EP0311779B1 - Dispositif de commande hydraulique pour une presse - Google Patents

Dispositif de commande hydraulique pour une presse Download PDF

Info

Publication number
EP0311779B1
EP0311779B1 EP88114159A EP88114159A EP0311779B1 EP 0311779 B1 EP0311779 B1 EP 0311779B1 EP 88114159 A EP88114159 A EP 88114159A EP 88114159 A EP88114159 A EP 88114159A EP 0311779 B1 EP0311779 B1 EP 0311779B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
pump
rapid
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88114159A
Other languages
German (de)
English (en)
Other versions
EP0311779A3 (en
EP0311779A2 (fr
Inventor
Gert Dipl.-Ing. Stockbauer
Heinz Ing.(Grad.) Walter
Dieter Weigle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0311779A2 publication Critical patent/EP0311779A2/fr
Publication of EP0311779A3 publication Critical patent/EP0311779A3/de
Application granted granted Critical
Publication of EP0311779B1 publication Critical patent/EP0311779B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure

Definitions

  • the invention relates to a hydraulic control device for a press according to the type specified in the preamble of claim 1.
  • Such a press control is already known from FR-A-2 386 414, which uses a rapid traverse cylinder and a press cylinder and works with a hydraulic preload.
  • This control device uses as a pressure medium source only a constant pump, the high pressure already applied to both piston sides of the press cylinder in the rapid downward movement, so that in the working phase the pressing force occurs by relieving the rear side of the cylinder.
  • the power stored before the work phase is called up during the actual pressing, whereby the preload hydraulics lead to relatively high cycle numbers of the press.
  • a disadvantage of this press control device is that the rapid traverse cylinder is controlled in an open hydraulic circuit via a 4/3-way valve and is also designed as a differential cylinder.
  • a hydraulic control device for a press in which a reversible control pump operates in a closed circuit in which the cylinders for the functions of rapid feed and pressing are located; the control pump itself takes over the function of an actuator. While the control pump can be switched for the direction of the rapid feed, the functions of rapid feed, pressing or rest position must be switched by a 4/3-way valve, whereby an additional pilot valve activates non-return valves which are connected in each cylinder between the two piston chambers. All of the cylinders are designed as differential cylinders, of which at least two cylinders act jointly during pressing by being connected in parallel, with their piston spaces on the rear side being relieved.
  • the pump must always work up from the low filling pressure to the high system pressure during the pressing process, the high pressure then being fully relieved again. Hydraulic preloading in a closed circuit is not possible here, so that considerable energy losses occur and the number of cycles is disadvantageously low. Here too, there is only a maximum pressure limitation in the system, so that controlled pressure reduction is not possible. Furthermore, it is disadvantageous that in the case of the cylinders, the housings with the leading fluid lines are designed as movable elements and, moreover, the two differential cylinders are still unequal to one another.
  • a press control is known from the magazine VDI-Z 123 (1981) No. 13 - July, pages M 158, 159, in particular Figure 14, which uses a rapid traverse cylinder and a press cylinder and works with a hydraulic preload.
  • This hydraulic pilot control device uses a variable displacement pump with a large-volume energy store, the high pressure of which already acts on both piston sides of the press cylinder in the rapid traverse downward, so that the pressing force occurs in the working phase by relieving the back of the cylinder side.
  • the pre-tensioning hydraulics enable relatively high press cycle numbers.
  • a disadvantage of this press control device is that the rapid traverse cylinder is controlled via a 4-way, 3-position valve with a downstream throttle point.
  • the hydraulic control device according to the invention for a press with the characterizing features of the main claim has the advantage that it enables higher cycle numbers with lower energy consumption. This is accompanied by less oil heating of the pressure medium, which has a positive effect on the function of the press. By working the cylinders with hydraulic preload and in largely closed hydraulic circuits it is achieved that as little energy as possible is lost in the compression processes and thus the oil heating is reduced. It is particularly advantageous that the reversible control pumps themselves take over the function of actuators and thus dispense with expensive servo or control valves in the power circuit. In addition, the control pump allows smoother transitions, especially when reversing the movement of the cylinders and when the pressures are zero. Furthermore, the control device also allows less construction work, since both the press cylinder and the rapid traverse cylinder can be formed on both sides with piston surfaces of the same size. In addition, the hydraulic control device with built-in valve technology can be designed to be relatively space-saving and inexpensive.
  • a design according to claim 5 is particularly favorable for high stroke rates, as a result of which the energy present in the press cylinder during the decompression process is used as well as possible for the working stroke, the rapid traverse cylinder practically working as in a closed, hydraulic circuit. Also advantageous are training according to claims 6 to 9, which enable relatively simple designs with low effort and support the goals of the control device.
  • designs according to claims 10 and 11 are particularly expedient, as a result of which an effective oil exchange can be carried out during operation of the rapid traverse cylinder or the press cylinder, in order to keep the oil heating that is unavoidable in closed hydraulic circuits within a permitted temperature range.
  • FIG. 1 shows a hydraulic control device for a press in a highly simplified representation
  • FIG. 2 shows an electrical control device for controlling the control device according to FIG. 1
  • FIG. 3 shows a performance diagram according to which the control device according to FIG. 1 is operated.
  • FIG. 1 shows a hydraulic control device 10 for a press, which has a rapid traverse cylinder 11 and a press cylinder 12 mechanically coupled to it. Both cylinders 11, 12 have a continuous piston rod 13, the die end of which is also assigned a die cushion cylinder 14. The effective piston area of the press cylinder 12 is substantially larger than that of the rapid traverse cylinder 11.
  • the pistons of the two cylinders 11, 12 each have piston surfaces 15, 16 and 17, 18 of the same size.
  • an upper cylinder chamber 19 is thereby separated from a lower cylinder chamber 21, while in an appropriate manner in the press cylinder 12 an upper piston chamber 22 from one lower piston chamber 23 is separated.
  • a highly dynamic, reversible control pump 24 is provided for supplying pressure medium to the cylinder drives 11, 12, 14, which here is formed as a tandem pump from two individual radial piston pumps 25, 26 of the same size.
  • the first (25) like the second radial piston pump 26 are driven jointly by a motor 27 and are each electrically controlled via a control valve, with the help of an integrated position control loop, a linear relationship between the electrical setpoint and the setting of the cam ring and thus the flow rate results.
