EP2952750B1 - Système hydraulique - Google Patents

Système hydraulique Download PDF

Info

Publication number
EP2952750B1
EP2952750B1 EP14171118.4A EP14171118A EP2952750B1 EP 2952750 B1 EP2952750 B1 EP 2952750B1 EP 14171118 A EP14171118 A EP 14171118A EP 2952750 B1 EP2952750 B1 EP 2952750B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
cylinder
pressure
working
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14171118.4A
Other languages
German (de)
English (en)
Other versions
EP2952750A1 (fr
Inventor
Werner Händle
Achim Helbig
Tino Kentschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GmbH
Original Assignee
Moog GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog GmbH filed Critical Moog GmbH
Priority to EP14171118.4A priority Critical patent/EP2952750B1/fr
Priority to US15/316,085 priority patent/US10626889B2/en
Priority to PCT/EP2015/062409 priority patent/WO2015185644A1/fr
Priority to CN201580029083.XA priority patent/CN106471262B/zh
Publication of EP2952750A1 publication Critical patent/EP2952750A1/fr
Application granted granted Critical
Publication of EP2952750B1 publication Critical patent/EP2952750B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/022Systems essentially incorporating special features for controlling the speed or actuating force of an output member in which a rapid approach stroke is followed by a slower, high-force working stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/32Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure
    • B30B1/323Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure using low pressure long stroke opening and closing means, and high pressure short stroke cylinder means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/036Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
    • F15B11/0365Tandem constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/775Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input

Definitions

  • the invention relates to a hydraulic drive with mechanically coupled working and driving cylinders, to a press, bending or punching machine with such a drive and a method for operating such a drive.
  • Hydraulic drives with a driving and a working cylinder are known in the art.
  • Such a hydraulic drive is for example in JP H06 39285 U discloses and has two mechanically coupled cylinders, two 2/2 way valves and a hydraulic pump, which are interconnected in a hydraulic circuit.
  • EP 2 480 405 B1 discloses a hydraulic drive with a drive and a working cylinder with a variable speed pump as an actuator in a closed hydraulic circuit to which a pressure reservoir is connected via a valve.
  • the two cylinders are separated from each other as Differential cylinder executed.
  • a more compact design would be desirable.
  • the drive cylinder falls in the power gear as an additional force-exerting component, so that the force acting in the power gear must be applied alone by the cylinder, which reduces the efficiency of the drive.
  • the speed of the tool is determined solely by its weight. It can therefore be achieved in rapid traverse no higher speeds than those given by the weight of the tool.
  • this hydraulic drive is limited variably operable. It is therefore desirable to provide a hydraulic drive which requires a minimum number of components, minimizes the installation effort, improves energy efficiency, can be constructed compactly and is sufficiently variable in operation.
  • working cylinder refers to a cylinder which is provided for the implementation of a force-building movement sequence, thus allowing a movement of the piston rod with high force at low speed.
  • drive cylinder refers to a cylinder which is provided for a fast movement while applying a small force.
  • working and driving cylinders are mechanically interconnected.
  • the working cylinder does not actively contribute to the fast movement, but is moved by the driving cylinder as a passive component.
  • the driving cylinder actively supports the working cylinder in the force-building movement (high force, low speed) by also establishing a force in the direction of movement of the piston rod in the driving cylinder.
  • the driving and working cylinders each have two cylinder chambers, which are separated by a piston, each with a piston surface to the upper and lower cylinder chamber.
  • the cylinder space is referred to as the upper cylinder space, in which the hydraulic fluid is conveyed in by means of the hydraulic machine during the force-building movement (force passage).
  • the other cylinder space in the respective cylinder is referred to as the lower cylinder space, in which the hydraulic fluid is conveyed out by means of the hydraulic machine during the force-building movement (force passage)
  • the piston rod direction in the present invention refers to the two directions in which the piston rod can move. The Piston rod direction is thus determined by the piston rod and by the orientation of the cylinder.
