RU2583334C2 - Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ - Google Patents

Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ Download PDF

Info

Publication number
RU2583334C2
RU2583334C2 RU2014137527/28A RU2014137527A RU2583334C2 RU 2583334 C2 RU2583334 C2 RU 2583334C2 RU 2014137527/28 A RU2014137527/28 A RU 2014137527/28A RU 2014137527 A RU2014137527 A RU 2014137527A RU 2583334 C2 RU2583334 C2 RU 2583334C2
Authority
RU
Russia
Prior art keywords
antenna
substrate
dielectric
radiator
antennas
Prior art date
Application number
RU2014137527/28A
Other languages
English (en)
Other versions
RU2014137527A (ru
Inventor
Владимир Семенович Бочаров
Александр Георгиевич Генералов
Эльчин Вахидович Гаджиев
Original Assignee
Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") filed Critical Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ")
Priority to RU2014137527/28A priority Critical patent/RU2583334C2/ru
Publication of RU2014137527A publication Critical patent/RU2014137527A/ru
Application granted granted Critical
Publication of RU2583334C2 publication Critical patent/RU2583334C2/ru

Links

Images

Abstract

Использование: изобретение относится к радиотехнике, а именно к микрополосковым антеннам метрового диапазона. Может быть использовано при изготовлении приемопередающих антенн различных радиотехнических систем, в частности для космических аппаратов. Сущность: способ заключается в том, что для создания антенны применяют плоскую металлизированную диэлектрическую подложку с излучателем на верхней плоскости и экраном на нижней. Излучатель накоротко замыкают на экран. В качестве подложки используют однослойный диэлектрик с постоянным волновым сопротивлением и определенными диэлектрическими характеристиками и толщиной. Устройство, реализующее этот способ, включает в себя металлизированную однослойную диэлектрическую подложку формы параллелепипеда с определенной толщиной, на одной плоской стороне которой выполнен излучатель, а на обратной - экран. Излучатель выполнен в виде четырехугольной металлической пластины, примыкающей парой смежных сторон к двум смежным краям подложки. Один торец диэлектрической подложки содержит короткозамыкатель в виде металлической стенки, соединяющей излучатель с экраном. Излучатель содержит точку запитки, местоположение которой подбирается экспериментально в процессе настройки антенны. Технический результат: создание бортовых микрополосковых антенн метрового диапазона с минимальными габаритами и высокими показателями по энергетическим характеристикам. 2 н. и 1 з.п. ф-лы, 4 ил.

Description

Назначение
Изобретение относится к радиотехнике, а именно к микрополосковым антеннам метрового диапазона. Может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, в частности на космических аппаратах.
Уровень техники
Микрополосковые антенны, изготовляемые по технологии интегральных схем, широко используются в различных радиоэлектронных системах. Данный тип антенн обеспечивает высокую повторяемость размеров, низкую стоимость, малые металлоемкость, габаритные размеры, массу. Микрополосковые антенны способны излучать энергию с линейной, круговой и эллиптической поляризацией, допускают удобные решения для обеспечения работы в двух- или многочастотных режимах и т.д. [Панченко Б.Α., Нефедов Е.И. Микрополосковые антенны. М.: Радио и связь. 1986. 144 с.].
При разработке бортовых антенн особое внимание уделяется размещению их на поверхности космического аппарата, что, в свою очередь, накладывает жесткие ограничение по массогабаритным показателям антенн [Бочаров B.C., Генералов А.Г., Гаджиев Э.В. Особенности бортовых антенно-фидерных устройств космических аппаратов. Материалы научно-технического семинара "Перспективы развития антенно-фидерных устройств летательных аппаратов". - Истра: ОАО "НИИЭМ". 2013. С. 55-58]. Особенно это важно при разработке бортовых антенн для использования в составе антенной системы малых космических аппаратов.
При создании микрополосковых антенн сантиметрового диапазона (от 0,1 м до 0,03 м) габариты таких антенн приемлемы для их применения в качестве бортовых антенн космических аппаратов (примерно от 0,03 м до 0,015 м), а величина диэлектрической проницаемости не вносит существенного влияния на изменение габаритов.
По-другому вопрос обстоит при создании микрополосковых антенн метрового диапазона (от 1 м до 10 м). Габариты антенн в этом диапазоне составляют примерно от 0,4 м до 2,5 м. Как известно, габариты малых космических аппаратов составляет примерно площадь в 1 м2 (1 м*1 м).
Поэтому применение микрополосковых антенн метрового диапазона с такими габаритами не приемлемо для их применения в качестве бортовых антенн малых космических аппаратов.
Габариты микрополосковой антенны рассчитываются по следующим формулам [Распространение радиоволн и антенно-фидерные устройства. Нефедов Е.И. - М.: Издательский центр «Академия», 2010. 320 с.]:
ширина излучателя w:
Figure 00000001
где c - скорость света; fp - резонансная частота излучения; ε - диэлектрическая проницаемость подложки;
длина излучателя L:
Figure 00000002
где εэфф - эффективная диэлектрическая проницаемость.
В свою очередь, эффективная диэлектрическая проницаемость определяется следующим соотношением:
Figure 00000003
где h - толщина подложки.
Габариты антенн зависит от нескольких параметров, меняя значения которых можно добиться уменьшения габаритных размеров. Так в работе [Петров А.С. Оценка характеристик миниатюрных печатных антенн. Антенны. 2013. Выпуск 3 (190). С. 22-29] описан способ укорочения антенн за счет увеличения диэлектрической проницаемости подложки. В работе [Чебышев В.В. Микрополосковые антенны в многослойных средах. - М.: Радиотехника, 2007, 160 с.] описан способ укорочения антенн за счет увеличения толщины и материала (а значит, коэффициента диэлектрической проницаемости) подложки.
Недостатком данных способов является то, что с увеличением значения диэлектрической проницаемости подложки растет добротность антенны, а, следовательно сужается полоса рабочих частот; а увеличение толщины антенны несет за собой конструктивные сложности размещения и увеличение массогабаритных показателей.
Другие способы описаны в работе [Бойко С.Н., Косякин С.В., Кухаренко А.С., Яскин Ю.С. Миниатюризация антенных модулей навигационной аппаратуры спутниковых навигационных систем. Антенны. 2013. Выпуск 12 (199) С. 38-43]. В частности предложено использование многосвязных структур и формирование в металлизации антенного элемента вырезов (щелей).
Недостатком данного способа является усложнение конструктива антенны и сложность ее изготовления.
Еще один способ, использующий продольную свертку топологии антенны для миниатюризации габаритов, описан в работе [Банков С.Е., Давыдов А.Г., Папилов К.Б. Малогабаритные печатные антенны круговой поляризации // Журнал радиоэлектроники. 2010. №8. С. 1-27].
Недостатком данного способа является сложность исполнения.
В качестве прототипа выбран способ создания миниатюрной антенны за счет использования многослойной структуры подложки (патент РФ на полезную модель №133655), которое предлагает применение не менее трех слоев диэлектрической подложки, причем все слои должны быть согласованы по волновому сопротивлению. Общая толщина слоев должна быть равной четверти длины волны излучения, а каждый слой выполнен с уменьшающимся от плоскости экрана к плоскости излучателя волновым сопротивлением. Этот способ обеспечивает работу антенны в широком диапазоне частот при габаритных размерах, меньших длины волны.
Недостатком данного способа является его сложность применения из-за многослойности структуры подложки и необходимости согласования волнового сопротивления между слоями.
Целью предлагаемого изобретения является упрощение способа создания миниатюрных микрополосковых антенн метрового диапазона.
Раскрытие изобретения
Для удобства анализа, перепишем приведенные выше формулы (1) и (2) через длину рабочей волны исходя из соотношения c=λ*f (где λ - длина волны):
Figure 00000004
Figure 00000005
При анализе формул (4) и (5) видно, что минимизация габаритов антенн возможна за счет увеличения значения диэлектрической проницаемости ε. В настоящий момент существует широкая линейка материалов (ФЛАН, ФАФ-4Д, брикор АА, поликор, стеклотекстолит фольгированный, СФВЧ и др.), которые можно использовать в качестве материала подложки микрополосковых антенн. Значение ε в пределах от 2,8 до 32.
Однако необходимо учитывать, что значительное увеличение значения диэлектрической проницаемости материала подложки значительно повышает концентрацию электрического поля ближней зоны антенны, что приводит к низкой интенсивности излучения из-за большого реактивного поля и узкой полосы пропускания, а это является существенным недостатком. Целесообразно использовать оптимальный диапазон значений ε от 8 до 16. Также необходимо учитывать тот факт, что немаловажную роль играет такой параметр материала подложки, как тангенс угла диэлектрических потерь tgδ. Этот параметр влияет на кпд антенны, и его оптимальное значение должно находиться в диапазоне (10-3…10-5).
Таким образом, учитывая вышесказанное, в качестве материала подложки микрополосковой антенны метрового диапазона целесообразно использовать металлизированный диэлектрик с диэлектрической проницаемостью ε (8…16) и тангенсом угла диэлектрических потерь tgδ (10-3…10-5).
При выборе толщины диэлектрика h нужно исходить из предъявляемых требований по электрическим и механическим параметрам к бортовым антенно-фидерным устройствам космических аппаратов. В данном случае оптимально использовать толщину антенны h в пределах (0,1-0,01) λ. С помощью данного варианта габариты антенн составят от 0,3 м до 2,3 м.
Но тем не менее из полученных результатов видно, что применение полуволновых микрополосковых антенн метрового диапазона также не приемлемо в качестве бортовых антенн малых космических аппаратов из-за полученных габаритов.
Поэтому предложен вариант построения закороченных микрополосковых антенн метрового диапазона, который позволяет разрабатывать четвертьволновые микрополосковые антенны метрового диапазона. Как известно [Воскресенский Д.И., Гостюхин В.Л., Максимов В.М., Пономарев Л.И. Антенны и устройство СВЧ / под редакцией Д.И. Воскресенского. Изд. 3-е. М.: Радиотехника. 2008], четвертьволновые антенны имеют меньшие габариты по сравнению с полуволновыми антеннами.
Учитывая вариант построения закороченных микрополосковых антенн, формулы (4) и (5) преобразуются:
Figure 00000006
Figure 00000007
Т.е. при сравнении формул (6) и (7) с формулами (4) и (5) очевидно, что линейные размеры закороченной четвертьволновой микрополосковой антенны примерно в два раза меньше, чем у полуволновой микрополосковой антенны.
Итак, предлагается способ миниатюризации микрополосковых антенн метрового диапазона, который заключается в создании четвертьволновой антенны с научно-экспериментально подобранными оптимальными электрическими характеристиками.
Сущность изобретения заключается в применении закорачивания излучателя в структуре микрополосковой полуволновой антенны метрового диапазона, создаваемой на базе металлизированного диэлектрика, для получения четвертьволновой антенны. При этом подбирают материал диэлектрической подложки с оптимальными характеристиками (диэлектрической проницаемостью ε и тангенсом угла диэлектрических потерь tgδ), а также толщину диэлектрика h.
Использование данного способа миниатюризации позволит создавать микрополосковые антенны с габаритами от 0,18 м до 1,1 м, а также обеспечит высокие показатели по энергетическим параметрам антенны (коэффициент стоячей волны, диаграмма направленности, коэффициент усиления, кпд, полоса пропускания и т.д.).
Предложенный способ позволит упростить миниатюризацию микрополосковых антенн метрового диапазона и уменьшить ее линейные габариты примерно в два раза.
Устройство, реализующее предлагаемый способ создания микрополосковых антенн метрового диапазона, может быть выполнено, например, в виде микрополосковой антенны, содержащей металлизированную диэлектрическую подложку в форме параллелепипеда, на верхней плоской стороне которой размещен плоский излучатель в форме металлического прямоугольника определенного размера (нижняя сторона подложки - полностью металлизирована). В конструкцию антенны введен короткозамыкатель, расположенный на одном торце подложки (другие торцы - свободны от металла). Точка запитки антенны (от внешнего коаксиального кабеля) расположена на излучателе в определенном месте, где выполнено отверстие в толще диэлектрической подложки для подвода кабеля или высокочастотного соединителя (разъема) снизу с последующим подсоединением к точке запитки на металлической поверхности излучателя.
Уменьшение габаритов антенны достигается благодаря использованию короткозамыкателя, выполненного в виде закорачивающей пластины на одном из торцов диэлектрической подложки, который позволяет создать вместо полуволновой микрополосковой антенны четвертьволновую микрополосковую антенну при сохранении заданных энергетических параметров. Место точки запитки антенны подбирается экспериментально в процессе настройки на резонансную (рабочую) частоту для обеспечения минимально возможного значения коэффициента стоячей волны на резонансной (рабочей) частоте антенны и широкой полосы рабочих частот с приемлемым значением коэффициента стоячей волны.
Перечень чертежей
Фиг. 1. 3-D модель микрополосковой антенны метрового диапазона.
Фиг. 2. График зависимости коэффициента стоячей волны 3-D модели микрополосковой антенны метрового диапазона.
Фиг. 3. График зависимости диаграммы направленности 3-D имикрополосковой антенны метрового диапазона.
Фиг. 4 График зависимости коэффициента усиления 3-D модели микрополосковой антенны метрового диапазона.
Осуществление изобретения
Способ реализуется следующим образом. Берут металлизированный диэлектрик, толщина которого подобрана с учетом соотношения h=(0,1…0,01)*λ, где λ - длина рабочей волны антенны. На одной плоской стороне диэлектрика с помощью печатных технологий, например методом фотолитографии, вытравливают излучатель в виде прямоугольника, касающегося одной пары смежных краев подложки, другую плоскую сторону не трогают. Торцы также вытравливают таким образом, что на одном из них остается металлический слой в виде металлической стенки, которая становится короткозамыкателем излучателя на нижний металлический слой подложки. В качестве диэлектрика используют СВЧ-материал с большим значением коэффициента диэлектрической проницаемости ε в переделах от 8 до 16 и тангенса угла диэлектрических потерь tgδ в пределах от 10-3 до 10-5.
На фиг. 1 представлена конструктивная схема патентуемого устройства.
Микрополосковая антенна состоит из излучателя 1 прямоугольной формы, расположенного на металлизированной диэлектрической подложке 2, имеющей форму параллелепипеда. Короткозамыкатель 3 расположен на одном боковом торце антенны. Запитка антенны осуществляется с помощью коаксиального кабеля или высокочастотного соединителя в точке запитки 4. Место точки запитки 4 подбирается экспериментально. Фиг. 2. График зависимости коэффициента стоячей волны 3-D модели микрополосковой антенны метрового диапазона, где по оси абсцисс отложена частота в МГц, а по оси ординат значение коэффициента стоячей волны б/р. Как правило, к коэффициенту стоячей волны бортовых антенн космических аппаратов предъявляется требование, которое заключается в ограничении этого параметра не более 2. Как видно из представленного графика, что рабочей частотой модели антенны является 150 МГц, что соответствует метровому диапазону волн, а значение коэффициента стоячей волны на рабочей частоте 150 МГц составляет 1,1 и не превышает заданного предела, равного 2 в диапазоне частот (примерно ±2 МГц).
Фиг. 3. График зависимости диаграммы направленности 3-D модели микрополосковой антенны метрового диапазона, где по оси абсцисс отложено значение угла в градусах, а по оси ординат - значение напряженности поля Ε в дБ. Как правило, к диаграмме направленности бортовых антенн космических аппаратов предъявляется требование, которое заключается, в зависимости от целевой задачи антенной системы, в ее ширине. Как видно из представленного графика, диаграмма направленности имеет преимущественное направление на центр Земли (излучение вдоль оси абсцисс), а также обеспечивает излучение в пределах ±45°, т.е. достаточно широкое.
Фиг. 4 График зависимости коэффициента усиления 3-D модели микрополосковой антенны метрового диапазона, где по оси абсцисс отложены значение угла в градусах, а по оси ординат - значение коэффициента усиления в дБ. Как правило, к коэффициенту усиления бортовых антенн космических аппаратов предъявляется требование, которое заключается, в зависимости от целевой задачи антенной системы, в получении максимально возможного коэффициента усиления для обеспечения более качественной и уверенной передачи данных. Как видно из представленного графика, коэффициент усиления модели в направлении центра Земли составляет порядка 1,2 дБ (усиление вдоль оси абсцисс), а усиление в пределах ±45° составляет примерно 0,6 дБ, т.е. данная модель антенны обладает хорошим коэффициентом усиления.
Итак, способ создания микрополосковых антенн метрового диапазона с минимальными габаритами реализуется с помощью введения в конструкцию антенны короткозамыкателя, выполненного в виде закорачивающей стенки, и в применении в качестве материала подложки металлизированного диэлектрика с диэлектрической проницаемостью ε в переделах от 8 до 16 и тангенса угла диэлектрических потерь tgδ в пределах от 10-3 до 10-5 и толщиной (0,1…0,01)*λ.
С помощью системы автоматизированного проектирования Electromagnetic Professional (EMPro), для проектирования антенн и устройств СВЧ, было осуществлено электродинамическое моделирование модели микрополосковой антенны метрового диапазона с круговой поляризацией. Для моделирования были использованы следующие входные данные:
- материал диэлектрика - фольгированный арилокс листовой наполненный (ФЛАН);
- значение диэлектрической проницаемости ε б/р - 10;
- значение тангенса диэлектрических потерь tgδ б/р - 1,5 10-3;
- толщина подложки - 20 мм;
- запитка антенны осуществлялась с помощью штыря, который проходил через диэлектрик и соединялся с излучателем;
- метод моделирования - метод конечных элементов;
- габариты модели антенны - 220*165*20 мм.
Предлагаемый способ создания микрополосковых антенн метрового диапазона позволяет создать миниатюрную простую в исполнении антенну метрового диапазона с высокими показателями по энергетическим характеристикам.
Описание работы антенны
По внешнему коаксиальному кабелю происходит запитка антенны в точке запитки 4. Данное месторасположение точки запитки, подобранное экспериментальным путем, осуществляет возбуждение двух ортогональных вырожденных типов колебаний в одной точке. Излучение энергии излучателя 1, расположенного на диэлектрической подложке 2, в пространство осуществляется торцами антенны за исключением того торца, который закрыт металлической стенкой - короткозамыкателем 3.

Claims (3)

1. Способ создания микрополосковых антенн метрового диапазона, заключающийся в том, что в качестве материала антенны применяют плоскую металлизированную подложку с определенными диэлектрическими характеристиками, верхнюю плоскость которого используют для размещения излучателя определенной формы, а нижнюю - для экранирования, отличающийся тем, что излучатель накоротко замыкают на экран, а в качестве подложки используют однослойный диэлектрик с постоянным волновым сопротивлением и следующими характеристиками:
диэлектрическая проницаемость ε=8…16,
тангенс угла диэлектрических потерь tgδ=10-3…10-5,
толщина h=(0,1…0,01)λ, где λ - длина волны.
2. Устройство, реализующее способ создания микрополосковых антенн метрового диапазона, включающее в себя плоскую металлизированную диэлектрическую подложку в форме параллелепипеда определенной толщины, на одной плоской стороне которой выполнен излучатель, а на обратной - металлический экран, отличающееся тем, что излучатель выполнен в форме четырехугольной металлической пластины, примыкающей парой смежных сторон к двум смежным краям подложки, диэлектрическая подложка выполнена однослойной, один торец диэлектрической подложки содержит короткозамыкатель в виде металлической стенки, соединяющей излучатель с экраном, а излучатель содержит точку запитки, местоположение которой подбирается экспериментально в процессе настройки.
3. Устройство по п. 2, отличающееся тем, что в диэлектрической подложке выполнено сквозное отверстие в области точки запитки для обеспечения возможности соединения излучателя с внешним устройством.
RU2014137527/28A 2014-09-16 2014-09-16 Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ RU2583334C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014137527/28A RU2583334C2 (ru) 2014-09-16 2014-09-16 Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014137527/28A RU2583334C2 (ru) 2014-09-16 2014-09-16 Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ

Publications (2)

Publication Number Publication Date
RU2014137527A RU2014137527A (ru) 2016-04-10
RU2583334C2 true RU2583334C2 (ru) 2016-05-10

Family

ID=55647493

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014137527/28A RU2583334C2 (ru) 2014-09-16 2014-09-16 Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ

Country Status (1)

Country Link
RU (1) RU2583334C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061938A (en) * 1987-11-13 1991-10-29 Dornier System Gmbh Microstrip antenna
CN1719662A (zh) * 2005-06-08 2006-01-11 东南大学 介质基片集成单脉冲天线
RU68188U1 (ru) * 2007-05-18 2007-11-10 Московский государственный институт электроники и математики (технический университет) Микрополосковая антенна
US7541982B2 (en) * 2007-03-05 2009-06-02 Lockheed Martin Corporation Probe fed patch antenna
RU2008132402A (ru) * 2008-08-07 2010-02-20 Владимир Авенирович Кропотов (RU) Микрополосковая антенна
RU2475902C1 (ru) * 2011-12-06 2013-02-20 Открытое акционерное общество "Научно-исследовательский институт космического приборостроения" (ОАО "НИИ КП") Микрополосковая антенна

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061938A (en) * 1987-11-13 1991-10-29 Dornier System Gmbh Microstrip antenna
CN1719662A (zh) * 2005-06-08 2006-01-11 东南大学 介质基片集成单脉冲天线
US7541982B2 (en) * 2007-03-05 2009-06-02 Lockheed Martin Corporation Probe fed patch antenna
RU68188U1 (ru) * 2007-05-18 2007-11-10 Московский государственный институт электроники и математики (технический университет) Микрополосковая антенна
RU2008132402A (ru) * 2008-08-07 2010-02-20 Владимир Авенирович Кропотов (RU) Микрополосковая антенна
RU2475902C1 (ru) * 2011-12-06 2013-02-20 Открытое акционерное общество "Научно-исследовательский институт космического приборостроения" (ОАО "НИИ КП") Микрополосковая антенна

Also Published As

Publication number Publication date
RU2014137527A (ru) 2016-04-10

Similar Documents

Publication Publication Date Title
Wang et al. A wideband conformal end-fire antenna array mounted on a large conducting cylinder
JP2007081825A (ja) 漏れ波アンテナ
Haraz et al. New dense dielectric patch array antenna for future 5G short-range communications
Anand et al. Design of a high directivity slotted fractal antenna for C-band, X-band and Ku-band applications
Ortiz et al. Gain improvement of dual band antenna based on complementary rectangular split-ring resonator
Sravya et al. Gain enhancement of patch antenna using L-slotted mushroom EBG
Ulfah et al. Bandwidth enhancement of substrate integrated waveguide cavity-backed slot antenna
Jyothi et al. Comparative Analysis of Microstrip Coaxial Fed, Inset Fed and Edge Fed Antenna Operating at Fixed Frequency
Jegan Multi band microstrip patch antenna for satellite communication
RU2583334C2 (ru) Способ создания микрополосковых антенн метрового диапазона и устройство, реализующее этот способ
Gnanamurugan et al. Gain and directivity enhancement of rectangular microstrip patch antenna using HFSS
US20230010074A1 (en) Electromagnetic band-gap structure
De et al. Design of a SIW cavity backed dual Slot Antenna for Ku band applications
Suraj et al. Design and development of microstrip patch antenna at 2.4 GHz for wireless applications
Kanth et al. Study on glass-epoxy-based low-cost and compact tip-truncated triangular printed antenna
CN109950688B (zh) 微带型isgw圆极化缝隙行波天线
RU152427U1 (ru) Микрополосковая антенна метрового диапазона с круговой поляризацией
Rajak et al. Design and analysis of a bandwidth enhanced antenna based on metasurface for wireless applications
Markad et al. Design of cavity model microstrip patch antenna
Lakshmi et al. Gain and bandwidth enhancement of microstrip antenna array using double square split ring resonator FSS as a superstrate for WiMax/WiFi/WLAN applications
Dwivedi et al. Micro-strip antenna design for 5G sub 6 GHz and WI-Fi applications
Kaushal et al. Millimeter-wave Array Antennas Based on Liquid Crystal Polymer
Jaglan et al. Design and development of band notched UWB circular monopole antenna with uniplanar star shaped EBG structures
Mercy Bandwidth Enhancement Analysis of Rectangular Microstrip Patch Antenna for Various Substrates
Panerselvan et al. Integration design of 2.4 GHZ microstrip patch with SIW antenna structure