EP0316978A1 - Dispositif de moulage à porosité variable pour la fabrication de moules de fonderie en sable et son procédé de fabrication - Google Patents
Dispositif de moulage à porosité variable pour la fabrication de moules de fonderie en sable et son procédé de fabrication Download PDFInfo
- Publication number
- EP0316978A1 EP0316978A1 EP88202375A EP88202375A EP0316978A1 EP 0316978 A1 EP0316978 A1 EP 0316978A1 EP 88202375 A EP88202375 A EP 88202375A EP 88202375 A EP88202375 A EP 88202375A EP 0316978 A1 EP0316978 A1 EP 0316978A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- molding tool
- pore
- molding
- mold
- tool according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 27
- 239000004576 sand Substances 0.000 title abstract description 23
- 239000011148 porous material Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 34
- 238000005266 casting Methods 0.000 claims abstract description 13
- 239000003110 molding sand Substances 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims 2
- 230000008023 solidification Effects 0.000 claims 2
- 239000006260 foam Substances 0.000 claims 1
- 239000007769 metal material Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 10
- 238000007789 sealing Methods 0.000 description 8
- 239000012495 reaction gas Substances 0.000 description 7
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C5/00—Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
- B22C5/18—Plants for preparing mould materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
- B22C9/123—Gas-hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/06—Core boxes
Definitions
- the invention relates to a gas-permeable mold for producing casting and core molds from hardenable molding sand, as well as a method for its production and an advantageous use of such tools.
- Molds made from molding sand are widely used in the manufacture of cast metal parts. These are solid or bowl-shaped shapes that can only be used once.
- fine-grained molding sand is provided with hardenable binder additives, placed in a mold via a sand inlet opening and cured there.
- the curing takes place thermally - high energy expenditure - or more recently alternatively also by means of reaction gases which are pressed under pressure through the molding sand in the molding tool.
- the gas is pressed into the sand at the sand inlet opening and has to emerge from the mold through bores, nozzles or other channels and openings mechanically introduced into the mold wall.
- DE 30 02 939 describes a molding tool with a wall into which ribs and slots of different dimensions are mechanically introduced. The reaction gas entering the molding sand through an inlet is drawn off through the slots.
- the slots are sanding.
- the production is very expensive and does not allow the production of a really close-knit network of slots and bores.
- the reaction gas also flows through the sand only unevenly in this embodiment of a mold.
- reaction gas is consumed in excess, that is, in much larger amounts than required by the stoichiometry of the desired reaction.
- the object of the present invention is therefore to produce a mold with a wall which is homogeneously gas-permeable in the micro range.
- the methods and techniques described at the outset are thus ruled out.
- the object is to create, by means of a suitable combination of techniques known per se for the production of porous materials, a mold wall which has a suitable microporosity in its region adjacent to the molding sand and which overall has sufficient mechanical stability.
- the molding tools produced in this way are intended to permit the production of casting molds from molding sand in large numbers, in particular also as a non-massive, shell-shaped casting mold.
- the surface of the molding tool exposed to the molding sand must be particularly wear-resistant. Pore clogging by molding sand should no longer be a major cause of failure of the molding tool. Pores that may be blocked by molding sand have to regenerate with little effort, i. H. get exposed again.
- the object of creating a gas-permeable molding tool is achieved according to the invention in that the tool is made of heteroporous, open-pored material, the wall of the mold has a first, adjacent to the molding sand fine-pore layer area of 0.2 - 2 mm thickness, from 75 - 95% theoretical material density and pore diameter ⁇ 50 microns, on which a second, massive area in shape a large-pore supporting skeleton with ⁇ 80% theoretical material density and an average pore diameter> 100 ⁇ m.
- the molding tools include both casting and core forms, i. H. both molds for the production of solid and hollow cast parts.
- metallic and / or ceramic materials and / or plastics come into consideration as materials for the mold wall.
- Up to 60,000 sand molds can be produced in a single mold of known designs.
- the sand is filled into the mold at high speed and under high pressure.
- the wear requirements for the surface of the mold coming into contact with the molding sand are correspondingly high. This fact must be taken into account by the selection of the material for the fine-pored layer of the molding tool.
