EP0312024A1 - Verfahren zur Herstellung von Metallfasergegenständen - Google Patents
Verfahren zur Herstellung von Metallfasergegenständen Download PDFInfo
- Publication number
- EP0312024A1 EP0312024A1 EP88116953A EP88116953A EP0312024A1 EP 0312024 A1 EP0312024 A1 EP 0312024A1 EP 88116953 A EP88116953 A EP 88116953A EP 88116953 A EP88116953 A EP 88116953A EP 0312024 A1 EP0312024 A1 EP 0312024A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plating
- fabric
- fibers
- metal
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06Q—DECORATING TEXTILES
- D06Q1/00—Decorating textiles
- D06Q1/04—Decorating textiles by metallising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
Definitions
- This invention relates to a method for preparing metal fiber articles used as electrodes, various filters, parabola antennas, and the like.
- foamed metal materials such as foamed nickel by plating a foamed resin body with nickel for instance, firing the plated foamed resin in the atmosphere and reducing the formed nickel oxide.
- This method is also complicated in the process steps and the products obtained is too hard to be used easily although the products are uniform.
- metal fiber articles are utilized because of their electric conductivity and high porosity (void fraction).
- the porosity is 95% at the highest in the product of JP-A56-35702, which is made by forming a nonwoven fabric of nickel fibers and sintering it with nickel powder. That of the nonwoven fabric of the nickel fibers made by vibration cutting is 91% and that of the foamed nickel is 93%.
- the metal fiber articles other than the foamed nickel exhibit obvious non-uniformity in the thickness of fibers and in the porosity.
- This invention is intended to solve the above-described problems, that is, the complexity of manufacturing process steps, non- uniformity in the product, difficulty of making articles having porosity of higher than 95%, lack of flexibility in the final products (hardness and brittleness) and to provide an improved process for a cadmium electrode with a nickel substrate.
- This invention provides a method for preparing metal fiber articles comprising forming a metal coating on a piece of an organic fiber fabric by plating and firing the thus coated fabric in a reducing gas atmosphere. Also, this invention provides a process for preparing a process for preparing a cadmium electrode with a nickel substrate.
- This process of the present invention is applicable to all metals that can be precipitated from an aqueous solution.
- Preferred are Cu, Ni, Ag and Co.
- fabric encompasses woven, nonwoven and knit fabrics.
- any of electroless plating, electrolytic plating and vapor deposition plating and any combination thereof can be employed.
- the plating step is started with the refining using a surfactant.
- the refined fabric is activated with a Sn/Pd catalyst system, whereafter it is immersed in an electroless plating solution containing a metal salt, a complexing agent, a reducing agent, etc.
- a metal salt e.g., sodium borohydride, dimethylamine, borane, sodium hypophosphite, hydrazine and derivatives thereof, formalin, etc.
- formalin is preferred in the case of Cu, and hydrazine and derivatives thereof are preferred in the case of Ni and Co.
- electrolytic plating is applied after the scouring and vapor deposition or electroless plating.
- electroless plating is employed after vapor deposition plating.
- Organic fibers consisting of elements C and H; C, H and O; or C, H, O and N are used. Organic fibers containing other elements are apt to char or leave ash.
- Typical fibers constituted of C and H are fibers of polyolefins such as polyethylene, polypropylene, etc.
- Typical fibers constituted of C and H are polyolefin fibers, those of C, H and O are rayon fibers, acetate fibers, polyvinyl alcohol fibers, polyester fibers, etc., and those of C, H, O and N is polyamide fibers and acrylonitrile fibers.
- a reducing gas hydrogen gas, ammonia gas, carbon monoxide gas, thermally cracked ammonia gas or any mixture thereof can be used.
- the flow rate of the reducing gas must be varied in accordance with the size of the furnace used, firing temperature, etc. and cannot be simply specified. There is a tendency for the firing rate to increase as the gas flow rate increases.
- the reducing as can be diluted with an inert gas such as nitrogen, argon, etc.
- Firing is conducted at 250°C - 1200°C, preferably 300°C - 1200°C, and more preferably 500°C - 1000°C. At temperatures below 250°C, too long firing time is required, and yet firing is often incomplete. At temperatures over 1200°C, the material is excessively sintered and loses flexibility.
- the firing time depends upon the firing temperature and, therefore, it cannot be specifically defined, but is generally between 15 minutes and 4 hours, preferably 30 minutes and 2 hours.
- the electroless plating can be carried out by any known conventional process.
- a substrate fiber fabric is scoured, activated with a SnCl2/PdCl2 catalyst, and thereafter is immersed in an electroless plating solution containing a Ni salt, a complexing agent, a reducing agent, a pH-adjuster, a stabilizer, additives, etc.
- the thus produced metal fiber articles can be further plated another metal or metals by processes known per se. Needless to say, the formed metal fiber articles cannot be exposed to a temperature at which the plated metal or metals deteriorate.
- Ni coating of the fiber substrate is effected by connecting it to the cathode and immersing it in a plating solution containing cadmium oxide, sodium cyanide, any additives, etc. and applying electric current to the plating bath.