  • Such a control pump for a single flow direction is shown, for example, in a simplified form from the magazine Oil Hydraulics and Pneumatics 31 (1987), No. 2, page 89, top left image. With this control pump 24 in the form of a tandem pump, positioning times can be achieved which remain considerably below a value of 100 ms.
  • a first working connection 28 of the first pump 25 and the first working connection 29 of the second pump 26 are connected in parallel to one another via a first working line 31 to the upper cylinder chamber 19 of the rapid-motion cylinder 11.
  • a second working line 33 leads from a second working connection 32 of the first pump 25 to the lower cylinder chamber 21 in the rapid traverse cylinder 11. Both working lines 31, 33 thus form a self-contained hydraulic first circuit 34 with the regulating pump 24 and the rapid traverse cylinder 11.
  • a second hydraulic, closed circuit forms a ring line 35, which connects the upper piston chamber 22 in the press cylinder 12 with the associated lower piston chamber 23.
  • a 4/2-way valve 36 is connected, which divides the ring line 35 into a first main line 37 leading to the upper piston chamber 22 and into a second main line 38 leading to the lower piston chamber 23.
  • the two main lines 37, 38 are connected to one another via a second and a fourth connection 42 and 44.
  • both other connections 41, 43 are blocked, with a first auxiliary line 45 from the first connection 41 to the second working line 33 leads, while the third connection 43 is connected to the first working line 31 via a second auxiliary line 46.
  • the directional control valve 36 can be switched from its first switching position 39 to a cross position 47, as a result of which the press cylinder 12 is connected to the control pump 24 in parallel with it, with the same sense of action as the rapid-action cylinder 11.
  • an electrically adjustable, pilot-controllable pressure relief valve 48 is connected to the second main line 38, from the output side of which a return line 49 leads to a tank 51.
  • a number of actual values are used for the control and regulation of the control device 10, for which purpose a first, electrohydraulic pressure transmitter 52 is connected to the first working line 31 and a second pressure transmitter 53 is connected to the second main line 38. Furthermore, a first (54) and a second temperature sensor 55 are arranged in the first working line 31 and in the first main line 37, respectively, which report signals dependent on the heating of the pressure medium to an electrical control device, which will be discussed in more detail later. In addition, the stroke of the piston rod 13 and the stroke of the die cushion cylinder 14 are in each case queried via an electromechanical displacement sensor 56 and 57 and their signals are reported to the electrical control device for further processing.
  • a branch line 58 is branched off from the second working line 33 in the area of the first pump 25 and leads via a first valve cartridge 59 to a second working connection 61 of the second control pump 26. From this branch line 58 in the area between the first valve cartridge 59 and the second pump 26 there is an inlet line 62, which is led via a second valve cartridge 63 to a control valve 64 which takes over the control of the die cushion cylinder 14, with this die cushion cylinder 14 being used for a plunger circuit the control valve 64 in a known manner A second pressure control valve 65 is assigned.
  • the two valve cartridges 59, 63 are controlled by a 4/2-way pilot valve 66.
  • the two working lines 31, 33 are each connected via a check valve 67, 68 opening towards them with a feed line 69 which is connected to the pressure side of a filling pump 71 .
  • This filling pump 71 is assigned a hydraulic accumulator 72, which works at low pressures.
  • the two working lines 31, 33 are each secured by an adjustable pressure relief valve 73 or 74 to the other working line 33 or 31.
  • the hydraulic control device 10 has a first throttle valve 75, which is designed as a proportional valve with four connections 76 to 79. Its first connection 76 is connected to the feed line 69 via a supply line 81 with a check valve 80. A tank line 82 leads from the second connection 77 of the throttle valve 75 to the tank 51. The third connection 78 is connected to the second main line 38 via a discharge line 83, while a filling line 84 leads from the first main line 37 to the fourth connection 79.
  • a first throttle valve 75 which is designed as a proportional valve with four connections 76 to 79. Its first connection 76 is connected to the feed line 69 via a supply line 81 with a check valve 80.
  • a tank line 82 leads from the second connection 77 of the throttle valve 75 to the tank 51.
  • the third connection 78 is connected to the second main line 38 via a discharge line 83, while a filling line 84 leads from the first main line 37 to the fourth connection 79.
  • the first throttle valve 75 has a spring-centered basic position 85, in which it hydraulically blocks all connections 76 to 79, while it can be adjusted by more or less strong deflection in the direction of a throttle position 86, in which the supply line 81 with the filling line 84 or the The discharge line 83 is connected to the tank line 82.
  • control device 10 has a second throttle valve for controlling the oil exchange in the first closed circuit 34 87 on;
  • the second throttle valve 87 is a proportionally operating valve which can be controlled by a pilot valve 88 and which is connected directly into the second working line 33 in the area between the rapid-motion cylinder 11 and the branch line 58. It has a spring-centered starting position 89, in which it connects the two sections of the second working line 33 and separates them from the return side 49.
  • the second throttle valve (87) which is designed with three connections, can be deflected in the direction of a throttle position 91, in which it connects the section of the second working line 33 connected to the rapid-action cylinder 11 to the return line 49, while the section of the second working line 33 leading to the regulating pump 24 blocks is.
  • the second throttle valve 87 operates proportionally and is continuously adjustable between its end positions.
  • the two throttle valves 75, 87, the associated pilot valve 88, the two control valves for actuating the pumps 25, 26 and the 4/2-way valve 36 are connected in a control circuit 92 for the purpose of their actuation, which also includes a control oil pump 93 and an associated one Has energy storage 94.
  • valve device 95 that complies with the accident prevention regulations is connected into the second working line 33, specifically in the area between the rapid-action cylinder 11 and the second throttle valve 87, which valve device 95 can be controlled separately in a manner known per se Has shut-off valves.
  • FIG. 2 shows in more detail how the hydraulic control device 10 according to FIG. 1, shown in a highly simplified manner, lies in an electrohydraulic control circuit 96.
  • This control circuit 96 has an electronic control device 97, in which the actual values of at least displacement sensor 56, pressure sensor 52 and temperature sensor 54 are combined are processed with other data which the electronic control device 97 receives via a data bus 98 from an electrical control device 99 for the general machine control.
  • the electronic control device 97 controls the entire regulator or control valve, of which the reversible regulating pumps 25, 26 are shown in a manner that is not shown in more detail, depending on the respectively applicable regulator characteristics, which are also shown in a subordinate control circuit 101 or 102 lie.
  • the two radial piston pumps 25, 26 can be controlled both jointly and separately by the electronic control device.
  • FIGS. 1 and 2 The mode of operation of the hydraulic control device 10 is explained as follows, with FIGS. 1 and 2 being dealt with only to the extent necessary for understanding the invention. It should be assumed that the hydraulic control device 10 is used in a drawing press, in which the various functions of rapid feed downward, pressing, switching of directional valve after the pressing process, rapid return and the oil exchange are to be considered in succession from a full machine cycle.
  • the ring line 35 of the second closed, hydraulic circuit is prestressed under a relatively high system pressure by the previous functional sequences or when the drawing press is switched on by special switch-on processes is, for example, around 250 bar.
  • the upper piston chamber 22 in the press cylinder 12 is connected to the lower piston chamber 23 via the first main line 37, the 4/2-way valve 36 located in its first switching position 39 and the second main line 38.
  • the system pressure in this closed circuit 35 is limited by the adjustable pressure relief valve 48. With a downward movement the piston rod 13 is thus circulated in the press cylinder 12 only preloaded oil.
  • the two reversible radial piston pumps 25, 26, which are designed as tandem pumps, are actuated by the electronic control device 97 in such a way that they build up pressure at their first working connections 28, 29 and thus via the first working line 31, pressure oil into the upper cylinder chamber 19 of the rapid traverse cylinder 11 flows.
  • the control pumps 25, 26 draw in the oil displaced from the lower cylinder chamber 21 via the second working line 33 with the valve device 95 in the open position and the second throttle valve 87 in the starting position 89.
  • the first valve cartridge 59 is opened, so that the branch line 58 can also flow to the suction side 61 of the second radial piston pump 26 without further pressure medium.
  • the dead weight of the tool and the pistons with the piston rod 13 assist, so that the control pumps 25, 26 only have to generate a relatively low working pressure of, for example, approximately 10 to 20 bar.
  • Rapid-motion cylinders 11 and press cylinders 12 are thus both operated in closed hydraulic circuits 34 and 35, the control pump 24 additionally taking over the function of an actuator, so that an additional directional control valve and the associated losses are eliminated.
  • the control pump 24 used as an actuator is formed from two pumps in tandem design, which are highly dynamic due to attached pilot control valves and subordinate electrohydraulic control circuits 101, 102 and thus achieve extremely short adjustment times, which are in a range below 100 ms, in particular under 50 ms lie. Also in the rapid traverse cylinder, the piston surfaces 15, 16 are of the same size, so that the control pump 24 compresses the oil drawn in from the lower cylinder chamber 21 during rapid feed downward and delivers it into the upper cylinder chamber 19.
  • the rapid feed can be braked downward shortly before the tool closes and the press function can be switched over.
  • the pressing process is initiated by relaxing the compression volume in the lower piston chamber 23 of the press cylinder 12.
  • the proportional pressure relief valve 48 is actuated by the electronic control device 97, so that any desired decompression process can be achieved.
  • the first phase of the press force build-up takes place, since the piston in the press cylinder 12 is no longer force-balanced due to the one-sided pressure reduction.
  • the decompression process is suitable for fast movements and is only limited in time by the fact that switching shocks can occur if the relaxation is too fast.
  • the pressure force build-up is independent of the flow rate of the control pump 24.
  • the electronic control device 97 also controls the 4/2-way valve 36 in order to move it from its first switching position 39 to the cross position 47.
  • pressure medium flowing out of the lower piston chamber 23 during the decompression process can pass via the second main line 38, the valve 36 and the first auxiliary line 45 to the second working line 33 and thus to the suction side 32, 61 of the control pump 24. This can further reduce energy losses in the decompression phase.
  • the upper piston chamber 22 of the press cylinder 12 is connected to the pressure side 28, 29 of the control pump 24 parallel to the upper cylinder chamber 19 in the rapid traverse cylinder 11.
  • the oil compression to the maximum pressing pressure begins after the directional valve 36 has been switched over from the pressure point still located in the upper cylinder chamber 19 or the upper piston chamber 22.
  • the pressure increase thus takes place in a shorter time, since the compression to the maximum pressure does not have to start from a pressure level of zero.
  • the maximum pressure which is still a lot higher than the pre-stressed system pressure and in a range around z. B. 280 bar, is thus achieved over the shortest possible pressure build-up phases, so that the energy loss is low and on the other hand the efficiency is kept high.
  • FIG. 3 shows in greater detail, in which the flow Q as a function of the pressure p is shown, the electronic control device 97 processes the signals from the first pressure transmitter 52 in such a way that the control pump 24 can be regulated according to a hyperbolic power limitation curve 103 during pressing.
  • the position of the cam ring in the radial piston pumps 25, 26 is used as a measure of the flow Q.
  • the rapid traverse cylinder 11 thus works together with the regulating pump 24 in the closed, first hydraulic circuit 34.
  • the press cylinder 12 on the other hand, during the decompression phase, oil is discharged via the first pressure relief valve 48 to the tank 51, which is in the otherwise closed, second hydraulic circuit 35 is missing.
  • the control pump 24 is therefore supplied on its suction side 32, 61 via the feed line 69 and the check valve 67 cool, fresh oil from the tank 51 if necessary. This fresh oil supply also counteracts an increase in temperature in the closed hydraulic circuits.
  • the die cushion cylinder 14 is actuated by the press cylinder 12 during the pressing operation. Its piston rod is pushed in against a pressure set on the second pressure limiting valve 65, a feed circuit being effective in a manner known per se when the control valve 64 is not actuated, in which excess oil is discharged from the die cushion cylinder 14 via the return line 49 to the tank 51.
  • the 4/2-way valve 36 is switched back from its cross position 47, which is effective during pressing, to its first switching position 39.
  • this can only take place after the pressure in the lower piston chamber 23 has been reached with the first pressure limiting valve 48 of the press cylinder 12 back to a relatively high pressure, namely the system pressure has been raised and thus blocks the discharge to the tank 51.
  • the two main lines 37, 38 are connected to one another, so that the maximum pressure in the upper piston chamber 22 is balanced out via the ring line 35 to the lower piston chamber 23. In this decompression process, the maximum pressure to a system pressure of z. B. 250 bar in the ring line 35.