- Wear-resistant steel grades as well as wear-resistant ceramics as well as metallic and non-metallic hard materials e.g. As silicon nitride, boron nitride, titanium carbide, titanium nitride, silicon carbide.
- the heteroporous wall of the mold can be formed either by viscous, foamed and then solidified material or the wall is formed by means of powdered starting material to be solidified.
- the layer of the mold wall that comes into contact with the molding sand can be formed by isostatically pressing powder onto a gage mold corresponding to the casting.
- the powder, mixed with a volatile solvent, can be applied as a paste or sprayed onto the gauge.
- Galvanic processes and gas deposition processes (PVD processes) for forming such layers have also proven successful.
- the layer can be placed on the gauge shape in the form of a flexible metallic or ceramic film.
- the flexibility of such foils is given by volatile, highly flexible thermoplastic components in solid form during subsequent heat treatment. Otherwise, the foils consist of powdery metals, hard materials or ceramics.
- the gauge form covered with the layer material is then either foamed or, after embedding in a corresponding outer form, backfilled with coarse-grained powder material and preferably isostatically pressed.
- the finished composite body is produced by thermal or chemical curing, firing or sintering of the compacted composite materials.
- the open-pore support structure For the manufacture of the open-pore support structure, it has proven useful to first coat sand, glass or ceramic grains with a thin plastic layer by immersing them in appropriate dispersions or solutions. The granules pretreated in this way can be poured into a mold and / or pressed and then chemically or thermally cured.
- Molding tools according to the present invention have a number of advantages.
- the molding sand enclosed in the molding tool can be pressurized through the heteroporous wall when using the molding tools according to the invention.
- the gas pressure and time it is possible to effect curing of the enclosed molding sand only in an edge zone to a desired depth.
- An even finer dosage can be achieved by soaking the mold with a suitable liquid.
- a defined capillary pressure builds up in the fine pores of the tool wall, which releases the reaction gas only when this pressure is exceeded.
- the core of the enclosed sand remains free-flowing if the gas is dosed stoichiometrically and can be removed and reused after the edge zone has hardened through the sand inlet opening.
- An essential advantage of molding tools according to the present invention lies in the possibility of their surface facing the molding sand adjust the desired mold, but the back surface with a few flat surfaces, e.g. B. cuboid or cylindrical. Due to the gas loading of the molding sand through the porous wall of the molding tool, a fine gas layer regularly forms between the wall of the molding tool and the molding sand. This prevents the molding sand from sticking to the mold wall during the sand curing process. The sand mold easily detaches from the mold after the hardening process. Special measures against the gluing of molding sand and molding tool (spraying the molding tool wall, inserting a film), as are required in known tools and processes for the production of casting molds, can therefore generally be avoided.
- Figure 1 shows the design of a half-shell of a mold, in section, and devices for producing the mold according to a preferred method.
- 1 shows the model plate -1- with the gauge shape for the half-shell of a molding tool.
- the area of the model plate which gives off the sand inlet opening of the molding tool -1a- during later use is particularly marked.
- a sealing plate -2- lies on the model plate or is screwed or clamped to it. It has a central recess according to the geometric shape of the one to be manufactured Molding tool.
- the fine-pore layer area -3- of the mold adjoining the molding sand has a constant layer thickness over the entire surface area, with the exception of a narrow area at the separating surface of the two half-shells.
- the open-pore support skeleton -4- is materially adjacent to the fine-pore layer area of the molding tool.
- the external geometric shape of the mold is specified by a mold box -5- or mold frame screwed onto the model plate. Manufacturing variants are possible where the molding box is not completely filled with the material, but where an air space -6- remains between the supporting skeleton and the top of the molding box when filling in a flowable or spreadable material.
- a model plate with the gauge shape of one half of the cast part to be manufactured is first produced from a metallic and / or ceramic material or from plastic by customary methods. In the majority of cases, it is advisable for core and casting molds to produce the mold from two half-shells. After previously applying a release agent, a sealing plate, preferably made of steel or ceramic, is applied to the model plate and screwed to the model plate. The central recess in the sealing plate is to be dimensioned such that in the area of the separating surface of the two half-shells of the mold between the gauge surface (model plate) and the sealing plate there remains a gap at least as thick as the fine-pored layer area of the mold.
- the fine-pored layer of the molding tool is first applied to the gauge surface of the model plate - if necessary after applying a release agent on the gauge surface.
- a paste is spread or sprayed on.
- the paste consists of fine-grained, corrosion-resistant ceramic powder with an average grain size of 10 - 100 ⁇ m, which, to increase the surface wear resistance of the mold, has about 10 - 20% by volume titanium carbide powder (measured by the proportion of ceramic powder) same grain size are added.
- the powder is processed into a paste with a volatile or thermally evaporable binder. If appropriate, non-volatile metallic and / or non-metallic components and / or pore formers are added to the binder.
- the fine-pore layer is advantageously applied in several layers until the desired total layer thickness is reached.
- the layer application according to FIG. 1 also takes place over the edge of the sealing plate.
- the fine-pored layer applied in this way is dried or cured.
- a molding box or molding frame according to FIG. 1 is screwed onto the model plate or sealing plate and the material for forming the wall area is introduced into the molding box with an open-pore support skeleton.
- It is a coarse-grained ceramic powder to which volatile pore-forming materials have been added, such as are used, for example, in the production of porous ceramic filters.
- the ceramic powder is mixed with volatile binders to form a paste, which is then brushed into the molding box and cured there.
- the mold is then separated from the model plate and sintered or fired in high-temperature furnaces. In this way, wear-resistant, mountable mold half-shells with flat parting surfaces are obtained.
- the mold surface does not require any surface treatment.
- the area of the sand inlet opening of the mold is finally sealed with a pore filler, so that no reaction gas can pass through this area of the mold wall during later operation and the molding sand cannot harden in this area.
- the testing of molds produced in this way with a wall structure according to the invention has shown that a pressure difference of 1-2 bar can be built up at the boundary between coarse and fine-pored layers.
- the fluctuation range of the absolute gas pressure in front of the limit in the coarse-pored part of the wall in different sections of the mold wall or in different molds manufactured according to the same process is between 0.1 - 0.2 bar and is therefore largely independent of how thick the large-pored support skeleton of the mold wall is actually.
- the said jump of the Gas pressure at the boundary between the coarse and fine-pored layer occurs practically solely due to the structure of the fine-pored layer.
- This pressure jump can still be stabilized by impregnating the molding tool with a suitable sealing liquid, as a result of which a very homogeneous capillary pressure builds up in the pores of the fine-pored layer over the entire surface area of the molding tool.
- the production of a casting mold from hardenable molding sand using a molding tool according to the present invention then proceeds as follows. After the molding sand has been filled in, the molding tool is pressurized with reaction gas from the outside at a pressure of> 2 bar. This presses the liquid out of the capillaries of the fine-pored layer of the molding tool and reaches the molding sand or an edge zone of the sand mold with precisely metered gas pressure.
- the core area of the filled molding sand remains free-flowing. It can be removed and reused via the sand inlet after curing is complete. When the gas pressure drops below 2 bar, the barrier liquid is drawn back into the pores of the fine-pored layer by wicking. This means short production times for the individual sand molds as well as low susceptibility to faults and reject rates.
- a jig mold or model plate is produced for a half-shell of a molding tool. Similarly to Example 1, a sealing plate is clamped onto the model plate.
- the mold wall material for the fine-pored layer is placed on the gauge shape in the form of a flexible metallic foil.