- the reducing gas is practically ammonia gas, hydrogen gas, or a mixture thereof or one of these diluted with an inert gas such as argon.
- the firing is carried out at a temperature between 250°C - 300°C. At temperatures lower than 250°C, excessively long firing time is required and often firing is incomplete. At temperatures over 300°C, Cd is apt to volatilize.
- the firing time is 1 - 10 hours, preferably 2 - 5 hours.
- the thus treated fabric was activated by immersion in 500ml of an aqueous solution containing 1g/l PdCl2 and 1ml/l HCl for 10 minutes, thereafter it was immersed in 500ml of an electroless nickel plating solution of the following composition at 80°C for deposition of Ni.
- the treated fabric was rinsed with water and dried, it weighed 3.38g, which proved that 1.96g of Ni was deposited.
- the plated fabric was placed in a furnace and fired at 800°C for 1 hour as hydrogen gas was passed through the furnace at the rate of 2l/min. After cooling, it weighed 1.93g and consisted of Ni only in the state of flexible nonwoven fabric. The size was 41x43x2.8mm and the porosity was 97.7%.
- This fabric was immersed in 500ml of an electroless copper-plating solution of the following composition at 30°C for deposition of copper.
- the treated fabric After rinsing and drying, the treated fabric weighed 2.76g, which means that 1.49g of copper deposited.
- the plated fabric was placed in a furnace and fired at 500°C for 2 hours as NH3gas was passed at the rate of 2l/min. After cooling, it weighed 1.48g and consisted of copper only in the state of a flexible nonwoven fabric. The size was 37x39x2.7mm and the porosity was 95.7%.
- the thus treated fabric was immersed in 200ml of an electroless cobalt-plating solution of the following composition which was warmed to 80°C for deposition of cobalt.
- Cobalt chloride 23.5g/l Rochelle salt 100g/l Hydrated hydrazine 50ml/l Sodium hydroxide 50g/l
- the thus treated fabric was immersed in 250ml of an elctcroless silver-plating solution of the following composition at 25°C for deposition of silver.
- the treated fabaric After rinsing and drying, the treated fabaric weighed 3.10g, which means that 1.23g of silver deposited.
- the thus plated fabric was placed in a furnace and fired at 600°C for 2 hours as hydrogen gas passed through the furnace at the rate of 2l/min. After cooling, it weighed 1.23g and consisted of silver only in the state of a flexible nonwoven fabric. The size was 43x44x1.8mm and the porosity was 96.6%.
- a 25cm2 (5x5cm) piece of nonwoven fabric made of 3d rayon fibers and weighing 1.51g was scoured and immersed in 500ml of an aqueous solution containing 10g/l SnCl2 and 10ml/l HCl for 10 minutes.
- the thus treated fabric was activated by immersing in 500ml of an aqueous solution containing 1g/l PdCl2 and 1ml/l HCl for 10 minutes, whereafter it was immersed in 500ml of an electroless plating solution of the following composition at 80°C for deposition of Ni.
- the stainless steel plate bearing the treated fabric was immersed in a solution of the following composition Cadmium oxide 25g/l Sodium cyanide 120g/l Dextrin 1g/l and subjected to electrolysis with 5A/dm2 electric current density at room temperature for 20 minutes.
- the resulting product was rinsed with water and dried. It weighed 5.29g.
- the product was fired in a furnace through which ammonia gas was passed at the rate of 3l/min at 290°C for 2 hours. After cooling, a metal fabric in the exact same shape as the original nonwoven fabric weighing 3.76g remained. Chemical analysis revealed that it consisted of 1.97g Ni and 1.79g Cd.
- a 25cm2 (5x5cm) piece of nonwoven fabric made of 1.5d acryl fibers and weighing 1.33g was scoured and activated with a SnCl2/PdCl2 catalyst system in the same manner as in Example 5, and was further plated with nickel and cadmium under the same conditions.