  • hydraulic fluid refers to any fluid that is capable of transmitting mechanical energy in hydraulic systems. Suitable hydraulic fluids have good lubricating properties, high resistance to aging and high wetting and adhesion. In addition, they should have a compatibility with seals and a resin and acid freedom and show a low temperature effect on the dynamic and kinematic viscosity, low compressibility and low foaming. Suitable hydraulic fluids are, for example, mineral oils, also called hydraulic oils, or low-flammability liquids such as HFA, HFB, HFC or HFD.
  • the circulation of the hydraulic fluid refers to the shifting (conveying) of hydraulic fluid through the pressure lines of the pressure circuit through from a cylinder chamber in another cylinder chamber.
  • the hydraulic fluid is circulated in a closed pressure circuit.
  • the term "closed” refers to the absence of open to the ambient air oil tanks for oil balance in the hydraulic drive.
  • the closed pressure circuit is a system of multiple pressure lines that can not leave the hydraulic fluid in operation, except for leaks.
  • the pressure circuit is made up of different pressure lines that connect the hydraulic machine to the cylinders.
  • the pressure circuit may comprise pressure lines which branch into a plurality of lines or comprise connection points at which a plurality of pressure lines are combined to form a further pressure line.
  • the hydraulic drive according to the invention can thus be operated in the closed pressure circuit without oil tanks or oil compensation reservoirs which are open to the ambient air.
  • the pressure circuit is biased, that is, he is under an increased permanent pressure.
  • the bias of the hydraulic fluid increases the modulus of compression of the fluid. This increases the natural frequency of the system, resulting in an improvement of the dynamic Properties leads. Furthermore, the bias prevents the pump from being damaged by cavitation effects. Operation of the hydraulic machine with non-preloaded hydraulic fluids would cause these fluids to first relax or first compress before moving in the pressure circuit. Thus, non-preloaded pressure circuits operate with a delay in hydraulic motion, thereby losing drive energy through the compression and expansion operations in the hydraulic fluid as it is being delivered by the hydraulic machine.
  • the preload pressure in the hydraulic drive according to the invention is therefore preferably at least 5 bar.
  • the biasing pressure can be kept constant, for example via a pressure source which is connected via a check valve to the pressure circuit. The check valve allows the pressure source to only compensate for leaks. With a perfect tightness of the hydraulic drive or of the pressure circuit and of an incompressible fluid, this pressure source would not be necessary for the operation of the hydraulic drive.
  • the hydraulic machine is integrated in the pressure circuit by their two pressure ports (first and second pressure port) are connected to the pressure lines of the pressure circuit.
  • the hydraulic machine is for example a variable speed hydraulic machine.
  • the operation of the hydraulic drive refers to an entire cycle of movement of the components that are moved by the hydraulic drive.
  • the cycle of movement is completed when the same position of the cylinder and the piston rod is reached after passing through an upper and a lower dead center. Dead center is the point at which the piston rod comes to rest and then reverses its direction of movement.
  • An operating cycle is divided into different operating phases of the hydraulic drive. In the operating phase "rapid traverse downwards", the hydraulic drive drives the piston rod out at high speed and with little force; in the "power gear” operating phase, the movement becomes equal Direction continued at low speed and high power. Upon reaching the dead center, the operating phase "force reduction" takes place until the hydraulic drive is relaxed and the direction of movement can be reversed.
  • the hydraulic drive according to the invention comes with a minimum number of components, keeps the installation costs low, improves energy efficiency, can be built more compact and is sufficiently variable operable.
  • the hydraulic drive requires only a single actuator (the hydraulic machine) to supply both the drive and power cylinders.
  • the first directional control valve is arranged in a first pressure line of the pressure circuit, which connects the two cylinder chambers of the working cylinder with each other and in a first switching position allows a passage on both sides of the hydraulic fluid for shorting the two cylinder chambers.
  • the first pressure line may include branches into further pressure lines.