  • the press cylinder 12 is force balanced since its piston surfaces 17, 18 are the same size. Due to the system pressure maintained in the closed circuit 35, a decompression phase is omitted, so that energy losses are reduced and time is also saved. Since the first working line 31 to the rapid traverse cylinder 11 is separated from the ring line 35 during this switching of the directional control valve 36, the maximum pressing pressure is still maintained in the upper cylinder chamber 19 during this process.
  • the electrohydraulically pilot-controlled directional valve 36 is supplied with control oil from the control circuit 92 during these switching operations.
  • the rapid return process takes place.
  • the flow rates of the control pump 24 are reversed and also divided, so that the first radial piston pump 25 delivers to the rapid traverse cylinder 11, while the oil flow of the second radial piston pump 26 is used to control the die cushion cylinder 14.
  • the hydraulic preload in the closed circuit 35 of the press cylinder 12 is maintained.
  • the pressure oil initially present in the upper cylinder chamber 19 of the rapid traverse cylinder 11 and in the first working line 31 is decompressed by changing the delivery direction of the control pump 24 through the two radial piston pumps 25, 26 into the lower cylinder chamber 21 or toward the die cushion cylinder 14.
  • the radial piston pump 25 thus works as an actuator in the first closed hydraulic circuit 34, so that existing pressure energies in the pressure medium are largely used.
  • reversing and regulating processes can be carried out, so that reversing processes involving servo valves, which involve throttling losses, can be dispensed with.
  • the electronic control device 97 can regulate the rapid return according to position and speed precisely and quickly depending on the signals of the first travel sensor 56.
  • the radial piston pump 26 can be controlled separately from the electronic control device 97 in the case of rapid return, so that the course of movement of the extending piston rod in the die cushion cylinder 14 can also be sensitively regulated with the aid of the second displacement sensor 57.
  • a relatively low pressure of z. B. sets about 20 bar is sufficient for maintaining the upward movement of the piston rod 13, a pressure in the second working line 33, which is substantially lower than the prevailing system pressure in the ring line 35 and the z. B. can make up about 1/3 of the maximum pressure.
  • the prestressed pressure medium in the second closed circuit 35 of the press cylinder 12 is only circulated during the rapid return.
  • the 4/2 pilot valve 66 is used to control the die cushion cylinder 14 during the rapid return, the first valve cartridge 59 controlled so that the branch line 58 between the now pressure-side connections 32, 61 of both pumps is blocked.
  • the second valve cartridge 63 is opened, so that pressure medium can flow via the feed line 62 and the control valve 64 switched into its right switching position to the die cushion cylinder 14, the piston of which is operated in the manner of a plunger circuit and thereby extends. If necessary, oil can be drawn in from the pumps 25, 26 via the check valve 68.
  • the next work cycle can be started with the rapid feed downward process, for which purpose the electronic control device 97 in turn reverses the control pumps 25, 26 operating as actuators in their flow direction.
  • the control of the die cushion cylinder 14 is ended or switched over, so that the second valve cartridge 63 closes while the first valve cartridge 59 opens.
  • the prestressed pressure oil located in the other cylinder chamber 21 of the rapid traverse cylinder 11 is initially decompressed via the suction-side working connections 32, 61 of the control pump 24. In this way, short pressure build-up phases can be achieved with low energy losses, so that the hydraulic control device 10 favors high cycle rates of the press.
  • the oil exchange for dissipating the heat loss is carried out in such a way that it can only be carried out when the piston rod 13 moves downward, based on FIG. 1.
  • the two pilot operated, continuously adjustable throttle valves 75, 87 are used, with the aid of which cooler fresh oil can be introduced from the tank 51 into the two closed circles 34, 35 and heated oil can be removed from them to the tank.
  • the first throttle valve 75 is opened from its drawn basic position 85 in the direction of its throttle position 86, so that fresh oil coming from the filling pump 71 and from the hydraulic accumulator 72 via the supply line 81 and the filling line 84 into the first Main line 37 can reach, while at the same time waste oil heated from the second main line 38 flows back to the tank 51 via the discharge line 83 and the tank line 82.
  • the 4/2-way valve 36 remains in its first switching position 39, so that the two main lines 37, 38 remain connected to one another.
  • the amount of the fresh oil introduced into the control circuit 35 and thus also the amount of the used oil to be discharged is determined by the degree of throttling, which is infinitely adjustable with the first throttle valve 75.
  • the second throttle valve 87 is adjusted from its drawn starting position 89 in the direction of its throttle position 91, so that the connection of the two sections in the second working line 33 is throttled or interrupted to a greater or lesser extent while simultaneously the connection from the lower cylinder chamber 21 to the return line 49 is opened in a correspondingly reversed manner.
  • heated pressure medium displaced from the lower cylinder chamber 21 is therefore discharged via the return line 49 to the tank 51, while at the same time cooler pressure medium from the filling pump 71 via the suction line 69 and the check valve 67 to the suction-side working connections 32, 61 of both radial piston pumps 25 and 26 is supplied.
  • This oil exchange can be done by the electronic control device 97 in both circuits 34, 35 are carried out separately or together, the signals from the temperature sensors 54, 55 being processed. The temperature in the closed circuits 34, 35 can thus be adjusted according to values and course.
  • the electrohydraulic control circuit 96 shown in simplified form in FIG. 2 shows, all control valves for the adjustment of the radial piston pumps 25, 26, all pressure and flow proportional valves and almost all switching valves are controlled by the electronic control device 97, for which purpose additional control outputs 105 are provided.
  • the signals from displacement sensors 56, 57, pressure transmitter 52 and temperature transmitter 54 as actual values are used in the electronic control device 97 compared to the programmed setpoints and for determining the output, regulation and control signals to the electrical actuators, so that positions, speeds, Pressures, pressure profiles and oil temperatures can be controlled or regulated.
  • the electrical control device 99 has inputs 106 for entering setpoints and other signals for the general machine control.
  • the electronic control device 97 fetches the required values via the data bus 98 and permits complete control or regulation of the hydraulic control device 10, the use of complex control strategies together with sampling times in the controller of a few ms making it possible for the variables to be controlled to be highly accurate is achieved.
  • the hydraulic control device 10 is therefore not limited to use on a drawing press, but can also advantageously be used in other press controls.
  • the combined arrangement of rapid traverse cylinder and press cylinder with a continuous piston rod 13 is only given by way of example and can also be replaced by cylinder actuators having the same effect, for example in that both cylinders 11, 12 are arranged separately from one another and are mechanically coupled to one another.

Claims (17)

  1. Installation de commande hydraulique (10) pour une presse comprenant un vérin de marche rapide (11) et un vérin de pressage (12) couplé au précédent, les deux côtés du vérin de pressage (12) pouvant être reliés par un distributeur (36) et cette liaison peut être précontrainte à 10 pression du système au cours de l'avance rapide descendante qui se produit avant le pressage proprement dit, cette pression du système pouvant être évacuée au début de la course de pression de la chambre de piston (23) arrière du vérin de pressage (12) et être commandée à l'aide d'une conduite de travail (31) allant au vérin de marche rapide (11) par le fluide sous pression fourni par une pompe (24) à l'aide de moyens de réglage vers le vérin de marche rapide (11), le vérin de marche rapide (11) ayant une surface de piston (15, 16) plus petite que celle du vérin de pressage (12) et ce vérin (12) ayant des surfaces de piston identiques (17, 18), commande caractérisée en ce que le vérin de marche rapide (11) possède deux surfaces de piston (15, 16) égales et le vérin de marche rapide (11) lors de l'avance rapide fonctionne en circuit hydraulique fermé (34) avec la pompe constituée par une pompe de régulation (24) réversible, très dynamique, le vérin de pressage (12) étant monté dans un circuit hydraulique (35) fermé, comportant le distributeur (36) qui est un distributeur (36) à quatre voies et deux positions et en ce que pour la course de pressage, le distributeur (36) du vérin de pressage (12) pouvant être intégré dans le même sens d'action que le vérin d'avance rapide (11) dans le circuit hydraulique fermé (34) de ce vérin d'avance rapide (11), une soupape de limitation de pression (48), réglable, diminuant de manière commandée la pression de la chambre de piston arrière (23) du vérin de pressage (12) vers le réservoir (51).
  2. Installation de commande hydraulique selon la revendication 1, caractérisée en ce que la pompe de régulation (24) est branchée dans un circuit de régulation électro-hydraulique (96) qui reçoit comme valeur réelle au moins les signaux d'un capteur de course (56) relié aux vérins (11, 12) ainsi que notamment les signaux d'un capteur de pression (52) électro-hydraulique relié à un circuit hydraulique fermé (34).
  3. Installation de commande hydraulique selon la revendication 1 ou 2, caractérisée en ce que la pompe do régulation avec une pompe tandem (25, 26) avec un circuit hydraulique (62, 64) d'alimentation en fluide sous pression, pour un vérin de coussin de serre-flan (14).
  4. Installation de commande hydraulique selon l'une ou plusieurs des revendications 1 à 3, caractérisée en ce que le circuit hydraulique fermé (35) du vérin de pressage (12) est réalisé sons interposition d'un accumulateur d'énergie.
  5. Installation de commande hydraulique selon l'une ou plusieurs des revendications 1 à 4, dans laquelle le circuit hydraulique fermé est constitué par une conduite circulaire sur le vérin de pressage, installation caractérisée en ce que le distributeur à tiroir (36) possède une autre position de commutation (47) pour interrompre la conduite circulaire (35), autre position dans laquelle il relie le vérin de pressage (12) pour un même sens d'action que le vérin d'avance rapide (11), sur la pompe de régulation (24) en parallèle à ce vérin d'avance rapide (11).
  6. Installation de commande hydraulique selon la revendication 5, caractérisée an ce que le troisième raccord (43) du distributeur à tiroir (36) est relié à une première conduite de travail (31) qui relie un premier raccord de travail (28) de la pompe de régulation (24) à la chambre avant (19) du vérin d'avance rapide (11) pendant qu'un premier raccord (41) du distributeur à tiroir (36) est relié à une seconde conduite de travail (33) qui va de la chambre arrière (21) du vérin d'avance rapide (11) jusqu'à un second raccord de travail (32) de la pompe de régulation (24), le distributeur à tiroir (36) bloquant dans sa première position de commutation (39) ouvrant la conduite circulaire (35) par ses deux autres raccords (42, 44) et bloquant le premier et le troisième raccord (41, 43) et dans l'autre position de commutation (47) qui coupe la conduite circulaire (35), il relie le premier raccord (28) de la pompe de régulation (24) à la chambre de piston (22) avant du vérin de pressage (12) alors que sa chambre arrière (23) est reliée avec le second raccord (32) de la pompe de régulation (24).
  7. Installation de commande hydraulique selon une ou plusieurs des revendications 3 à 6, caractérisée en ce que la pompe tandem (24) se compose d'une première et d'une seconde pompe (25, 26), le second raccord (61) de la seconde pompe (26) étant relié à la seconde conduite de travail (33) par une conduite de dérivation (58) et en ce que cette conduite de dérivation (58) passe par une soupape (59, 66) à commande hydraulique et pour une position des seconds raccords de travail (32, 61) du côté aspiration, ces deux raccords (32, 61) sont reliés alors que pour sa position du côté de pression, la seconde pompe (26) est séparée de la première pompe (25) par une soupape (59) et communique avec un distributeur de commande (64) pour mettre on oeuvre le vérin du coussin de serre-flan (14).