- the separately manufactured metallic foil consists of a homogeneous mixture of corrosion-resistant steel particles with a grain size distribution of 10 - 100 ⁇ m, possibly enriched with a few volume percent wear-resistant titanium carbide particles of comparable grain size, possibly supplemented by powdered fillers and pore-forming materials as well as a thermoplastic that evaporates at higher temperatures Plastic.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Earth Drilling (AREA)
- Powder Metallurgy (AREA)
- Mold Materials And Core Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88202375T ATE71862T1 (de) | 1987-10-22 | 1988-10-20 | Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3735751 | 1987-10-22 | ||
DE19873735751 DE3735751A1 (de) | 1987-10-22 | 1987-10-22 | Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0316978A1 true EP0316978A1 (fr) | 1989-05-24 |
EP0316978B1 EP0316978B1 (fr) | 1992-01-22 |
Family
ID=6338850
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88908950A Pending EP0342209A1 (fr) | 1987-10-22 | 1988-10-20 | Outil heteroporeux de formage de moules de fonte en sable de moulage et son procede de fabrication |
EP88202375A Expired - Lifetime EP0316978B1 (fr) | 1987-10-22 | 1988-10-20 | Dispositif de moulage à porosité variable pour la fabrication de moules de fonderie en sable et son procédé de fabrication |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88908950A Pending EP0342209A1 (fr) | 1987-10-22 | 1988-10-20 | Outil heteroporeux de formage de moules de fonte en sable de moulage et son procede de fabrication |
Country Status (8)
Country | Link |
---|---|
US (1) | US5190094A (fr) |
EP (2) | EP0342209A1 (fr) |
JP (1) | JP2851293B2 (fr) |
KR (1) | KR890701245A (fr) |
AT (1) | ATE71862T1 (fr) |
DE (2) | DE3735751A1 (fr) |
ES (1) | ES2029000T3 (fr) |
WO (1) | WO1989003736A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT518323A1 (de) * | 2016-02-29 | 2017-09-15 | Wienerberger Ag | Pressform für Dachziegel |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6015518A (en) * | 1994-11-02 | 2000-01-18 | Unipor Ag | Method of making a device for conducting a fluid between a space bounded by a fixed surface and a duct |
US5686038A (en) * | 1995-06-06 | 1997-11-11 | The Boeing Company | Resin transfer molding of composite materials that emit volatiles during processing |
US5709893A (en) * | 1995-06-06 | 1998-01-20 | The Boeing Company | Breathable tooling for forming parts from volatile-emitting composite materials |
DE10326788B4 (de) * | 2003-06-13 | 2005-05-25 | Robert Bosch Gmbh | Kontaktoberflächen für elektrische Kontakte und Verfahren zur Herstellung |
US7416401B2 (en) * | 2005-06-13 | 2008-08-26 | The Boeing Company | Lightweight composite fairing bar and method for manufacturing the same |
DE102007001303B4 (de) * | 2007-01-02 | 2008-09-18 | Quadriga Gbmh | Verfahren zur Herstellung eines Füllkörpers für einen Kernkasten |
US8465607B1 (en) | 2008-09-18 | 2013-06-18 | The United States Of America As Represented By The Secretary Of The Navy | Higher-performance solid-rocket propellants and methods of utilizing them |
DE102017217096B3 (de) | 2016-12-06 | 2018-03-22 | Wolfram Bach | Werkzeugeinsatz, Form- oder Kernwerkzeug sowie Verfahren zur Herstellung von Formen oder Kernen |
DE202018106268U1 (de) | 2018-11-04 | 2018-11-28 | Wolfram Bach | Werkzeug zur Herstellung von Formen oder Kernen durch elektrische Widerstandserwärmung eines kunststoffbasierten Materials |
GB2600700B (en) * | 2020-11-04 | 2023-07-12 | Diageo Great Britain Ltd | A system and method for forming a moulded article |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1026049B (de) * | 1956-11-08 | 1958-03-13 | Heinz Eyckeler Dr Ing | Form, Kernkasten oder Modellplatte aus luftdurchlaessigem Material |
DE1070347B (fr) * | 1959-12-03 | |||
US3101514A (en) * | 1961-12-04 | 1963-08-27 | Int Harvester Co | Sintered powder metal mold |
GB1043174A (en) * | 1962-08-07 | 1966-09-21 | Gruenzweig & Hartmann | A core box and a method of producing the same |
DE2437328A1 (de) * | 1974-08-02 | 1976-02-12 | Buderus Eisenwerk | Giessereimodell |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1058226B (de) * | 1958-03-08 | 1959-05-27 | Rheinische Maschinenfabrik | Form zur Herstellung von Formlingen fuer Giessereizwecke |
US3550673A (en) * | 1968-06-10 | 1970-12-29 | Foundry Allied Ind Inc | Polyurethane mold articles |
DE2361820C3 (de) * | 1973-01-29 | 1975-07-03 | Eugen Dipl.-Ing. 8871 Burtenbach Buehler | Verfahren und Vorrichtung zum Weitertransportieren eines aus horizontal geteilten kastenlosen Gießformen gebildeten Formstranges längs einer GIeB- und Kühlstrecke |
JPS5414212A (en) * | 1977-07-02 | 1979-02-02 | Otani Moriyuki | Circular magnetic card |
JPS5852528B2 (ja) * | 1979-04-10 | 1983-11-24 | 葛城産業株式会社 | 金属の多孔質焼結板状体およびその製造法 |
US4473526A (en) * | 1980-01-23 | 1984-09-25 | Eugen Buhler | Method of manufacturing dry-pressed molded articles |
DE3002939A1 (de) * | 1980-01-28 | 1981-07-30 | Gottfried 6335 Lahnau Zimmermann | Duese zum entlueften, belueften oder bedampfen von formen |
US4291740A (en) * | 1980-05-28 | 1981-09-29 | Anatol Michelson | Apparatus and method for heatless production of hollow items, for instance, foundry shell cores |
DE3039394C2 (de) * | 1980-10-18 | 1987-04-02 | Heinrich Wagner Maschinenfabrik GmbH & Co, 5928 Laasphe | Unterdruckanschluß für vakuumverfestigte Gießformen |
JPS57142798A (en) * | 1981-02-26 | 1982-09-03 | Nippon Piston Ring Co Ltd | Powder molding method and molded article |
-
1987
- 1987-10-22 DE DE19873735751 patent/DE3735751A1/de active Granted
-
1988
- 1988-10-20 US US07/381,658 patent/US5190094A/en not_active Expired - Fee Related
- 1988-10-20 ES ES198888202375T patent/ES2029000T3/es not_active Expired - Lifetime
- 1988-10-20 JP JP63508283A patent/JP2851293B2/ja not_active Expired - Lifetime
- 1988-10-20 EP EP88908950A patent/EP0342209A1/fr active Pending
- 1988-10-20 DE DE8888202375T patent/DE3868014D1/de not_active Expired - Fee Related
- 1988-10-20 KR KR1019890701130A patent/KR890701245A/ko not_active Application Discontinuation
- 1988-10-20 AT AT88202375T patent/ATE71862T1/de not_active IP Right Cessation
- 1988-10-20 WO PCT/EP1988/000942 patent/WO1989003736A1/fr not_active Application Discontinuation
- 1988-10-20 EP EP88202375A patent/EP0316978B1/fr not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1070347B (fr) * | 1959-12-03 | |||
DE1026049B (de) * | 1956-11-08 | 1958-03-13 | Heinz Eyckeler Dr Ing | Form, Kernkasten oder Modellplatte aus luftdurchlaessigem Material |
US3101514A (en) * | 1961-12-04 | 1963-08-27 | Int Harvester Co | Sintered powder metal mold |
GB1043174A (en) * | 1962-08-07 | 1966-09-21 | Gruenzweig & Hartmann | A core box and a method of producing the same |
DE2437328A1 (de) * | 1974-08-02 | 1976-02-12 | Buderus Eisenwerk | Giessereimodell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT518323A1 (de) * | 2016-02-29 | 2017-09-15 | Wienerberger Ag | Pressform für Dachziegel |
AT518323B1 (de) * | 2016-02-29 | 2018-03-15 | Wienerberger Ag | Pressform für Dachziegel |
Also Published As
Publication number | Publication date |
---|---|
US5190094A (en) | 1993-03-02 |
WO1989003736A1 (fr) | 1989-05-05 |
EP0342209A1 (fr) | 1989-11-23 |
DE3868014D1 (de) | 1992-03-05 |
ES2029000T3 (es) | 1992-07-16 |
JPH02501721A (ja) | 1990-06-14 |
DE3735751A1 (de) | 1989-05-03 |
ATE71862T1 (de) | 1992-02-15 |
EP0316978B1 (fr) | 1992-01-22 |
JP2851293B2 (ja) | 1999-01-27 |
DE3735751C2 (fr) | 1989-08-31 |
KR890701245A (ko) | 1989-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69516863T2 (de) | Verfahren zum herstellen von pulver-vorformlingen und davon hergestellte schleifartikel | |
EP0309507B1 (fr) | Moule pour l'emboutissage de feuilles et pour la coulee de materiaux | |
EP0316978B1 (fr) | Dispositif de moulage à porosité variable pour la fabrication de moules de fonderie en sable et son procédé de fabrication | |
EP0554683A1 (fr) | Procédé pour changer la surface des produits coulés par imprégnation de poudre | |