  • the directional control valve may be any suitable directional control valve with at least two switching positions. In a preferred embodiment, the first directional control valve is a 2/2-way valve and is provided to block the first pressure line in both directions in the other second switching position.
  • the first directional control valve is a continuous valve.
  • the second directional control valve can also be a continuous valve.
  • the first pressure port of the hydraulic machine is connected via a second and third pressure line of the pressure circuit with the respective upper cylinder chambers of the working and driving cylinders, wherein the second directional control valve is arranged in the second pressure line to the upper cylinder chamber of the working cylinder.
  • the hydraulic machine conveys the hydraulic fluid in the pressure circuit in one or the other direction.
  • the hydraulic machine has two ports, a first and a second pressure port.
  • the second pressure line can open either directly into the upper cylinder chamber of the working cylinder or in one embodiment in the first pressure line and thus be connected via the first pressure line to the upper cylinder chamber of the working cylinder.
  • the hydraulic machine can promote the hydraulic fluid in the upper cylinder chambers of the two cylinders via its first pressure port and thus build up pressure and thus force for the power transmission in both cylinders or depending on the switching position of the second directional control valve, the hydraulic fluid only in the upper cylinder space of the cylinder for promote a rapid traverse.
  • the second directional control valve may be any suitable directional control valve with at least three switching positions. In a preferred embodiment, the second directional control valve is a 2/3-way valve with three different switching positions.
  • a first one of the switching positions of the second directional valve allows a double-sided passage of the hydraulic fluid for shorting the two upper cylinder chambers, while a second one of the switching positions of the second directional valve is a check valve position, the passage is blocked in the direction of the upper cylinder space of the driving cylinder and in reversed direction, and a third of the Switching positions of the second directional valve blocks the second pressure line in both directions.
  • the first switching position of the second directional valve allows a power reduction after completion of the power stroke, since this switching position allows the hydraulic fluid to flow from both upper cylinder chambers with appropriate operation of the hydraulic machine and thus reduce the force on the piston surfaces.
  • the second switching position of the second directional valve allows pressure equalization by pressure from the upper cylinder chamber of the cylinder in the open bypass (short circuit) of the working cylinder at rapid traverse by the non-return position opens when exceeding a minimum pressure, the second directional control valve in the direction of the working cylinder.
  • the pressure for the power gear exceeds the blocking pressure of the non-return valve position by far, so that the second directional control valve opens the second pressure line to the upper cylinder chamber of the working cylinder even during power transmission.
  • the second pressure line can either open directly into the upper cylinder space of the working cylinder or open in one embodiment in the first pressure line and thus be connected via the first pressure line to the upper cylinder chamber of the working cylinder.
  • the second pressure port of the hydraulic machine is connected via a fourth and fifth pressure line of the pressure circuit to the lower cylinder chambers of the working and driving cylinders without interposed directional control valves.
  • the hydraulic machine delivers hydraulic fluid to the second and third pressure lines via the first pressure connection
  • the hydraulic fluid must be supplied to the hydraulic machine via the other (second) pressure connection.
  • it is connected to the lower cylinder chambers of the two cylinders without interposed directional control valves.
  • the hydraulic fluid over the first Redirected pressure port in the hydraulic machine, wherein the first and second directional control valves have a correspondingly suitable switching position.
  • both the working cylinder and the driving cylinder are synchronized cylinders with respective annular surfaces as piston surfaces.
  • a synchronous cylinder (or sync cylinder referred to) has on both sides of the piston surface a piston rod.
  • the volume of the liquid flowing into the one chamber corresponds to the volume of the liquid flowing out of the other chamber.
  • the working cylinder and the driving cylinder are arranged as a tandem cylinder with a common piston rod.
  • the two cylinders are interconnected so that the piston rod of the working cylinder passes through the bottom of the cylinder and acts as its piston rod also or directly connected to the piston rod.
  • a coupling of the piston surfaces can also be achieved during power transmission, so that a higher force at the same pressure of the hydraulic fluid generated by the hydraulic machine can be achieved during power transmission, as would be possible with non-coupled piston rods, as for example in Arrangement with separate differential piston would be the case, in particular where, for example, the annular chamber opposite piston chamber of the driving cylinder is not connected to the pressure circuit.
  • the piston surfaces of the driving cylinder are smaller than the piston surfaces of the working cylinder.
  • the piston surface of the working cylinder is at least 100% larger than that of the driving cylinder, more preferably this is at least 300% larger, more preferably this is at least 500% larger.
  • the hydraulic machine comprises only a single pump and a mechanically coupled to the pump motor for driving the pump, wherein the motor variable speed and / or the pump is a variable displacement pump.
  • the hydraulic drive has only a single actuator (the pump), avoiding an unnecessary increase in the number of components.
  • the motor is an electric motor.
  • the motor is a variable-speed electric motor and the pump is a fixed displacement pump. Due to the variable speed pump drive, the energy efficiency of the hydraulic drive can be greatly improved. With the above embodiment of the hydraulic machine also a decentralization of the drive can be achieved.
  • the invention further relates to press, bending or punching machine comprising a hydraulic drive according to the invention.
  • a particular advantage of the method according to the invention is that at rapid traverse the direction of movement can be changed without switching over the valves. To reverse the direction of movement, it is sufficient to reverse the conveying direction of the hydraulic machine.
  • the method includes the further step of operating the hydraulic drive at a standstill, wherein the first and second directional control valves are operated in a switching position that locks the respective pressure lines in both directions, and wherein the hydraulic machine does not deliver the hydraulic fluid.
  • the method comprises the further step of the variable-speed operation of the hydraulic machine by means of a mechanically coupled electric motor.
  • Fig.1 1 shows a schematic representation of the hydraulic drive 1 according to the invention.
  • the hydraulic drive 1 comprises a working cylinder 2 and a driving cylinder 3, each having an upper cylinder space 21, 31 and a lower cylinder space 22, 32, the cylinders 2, 3 acting as synchronous cylinders with respective annular surfaces 23 , 33 and with a common piston rod 8 as a tandem cylinder in the piston movement direction R1, R2 are arranged one above the other.
  • the piston surfaces 33 of the driving cylinder 3 are designed smaller than the piston surfaces 23 of the working cylinder 2 in order to achieve a faster speed during rapid traverse with the same delivery volume per unit time by the hydraulic machine 5.
  • the annular surface 33 of the driving cylinder 3 is approximately 120 cm 2 and the annular surface 23 of the working cylinder 2 is approximately 700 cm 2 .
  • a pressure force of 2500 kN can be achieved in the pressure circuit 4 at a pressure of 300 bar in the pressure circuit 4.
  • the annular surfaces 23, 33 have the same area for the respective cylinders 2, 3 in the upper and lower cylinder chambers.
  • the hydraulic machine 5 comprises in this embodiment only a single pump 53 and a mechanically coupled to the pump 53 electric motor 54 for variable-speed drive of the pump 53.
  • the mechanical coupling is symbolized by the double line between the pump 53 and electric motor 54.
  • the pump 53 has, for example, a capacity of 1300 l / min.
  • a first directional control valve 6 and a second directional control valve 7 are arranged in the pressure circuit 4, that their respective switch positions suitable for the various operating phase of the hydraulic drive 1 (see Fig.2 ) together with the suitably operated pump drive 5 allow a common movement of the working and driving cylinders 2, 3 in one or the other piston movement direction R1, R2.
  • a first pressure line connects the upper cylinder chamber 21 with the lower cylinder chamber 22 of the working cylinder via the first directional control valve 6 arranged in the first pressure line 41.
  • the first pressure line 41 and the first directional control valve should have, for example, a passage capacity of more than 4000 l / min.
  • the lower cylinder chambers 22 and 32 of the working and driving cylinders 2, 3 are connected to one another via the pressure lines 45 and 44, without a switchable directional control valve being arranged in this connection.
  • the upper cylinder space 31 and the cylinder space 32 of the driving cylinder 3 are connected to each other via the third and fourth pressure line 43 and 44, in which case the hydraulic machine 5 is interposed via the pressure ports 51, 52.
  • the third pressure line 43 is connected via the second pressure line 42 to the first pressure line 41 so that between the third pressure line 43 and the upper cylinder chamber 21 of the working cylinder 2, the second directional control valve 7 is arranged in the second pressure line 42.
  • the second directional control valve 7 may have a low passage capacity with respect to the first directional control valve, for example, higher than 700 l / min.
  • the connection of the third pressure line 43 with the lower cylinder chamber 22 of the working cylinder 2, on the other hand, is realized via the second pressure line 42 with the second directional control valve 7 and the first pressure line 41 with the first directional control valve 6 arranged therebetween.
  • the hydraulic drive 1 requires for operation in addition to the first and second directional control valve 6, 7 no further valves, so that the inventive hydraulic drive 1 with a minimum number of components is operable.
  • the pressure lines 41, 42, 43, 44, 45 branch partially in the pressure circuit 4 or partially run together in this.
  • the branching points (merge points) are indicated by black dots at the respective locations.
  • the pressure lines, which only cross without being connected there, are shown without these black dots, see the intersecting pressure lines 42 and 44 between the directional control valves 6 and 7.
  • Fig.2 schematically the possible switching positions (a) of the first directional control valve and (b) of the second directional control valve are shown in detail.
  • the first directional control valve 6 is shown in this embodiment as a 2/2-way valve and allows in a first switching position 61 a two-sided passage of the hydraulic fluid F. In a second switching position 62, however, it locks in both directions.
  • the second directional control valve 7 is in this embodiment, a 2/3-way valve 7 with three different switching positions 71, 72, 73.
  • the second directional control valve 7 allows a passage of the hydraulic fluid F on both sides
  • a second switching position 72 includes second directional control valve 7, a check valve position, the passage in one direction (here in the direction of the upper cylinder chamber 31 of the cylinder 3) is locked and in a third switching position 73 locks the second directional control valve 7 in both directions.
  • Figure 3 shows the switching positions of the directional control valves 6, 7 at the (a) rapid traverse, (b) power transmission, (c) power reduction and (d) standstill, see in addition also Fig.2 ,
  • the pressure line 41, 42, 43, 44, 45 is on Fig.1 directed.
  • the first directional control valve 6, the switching position 61 two-sided passage of the hydraulic fluid F in the first pressure line 41).
  • the two cylinder chambers 21, 22 of the working cylinder 2 are connected to each other and thus on the two-way possible passage of the hydraulic fluid F short-circuiting of the two cylinder chambers 21, 22 achieved.
  • no resultant force can be exerted on the piston surfaces of the working cylinder with the hydraulic fluid so that it runs passively with the driving cylinder.
  • the second directional control valve 7 is in the second switching position 72 in the check valve position, wherein the passage is blocked in the direction of the upper cylinder chamber 31 of the driving cylinder 3, while a passage of the hydraulic fluid F in the direction of the working cylinder 2 at a pressure higher than a threshold pressure possible is and even at high pressure on the drive cylinder 3, a pressure equalization between the cylinder chambers 21, 22 of the working cylinder 2 via the opening through the first directional control valve 6 pressure line 41 prevails.
  • the hydraulic machine 5 promotes at a rapid traverse BE down (R1), the hydraulic fluid F from the lower cylinder chamber 32 of the driving cylinder 3 via the pressure lines 44 and 43 in the upper cylinder chamber 31 of the cylinder 3, while at a rapid traverse BE up (R2), the hydraulic Liquid F is conveyed from the upper cylinder chamber 31 of the driving cylinder 3 via the pressure lines 43 and 44 into the lower cylinder chamber 32 of the driving cylinder 3.
  • R1 rapid traverse BE down
  • R2 rapid traverse BE up
  • the second directional valve is still in the check valve position 72, the one Passage of the now by the flow rate of the hydraulic machine. 5 under higher pressure hydraulic fluid F in the pressure lines 42, 43 in the direction of the working cylinder 2.
  • the first directional control valve 6 is now in the second switching position 62, which blocks the first pressure line 41 in both directions, so that through the second directional control valve 7 in the switching position 72 passed hydraulic fluid F can only reach into the upper cylinder chamber 21 to build up pressure on the piston surface 23.
  • the first directional control valve 6 remains in the second switching position 62, which closes the first pressure line 41 in both directions, while the second directional control valve 7 is switched to the first switching position 71, where the second directional control valve 7 a passage of the hydraulic fluid through the second pressure line 42 allows, so that the pressure differences between the upper and lower cylinder chambers can be reduced by means of a conveying direction of the hydraulic fluid F from the upper cylinder chambers 21, 31 to the lower cylinder chambers 22, 32.
  • the hydraulic fluid F is conveyed from the upper cylinder chamber 31 of the driving cylinder 3 via the pressure lines 43 and 44 in the lower cylinder chamber 32.
  • the hydraulic fluid F from the upper cylinder chamber 21 of the working cylinder 2 via the first pressure line 41 and via the second pressure line 42 with open second directional control valve 7 in the lower cylinder chamber 22 via the fifth pressure line 45 promoted.
  • the machine operated with the hydraulic drive 1 remains in a holding position BH (operating phase holding position or standstill)
  • the first directional control valve 6 remains in the second switching position 62 and the second directional control valve is switched to the third switching position 73, where it blocks the second pressure line 42 in both directions.
  • the hydraulic machine 5 does not convey hydraulic fluid F in any direction, so that the hydraulic fluid F in the pressure circuit 4 rests without movement and holds the piston rod 8 in position by means of the biasing pressure.
  • FIG. 4 shows an embodiment of the method according to the invention for operating the hydraulic drive according to the invention Fig.1 comprising the steps of operating the hydraulic drive 1 in rapid traverse BE upwards or downwards by means of the hydraulic machine 5 and the first and second directional control valves 6 and 7, the first directional control valve 6 being arranged in a first pressure line 41 of the pressure circuit 4 and in a first switching position 61 is operated, which short-circuits the two cylinder chambers 21, 22 of the working cylinder 2 for the two-way passage of the hydraulic fluid F, wherein the second directional control valve 7 is operated in a check valve position 72, so that the passage is blocked in the direction of the upper cylinder chamber 31 of the driving cylinder 3, but the hydraulic fluid F from the third pressure line 43 through the second pressure line 42 in the first pressure line 41 passes, and wherein the hydraulic machine 5, the hydraulic fluid F for a movement of the R1 Piston rod 8 in the direction of the lower cylinder chambers 22, 32 and for a movement R2 in the direction of the upper cylinder chambers 21, 31 promotes
  • This can be followed, on the one hand, by re-running the above-described operating phases (rapid traverse BE, force BK, relax BS, rapid traverse BE and decock BS and so on) or a transition to the holding position BH with the switching positions 62 and 73 of the first and second Directional valve 6, 7.
  • the individual switching positions and the operation of the hydraulic machine 5 in one of the two directions of conveying the hydraulic fluid F or no promotion by the hydraulic machine 5 can be adjusted, controlled and / or switched in a suitable manner.
  • the switching positions are adjusted by a drive control unit 9 of the hydraulic drive 1 and the hydraulic machine is controlled accordingly.
  • the corresponding drives can be stored in the drive control unit 9 in terms of hardware or software.
  • the initiation (start) of the drive control can be automatic or manual.
  • the individual operating phases are set manually or can be set manually.