  8. Installation de commande hydraulique selon l'une des revendications 3 à 7, caractérisée on ce que la pompe tandem (24) comporte de préférence deux pompes de mêmes dimensions (25, 26) qui peuvent être notamment commandées séparément ou en commun.
  9. Installation de commande hydraulique selon l'une des revendications 1 à 8, caractérisée en ce que la pompe de régulation est une pompe à pistons radiaux (25, 26) dont on mesure la position de la bague de mouvement et cette position est traitée dans un circuit de régulation électro-hydraulique (101, 102) auxiliaire de façon à atteindre une pompe de régulation à très forte dynamique avec des temps de positionnement inférieurs à 100 ms.
  10. Installation de commande hydraulique selon une ou plusieurs des revendications 1 à 9, caractérisée par un premier distributeur d'étranglement, proportionnel (75), permettant d'introduire du fluide sous pression d'une seconde source de fluide sous pression (71, 72) dans une partie (37) de la première conduite circulaire (35) et en évacuer de l'autre partie (38).
  11. Installation de commande hydraulique selon la revendication 10, caractérisée en ce qu'un second distributeur d'étranglement (87), proportionnel, est branché dans la seconde conduite de travail (33) entre la chambre arrière (21) du vérin d'avance rapide (11) et la pompe de régulation (24), la chambre arrière (21) se déchargeant vers le réservoir (51) et la seconde conduite de travail (33) communique dans la zone comprise entre le second distributeur d'étranglement (87) et la Pompe de régulation (24) par une conduite d'alimentation (69) avec la seconde source de fluide sous pression (71, 72).
  12. Installation de commande hydraulique selon la revendication 10 ou 11, caractérisée en ce que le premier distributeur d'étranglement (75) est an forme de distributeur à quatre voies à fonctionnement permanent qui, en position de base (85) bloqua ses quatre branchements (76 - 79) et qui dans sa position de fin d'étranglement (86) relie la seconde source de fluide sous pression (71) avec la partie (37) de la première conduite circulaire (35) allant vers la chambre do piston (22) du côté avant, alors que la partie (38) de la conduite circulaire (35) venant de la chambre de piston arrière (23) est reliée au réservoir (21).
  13. Installation de commande hydraulique selon la revendication 11, caractérisée en ce que la second distributeur d'étranglement (87) est en forme de distributeur à trois voies à fonctionnement permanent qui dans sa position de sortie (89) centrée par ressort, maintient ouverte la première conduite de travail (33) et bloque le branchement de décharge vers le réservoir (51) pendant que dans sa position de fin de course d'étranglement (91) il bloque le branchement vers la pompe de régulation (24) et décharge la chambre arrière (21) du vérin d'avance rapide (11) vers le réservoir (51).
  14. Installation de commanda hydraulique selon une ou plusieurs des revendications 10 à 13, caractérisée en ce que le premier distributeur d'étranglement (75) et la conduite d'alimentation (69) sont raccordés en parallèle sur la seconde source de fluido sous pression (71, 72) et sont notamment protégés chaque fois par des clapets anti-retour (80, 67, 68) qui s'ouvrent en direction de la soupape d'étranglement (75) ou de la pompe de régulation (24).
  15. Installation de commande hydraulique selon une ou plusieurs des revendications 1 à 14, caractérisée par chaque fois un capteur de température (54, 55) prévu dans les deux circuits de travail de fluide sous pression (34, 35) associé au vérin d'avance rapide (11) et au vérin de pressage (12), les signaux de ces capteurs influençant la phase d'échange d'huile.
  16. Installation de commande hydraulique selon l'une des revendications 1 à 15, caractérisée en ce que les circuits hydrauliques fermés (34, 35) et les liaisons correspondantes vers les éléments de commande hydrauliques (36, 75, 87, 59, 63) sont prévus dans un bloc de machine selon la technique des vannes ou distributeurs intégrées.
  17. Installation de commande hydraulique selon l'une des revendications 2 à 16, caractérisée par une installation de commande électronique (97) qui traite les valeurs réelles des capteurs de course de pression et de température (57, 56, 55, 54, 53, 52), installation qui permet de commander séparément les deux pompes de régulation, réversibles (25, 26).
EP88114159A 1987-10-10 1988-08-31 Dispositif de commande hydraulique pour une presse Expired - Lifetime EP0311779B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3734329 1987-10-10
DE19873734329 DE3734329A1 (de) 1987-10-10 1987-10-10 Hydraulische steuereinrichtung fuer eine presse