- the resulting product weighed 5.17g after washing with water and drying. This was fired in a furnace through which hydrogen gas was flown at the rate of 3l/min at 290°C for 5 hours. After cooling, a metal fabric in the exact same shape as the original nonwoven fabric weighing 3.81g remained. Chemical analysis revealed that it consists of 1.92g Ni and 1.89g Cd.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemically Coating (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Electroplating Methods And Accessories (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP258322/87 | 1987-10-15 | ||
JP62258321A JP2628659B2 (ja) | 1987-10-15 | 1987-10-15 | 金属繊維体の製造方法 |
JP62258322A JPH0711956B2 (ja) | 1987-10-15 | 1987-10-15 | Ni基板Cd電極の製造方法 |
JP258321/87 | 1987-10-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0312024A1 true EP0312024A1 (de) | 1989-04-19 |
EP0312024B1 EP0312024B1 (de) | 1992-06-24 |
Family
ID=26543644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88116953A Expired - Lifetime EP0312024B1 (de) | 1987-10-15 | 1988-10-12 | Verfahren zur Herstellung von Metallfasergegenständen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0312024B1 (de) |
KR (1) | KR940002752B1 (de) |
DE (1) | DE3872344T2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0386182A1 (de) * | 1988-07-25 | 1990-09-12 | Ultrafibre Inc | Nichtgewebte isoliersubstrate. |
WO2000011749A1 (fr) * | 1998-08-25 | 2000-03-02 | Gemplus | Procede de fabrication d'une antenne pour un support d'informations comportant un circuit electronique |
CN104928657A (zh) * | 2015-06-30 | 2015-09-23 | 复旦大学 | 一种大豆纤维吸波材料的制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100307710B1 (ko) * | 1999-09-06 | 2001-09-24 | 김상렬 | 도전성 섬유의 제조시 색상을 부여하는 방법 |
KR101976685B1 (ko) * | 2016-07-14 | 2019-05-10 | 한국에너지기술연구원 | 전극용 탄소소재 제조방법 및 전극용 탄소소재 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1510317A (fr) * | 1963-11-01 | 1968-01-19 | Union Carbide Corp | Fibres, matières textiles et objets manufacturés métalliques, et procédé pour les fabriquer |
US3914471A (en) * | 1971-02-09 | 1975-10-21 | Ici Ltd | Method of producing metallized thermoplastic articles |
-
1988
- 1988-10-12 EP EP88116953A patent/EP0312024B1/de not_active Expired - Lifetime
- 1988-10-12 DE DE8888116953T patent/DE3872344T2/de not_active Expired - Lifetime
- 1988-10-15 KR KR1019880013501A patent/KR940002752B1/ko not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1510317A (fr) * | 1963-11-01 | 1968-01-19 | Union Carbide Corp | Fibres, matières textiles et objets manufacturés métalliques, et procédé pour les fabriquer |
US3914471A (en) * | 1971-02-09 | 1975-10-21 | Ici Ltd | Method of producing metallized thermoplastic articles |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0386182A1 (de) * | 1988-07-25 | 1990-09-12 | Ultrafibre Inc | Nichtgewebte isoliersubstrate. |
EP0386182B1 (de) * | 1988-07-25 | 1994-05-18 | Ultrafibre, Inc. | Nichtgewebte isoliersubstrate |
WO2000011749A1 (fr) * | 1998-08-25 | 2000-03-02 | Gemplus | Procede de fabrication d'une antenne pour un support d'informations comportant un circuit electronique |
CN104928657A (zh) * | 2015-06-30 | 2015-09-23 | 复旦大学 | 一种大豆纤维吸波材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE3872344T2 (de) | 1992-12-24 |
EP0312024B1 (de) | 1992-06-24 |
KR890006849A (ko) | 1989-06-16 |
DE3872344D1 (de) | 1992-07-30 |
KR940002752B1 (ko) | 1994-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4900618A (en) | Oxidation-resistant metal coatings | |
US3095309A (en) | Electroless copper plating | |
US3486928A (en) | Bath and process for platinum and platinum alloys | |
Feldstein et al. | Electron microscope investigation of mixed stannous chloride/palladium chloride catalysts for plating dielectric substrates | |
US3754939A (en) | Electroless deposition of palladium alloys | |
CN1314533C (zh) | 一种复合泡沫金属及其制备方法 | |
CA2539656A1 (en) | Improved silver plating method and articles made therefrom | |
EP0312024B1 (de) | Verfahren zur Herstellung von Metallfasergegenständen | |
US5160373A (en) | Electroless plating bath | |
US2872312A (en) | Electroless plating of non-conductors | |
RU2398049C2 (ru) | Усовершенствованные стабилизация и рабочие характеристики автокаталитических способов нанесения покрытия методом химического восстановления | |
US4328266A (en) | Method for rendering non-platable substrates platable | |
US3697296A (en) | Electroless gold plating bath and process | |
CA1205604A (en) | Electroless direct deposition of gold on metallized ceramics | |
US3940512A (en) | Method and apparatus for concomitant particulate deposition in electroless plating, and the product thereof | |
US3547692A (en) | Metal coating carbon substrates | |
JPS63165582A (ja) | 金属被覆繊維の製造方法 | |
JP2628659B2 (ja) | 金属繊維体の製造方法 | |
US5419829A (en) | Electroplating process | |
JP3150810B2 (ja) | 無電解メッキ材料の製造方法 | |
JP5039638B2 (ja) | 金属めっき繊維構造物及びそれを焼成してなる金属構造物 | |
WO2014102140A1 (en) | A method for plating a substrate with a metal | |
JP3586902B2 (ja) | 金属被覆ガラス繊維製品の製造方法 | |
US3843493A (en) | Formation of high strength electroplated filaments | |
KR100344958B1 (ko) | 도전성 직물지의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19881012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19910121 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JAPAN VILENE COMPANY,LTD Owner name: MITSUBISHI MATERIALS CORPORATION |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3872344 Country of ref document: DE Date of ref document: 19920730 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010914 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010925 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011005 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011011 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20021012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |