiating element
DE19603803C2 (de) * 1996-02-02 2001-05-17 Niels Koch Quad-Antenne, auf einem isolierenden Material und Verfahren zu deren Fertigung
US5694136A (en) * 1996-03-13 1997-12-02 Trimble Navigation Antenna with R-card ground plane
DE19614068A1 (de) * 1996-04-09 1997-10-16 Fuba Automotive Gmbh Flachantenne
US6151480A (en) * 1997-06-27 2000-11-21 Adc Telecommunications, Inc. System and method for distributing RF signals over power lines within a substantially closed environment
US5986615A (en) * 1997-09-19 1999-11-16 Trimble Navigation Limited Antenna with ground plane having cutouts
US6643989B1 (en) * 1999-02-23 2003-11-11 Renke Bienert Electric flush-mounted installation unit with an antenna
US6879290B1 (en) * 2000-12-26 2005-04-12 France Telecom Compact printed “patch” antenna
FI113589B (fi) * 2001-01-25 2004-05-14 Pj Microwave Oy Mikroaaltoantennijärjestely
TW512558B (en) * 2002-01-16 2002-12-01 Accton Technology Corp Surface-mountable dual-band monopole antenna for WLAN application
DE10356395A1 (de) * 2003-12-03 2005-09-15 Eads Deutschland Gmbh Außenstruktur-konforme Antenne in einer Trägerstruktur eines Fahrzeugs
US7704249B2 (en) * 2004-05-07 2010-04-27 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
WO2006012584A1 (en) * 2004-07-23 2006-02-02 Meadwestvaco Corporation Microstrip patch antenna apparatus and method
DE102005050204A1 (de) * 2005-10-20 2007-04-26 Eads Deutschland Gmbh Verfahren zur Herstellung einer strukturintegrierten Antenne
US8164528B2 (en) * 2008-03-26 2012-04-24 Dockon Ag Self-contained counterpoise compound loop antenna
GB0805393D0 (en) * 2008-03-26 2008-04-30 Dockon Ltd Improvements in and relating to antennas
US8462061B2 (en) * 2008-03-26 2013-06-11 Dockon Ag Printed compound loop antenna
JP5916019B2 (ja) 2010-02-11 2016-05-11 ドックオン エージー 複合ループアンテナ
US8164532B1 (en) 2011-01-18 2012-04-24 Dockon Ag Circular polarized compound loop antenna
EP2732549A4 (en) 2011-07-11 2015-03-18 Rockstar Consortium Us Ip AMPLIFIER LINEARIZATION WITH NON-STANDARD FEEDBACK
JP2014523717A (ja) * 2011-07-13 2014-09-11 ロックスター コンソーティアム ユーエス エルピー 広帯域変換器を用いた広帯域ドハティ増幅器
US8654023B2 (en) 2011-09-02 2014-02-18 Dockon Ag Multi-layered multi-band antenna with parasitic radiator
JP6214541B2 (ja) 2011-11-04 2017-10-18 ドックオン エージー 容量結合した複合ループアンテナ
FR3011685B1 (fr) * 2013-10-04 2016-03-11 Thales Comm & Security S A S Antenne boucle volumique compacte large bande
RU2583334C2 (ru) * 2014-09-16 2016-05-10 Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ
GB201615108D0 (en) * 2016-09-06 2016-10-19 Antenova Ltd De-tuning resistant antenna device
CN107364566B (zh) * 2017-06-28 2020-01-03 湖北航天技术研究院总体设计所 一种舱外可拆卸天线的防热天线口盖组合结构

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2711313A1 (de) * 1976-03-12 1977-10-06 Ball Corp Leichte hf-antenne
US4131894A (en) * 1977-04-15 1978-12-26 Ball Corporation High efficiency microstrip antenna structure
GB2046530B (en) * 1979-03-12 1983-04-20 Secr Defence Microstrip antenna structure
US4401988A (en) * 1981-08-28 1983-08-30 The United States Of America As Represented By The Secretary Of The Navy Coupled multilayer microstrip antenna
US4886535A (en) * 1982-05-14 1989-12-12 Owens-Corning Fiberglas Corporation Feeder for glass fibers and method of producing
US4477813A (en) * 1982-08-11 1984-10-16 Ball Corporation Microstrip antenna system having nonconductively coupled feedline
US4521781A (en) * 1983-04-12 1985-06-04 The United States Of America As Represented By The Secretary Of The Army Phase scanned microstrip array antenna
JPS59207703A (ja) * 1983-05-11 1984-11-24 Nippon Telegr & Teleph Corp <Ntt> マイクロストリツプアンテナ
JPS6183312U (ja) * 1984-11-05 1986-06-02
US4660048A (en) * 1984-12-18 1987-04-21 Texas Instruments Incorporated Microstrip patch antenna system
JPS6297409A (ja) * 1985-10-23 1987-05-06 Matsushita Electric Works Ltd 平面アンテナ
JPS62118609A (ja) * 1985-11-18 1987-05-30 Matsushita Electric Works Ltd 平面アンテナの製造方法
JPS63254806A (ja) * 1987-04-10 1988-10-21 Toshiba Corp マイクロストリツプアンテナ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEE PROCEEDINGS SECTION A - I, Band 132, Nr.7, Teil H, Dezember 1985, Seiten 455-460, Stevenage, Herts, GB; J.S.DAHELE et al.: "Theory and experiment on microstrip antennas with airgaps." *
IEEE TRANS. ON ANTENNAS AND PROPAGATION,Band AP-29, Nr.1, Januar 1981, Seiten 2-24, New York, US; K.R.CARVER et al.: "Microstrip Antenna Technology." *

Also Published As

Publication number Publication date
US5061938A (en) 1991-10-29
EP0325702A1 (de) 1989-08-02
DE3883960D1 (de) 1993-10-14
JPH01251805A (ja) 1989-10-06
JP2774116B2 (ja) 1998-07-09
DE3738513C2 (ja) 1991-04-11
DE3738513A1 (de) 1989-06-01

Similar Documents

Publication Publication Date Title
EP0325702B1 (de) Mikrostreifenleiterantenne
US5268068A (en) High aspect ratio molybdenum composite mask method
DE3927181C2 (de) Spulenchip und Herstellungsverfahren für einen im hohen Maße miniaturisierten Spulenchip
US7578048B2 (en) Patterns of conductive objects on a substrate coated with inorganic compounds and method of producing thereof
DE69931334T2 (de) Flexibler Dünnfilmkondensator und Herstellungsverfahren
DE19645854A1 (de) Verfahren zur Herstellung von Leiterplatten
DE3200301A1 (de) Entspannung durch elektromagnetische strahlungseinwirkung fuer aus polysulfonen bestehende gegenstaende
EP0127689A1 (de) Verfahren zum Herstellen von gedruckten Schaltungen mit in das Isolierstoffsubstrat eingebetteten metallischen Leiterzugstrukturen
DE1925760A1 (de) Verfahren zum Herstellen gemusterter Metall-Duennfilme
DE2021264A1 (de) Verfahren fuer die Herstellung von diskreten RC-Anordnungen
DE60213057T2 (de) Befestigungsanordnung für Hochfrequenz-Halbleitervorrichtung und zugehöriges Herstellungsverfahren
EP2326154A1 (en) Process for fabricating a three dimensional molded feed structure
EP0257737A2 (en) Printed circuit precursor
EP1518275B1 (de) Verfahren zur herstellung eines bauelements mit hochfrequenztauglicher leiteranorndnung und entsprechendes bauelement
DE102007030414B4 (de) Verfahren zur Herstellung einer elektrisch leitfähigen Struktur
EP0483782A2 (de) Verfahren zur Herstellung metallischer Schichten auf Substraten
DE4432725C1 (de) Verfahren zur Herstellung eines dreidimensionalen Bauteils oder einer Bauteilgruppe
DD157989A3 (de) Verfahren zur strukturierten chemisch-reduktiven metallabscheidung
EP0354225B1 (de) Verfahren zur frequenzbandanpassung eines schwingkreises aus metall-kunststoff-metall-verbundfolie für eine identifikationsetikette
KR100256154B1 (ko) 인쇄회로기판
EP0474176A2 (de) Dünnfilm-Mehrlagenschaltung und Verfahren zur Herstellung von Dünnfilm-Mehrlagenschaltungen
EP1205005B1 (de) Streifenleitung für mikrowellenanwendungen
DE2821196C2 (de) Verfahren zur Herstellung eines Dünnschichtwiderstandes
DE102018119611A1 (de) Verfahren und Vorrichtung für semi-transparente Antennen- und Übertragungsleitungen
GB2123615A (en) Microstrip lines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19900321

17Q First examination report despatched

Effective date: 19920721

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930903

REF Corresponds to:

Ref document number: 3883960

Country of ref document: DE

Date of ref document: 19931014

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88117440.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021002

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019