Publications (3)

Publication Number Publication Date
EP0311779A2 EP0311779A2 (fr) 1989-04-19
EP0311779A3 EP0311779A3 (en) 1990-04-25
EP0311779B1 true EP0311779B1 (fr) 1993-10-27

Family

ID=6338063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114159A Expired - Lifetime EP0311779B1 (fr) 1987-10-10 1988-08-31 Dispositif de commande hydraulique pour une presse

Country Status (2)

Country Link
EP (1) EP0311779B1 (fr)
DE (2) DE3734329A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218887B3 (de) * 2014-09-19 2016-01-28 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
EP3115190A1 (fr) 2015-07-06 2017-01-11 Feintool International Holding AG Dispositif et procede de commande de l'entrainement principal d'une presse pour decoupage de precision
DE102019103158A1 (de) * 2019-02-08 2020-08-13 Parker Hannifin EMEA S.à.r.l Ziehkissenvorrichtung
DE102017129618B4 (de) * 2017-12-12 2021-03-18 Parker Hannifin EMEA S.à.r.l Ziehkissenvorrichtung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308344A1 (de) * 1993-03-16 1994-09-22 Mueller Weingarten Maschf Verfahren zur Regelung des Antriebs einer hydraulischen Presse und Vorrichtung zur Durchführung des Verfahrens
DE4412224A1 (de) * 1994-04-09 1995-10-12 Graebener Pressensysteme Gmbh Presse für eine Kaltverformung von Metallwerkstücken
DE4436666A1 (de) * 1994-10-13 1996-04-18 Rexroth Mannesmann Gmbh Hydraulisches Antriebssystem für eine Presse
JP3565679B2 (ja) * 1997-03-26 2004-09-15 アイダエンジニアリング株式会社 板金成形用油圧プレス機械
DE19831624A1 (de) * 1998-07-15 2000-01-20 Mueller Weingarten Maschf Hydraulischer Antrieb für eine Presse
JP2004263645A (ja) * 2003-03-03 2004-09-24 Opton Co Ltd 液圧装置
DE102005043367B4 (de) 2005-09-12 2016-09-08 Laeis Gmbh Steuervorrichtung und Steuerverfahren für eine Kolben-Zylinder-Anordnung
DE102010049482B4 (de) 2009-10-27 2018-11-29 Hermann Schwelling Verfahren zur Regelung des Antriebes einer Kanalballenpresse sowie eine Kanalballenpresse
DE102013014074B3 (de) * 2013-08-15 2014-11-27 Hermann Schwelling Ballenpresse
EP2952750B1 (fr) * 2014-06-04 2018-09-05 MOOG GmbH Système hydraulique
DE202015106161U1 (de) * 2015-11-13 2015-11-27 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102016118853B3 (de) * 2016-10-05 2017-10-26 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102018222425A1 (de) 2018-12-20 2020-06-25 Robert Bosch Gmbh Hydrostatischer Antrieb, insbesondere für eine Presse oder eine Spritzgießmaschine
WO2021244723A1 (fr) * 2020-06-02 2021-12-09 Stenhøj Hydraulik A/S Presse hydraulique à économie d'énergie