EP0554682B1 (fr) | Procédé pour la fabrication des surfaces résistantes à l'abrasion | |
DE102010026139A1 (de) | Verfahren zum Herstellen eines Bauteils und derartiges Bauteil | |
DE2702602A1 (de) | Formwerkzeuge zum formen von formbaren materialien sowie verfahren zur herstellung solcher formwerkzeuge | |
DE102007003192A1 (de) | Keramischer und/oder pulvermetallurgischer Verbundformkörper und Verfahren zu ihrer Herstellung | |
WO2000053359A2 (fr) | Matiere pour la fabrication par couches d'outils, de formes ou de pieces par le frittage laser | |
DE19652223C2 (de) | Formkörper aus einem Werkstoffverbund, Verfahren zu seiner Herstellung und Verwendung | |
DE10034508A1 (de) | Verfahren zur Herstellung eines endkonturnahen Formgebungswerkzeug und danach hergestelltes Formgebungswerkzeug | |
WO1983002251A1 (fr) | Dispositif pour le moulage d'objets en ceramique, son procede de realisation et d'utilisation | |
WO2017157723A1 (fr) | Procédé de fabrication d'un régulateur thermique à changement d'état et régulateur thermique à changement d'état | |
DE2046721B2 (de) | Verfahren zum pulvermetallurgischen herstellen einer mehrteiligen form | |
EP0446664A1 (fr) | Procédé de préparation d'un élément de forme compliquée par mise en forme d'une ébauche dense à partir d'une poudre coulante | |
AT15102U1 (de) | Verfahren zum schichtweisen Herstellen eines dreidimensionalen Hartmetall Körpers | |
DE1944602A1 (de) | Gussform zum Herstellen von Formteilen aus schaeumbarem Kunststoff | |
EP0815989A2 (fr) | Méthode de production par coulage de disques de frein en alliages lègers localement renforcés par matière céramique | |
DE19918908A1 (de) | Kern für in Gußtechnik hergestellte Bauteile und Herstellverfahren dazu | |
DE19703175C2 (de) | Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen mit einer schraubenförmigen Außenkontur | |
DE3517494C2 (fr) | ||
DE19929761A1 (de) | Kern für in Gußtechnik hergestellte Bauteile und Herstellverfahren dazu | |
DE19703177C2 (de) | Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen | |
DE19508959C2 (de) | Formkörper aus keramischem, pulvermetallurgischem oder Verbundwerkstoff und Verfahren zu seiner Herstellung | |
AT403692B (de) | Verfahren zur herstellung von keramischen formkörpern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): ES |
|
17P | Request for examination filed |
Effective date: 19890310 |
|
XX | Miscellaneous (additional remarks) |
Free format text: VERBUNDEN MIT 88908950.4/0342209 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 25.03.91. |
|
17Q | First examination report despatched |
Effective date: 19910625 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 71862 Country of ref document: AT Date of ref document: 19920215 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3868014 Country of ref document: DE Date of ref document: 19920305 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2029000 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88202375.7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19981012 Year of fee payment: 11 Ref country code: FR Payment date: 19981012 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981014 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19981020 Year of fee payment: 11 Ref country code: AT Payment date: 19981020 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19981022 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19981027 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19981030 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991020 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19991030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991031 |
|
BERE | Be: lapsed |
Owner name: METALLWERK PLANSEE G.M.B.H. Effective date: 19991031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19991020 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88202375.7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20000501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20001113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051020 |