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE116024C (fr) *
DE229149C (fr) *
DE198281C (fr) * 1905-05-06
FR1006287A (fr) * 1947-12-15 1952-04-21 Metropol Construction Perfectionnements aux presses à mouler les matières plastiques
US2913879A (en) * 1956-01-18 1959-11-24 Gen Motors Corp Fluid pressure circuits
US3818801A (en) * 1971-11-01 1974-06-25 Hydron Inc Fluid actuating mechanism having alternatively selectable fast and slow modes of operation
DE2715188A1 (de) * 1977-04-05 1978-10-12 Smg Sueddeutsche Maschinenbau Presse mit einem arbeitshub vorgeschaltetem leerhub
DE2739340A1 (de) * 1977-09-01 1979-03-15 Smg Sueddeutsche Maschinenbau Hydraulisch angetriebene presse
JPS5949120B2 (ja) * 1978-12-14 1984-11-30 株式会社サム電子機械 油圧式圧縮装置
US4524582A (en) * 1983-03-31 1985-06-25 Cincinnati Incorporated Control system for hydraulic presses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218887B3 (de) * 2014-09-19 2016-01-28 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
CN105443478A (zh) * 2014-09-19 2016-03-30 福伊特专利有限公司 具有快速行程和负荷行程的液压驱动装置
US9771957B2 (en) 2014-09-19 2017-09-26 Voith Patent Gmbh Hydraulic drive with rapid stroke and load stroke
EP3115190A1 (fr) 2015-07-06 2017-01-11 Feintool International Holding AG Dispositif et procede de commande de l'entrainement principal d'une presse pour decoupage de precision
US10479040B2 (en) 2015-07-06 2019-11-19 Feintool International Holding Ag Device and method for controlling the primary drive of a fine blanking press
DE102017129618B4 (de) * 2017-12-12 2021-03-18 Parker Hannifin EMEA S.à.r.l Ziehkissenvorrichtung
DE102019103158A1 (de) * 2019-02-08 2020-08-13 Parker Hannifin EMEA S.à.r.l Ziehkissenvorrichtung
DE102019103158B4 (de) 2019-02-08 2022-02-03 Parker Hannifin EMEA S.à.r.l Ziehkissenvorrichtung

Also Published As

Publication number Publication date
EP0311779A3 (en) 1990-04-25
DE3734329A1 (de) 1989-04-20
EP0311779A2 (fr) 1989-04-19
DE3885228D1 (de) 1993-12-02

Similar Documents

Publication Publication Date Title
EP0311779B1 (fr) Dispositif de commande hydraulique pour une presse
EP0615837B1 (fr) Procédé de commande d'entraînement d'une presse hydraulique et dispositif pour la mise en oeuvre du procédé
EP2644903B1 (fr) Procédé et dispositif de commande hydraulique pour la commande d'un consommateur
DE102014206460B3 (de) Umschaltbare hydrostatische Verstelleinrichtung und zugehöriger Steuerkolben
DE3640236A1 (de) Anordnung zum erzeugen hoher hydraulischer druecke
AT516316B1 (de) Verfahren zur Steuerung einer hydraulisch angetriebenen Maschine
EP3077674B1 (fr) Système hydraulique
EP0972631B1 (fr) Entraínement hydraulique pour une presse
DE2521939A1 (de) Drehmomentbegrenzende steuerung
EP1656224B1 (fr) Systeme pour commander le processus d'etirage dans une presse de transfert
EP0305761A2 (fr) Transmission hydrostatique à réglage secondaire à circuit ouvert
WO2018028832A4 (fr) Système d'entraînement hydraulique, en particulier sans accumulateur de pression, pour un consommateur et comprenant un consommateur, en particulier pour des presses, et procédé permettant de faire fonctionner un tel système d'entraînement hydraulique
CH704896B1 (de) Hydraulische Antriebsvorrichtung für Presskolben von Hydraulikzylindern einer Pulverpresse.
DE102020201216B4 (de) Hydraulische Gießeinheit
DE2159766A1 (de) Druckregelung mit verstellpumpe
EP3234377B1 (fr) Mécanisme de commande pour une soupape de réglage, en particulier une soupape de réglage d'une turbine à vapeur, et son procédé de fonctionnement
EP2335840B1 (fr) Entraînement de presse hydraulique
DE3813020A1 (de) Vorrichtung zur vorschubsteuerung einer hydraulischen stelleinrichtung
DE102012016838A1 (de) Hydraulische Steuerschaltung für eine hydraulisch betätigte Gießeinheit
DE3721826C1 (de) Servoventilanordnung
DE102018222425A1 (de) Hydrostatischer Antrieb, insbesondere für eine Presse oder eine Spritzgießmaschine
DE10138026C2 (de) Pneumatikantriebssteuerung zum Steuern des Bewegungsablaufs von Pneumatikantrieben
DE1007627B (de) Steuerventil mit Kolbenschieber fuer hydraulische Pressen
DE3404927A1 (de) Hydraulische steuereinrichtung fuer die einspritzeinheit einer kunststoff-spritzgiessmaschine
EP0559651B1 (fr) Machine a entrainement hydraulique avec deux cylindres d'entrainement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR IT LI

17P Request for examination filed

Effective date: 19901018

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920702

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REF Corresponds to:

Ref document number: 3885228

Country of ref document: DE

Date of ref document: 19931202

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960823

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011025

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050831