  • the embodiments shown herein are only examples of the present invention and therefore should not be considered as limiting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Claims (13)

  1. Entraînement hydraulique (1) comprenant un cylindre de travail (2) et un cylindre de déplacement (3) relié mécaniquement au cylindre de travail (2), le cylindre de travail (2) et le cylindre de déplacement (3) comprenant chacun une chambre de cylindre supérieure et une chambre inférieure (21, 22, 31, 32) et les quatre chambres de cylindre (21, 22, 31, 32) du cylindre de travail et du cylindre de déplacement (2, 3) étant reliées les unes aux autres de manière appropriée dans un circuit de pression (4) fermé et précontraint, rempli d'un liquide hydraulique (F), une machine hydraulique (5) présentant un premier et un deuxième raccord de pression (51, 52) étant disposée dans le circuit de pression (4) pour transférer le liquide hydraulique (F) entre les différentes chambres de cylindre (21, 22, 31, 32) du cylindre de travail et du cylindre de déplacement (2, 3) pendant le fonctionnement de l'entraînement hydraulique (1), le premier raccord de pression (51) de la machine hydraulique (5) étant relié via une deuxième et une troisième conduite de pression (42, 43) du circuit de pression (4) aux chambres de cylindre supérieures (21, 31) respectives des cylindres de travail et de déplacement (2, 3) et au moins une première soupape de distribution (6) et au moins une deuxième soupape de distribution (7) présentant au moins trois positions de commutation différentes (71, 72, 73) étant disposées dans le circuit de pression (4) de manière telle que leurs positions de commutation (61, 62, 71, 72, 73) respectives appropriées pour les différentes phases de fonctionnement de l'entraînement hydraulique (1) permettent, conjointement avec la machine hydraulique (5) fonctionnant de manière appropriée, un déplacement commun du cylindre de travail et du cylindre de déplacement (2, 3) dans l'un ou l'autre sens de déplacement du piston (R1, R2), de préférence, à cette fin, seules la première et la deuxième soupapes de distribution (6, 7) sont disposées dans le circuit de pression (4), la deuxième soupape de distribution (7) étant disposée dans la deuxième conduite de pression (42) vers la chambre de cylindre (21) supérieure du cylindre de travail (2), une première des positions de commutation (71) de la deuxième soupape de distribution (7) permettant un passage des deux côtés du liquide hydraulique (F) pour court-circuiter les deux chambres de cylindre supérieures (21, 31), une deuxième des positions de commutation (72) de la deuxième soupape de distribution (7) étant une position de clapet antiretour, le passage vers la chambre de cylindre supérieure (31) du cylindre de déplacement (3) étant bloqué et permis en sens inverse et une troisième des positions de commutation (73) de la deuxième soupape de distribution (7) bloquant la deuxième conduite de pression (42) dans les deux sens.
  2. Entraînement hydraulique (1) selon la revendication 1,
    caractérisé en ce que
    la première soupape de distribution (6) est disposée dans une première conduite de pression (41) du circuit de pression (4), qui relie les deux chambres de cylindre (21, 22) du cylindre de travail (2) l'une avec l'autre et qui permet, dans une première position de commutation (61), un passage des deux côtés du liquide hydraulique (F) pour court-circuiter les deux chambres de cylindre (21, 22).
  3. Entraînement hydraulique (1) selon la revendication 2,
    caractérisé en ce que
    la première soupape de distribution (6) est une soupape à 2/2 voies (6) et est destinée à bloquer, dans l'autre deuxième position de commutation (62), la première conduite de pression (41) dans les deux sens.
  4. Entraînement hydraulique (1) selon une des revendications précédentes,
    caractérisé en ce que
    la deuxième soupape de distribution (7) est une soupape à 2/3 voies (7).
  5. Entraînement hydraulique (1) selon une des revendications précédentes,
    caractérisé en ce que
    le deuxième raccord de pression (52) de la machine hydraulique (5) est relié, via une quatrième et une cinquième conduite de pression (44, 45) du circuit de pression (4) aux chambres de cylindre inférieures (22, 32) des cylindres de travail et de déplacement (2, 3) sans soupape de distribution intercalée.
  6. Entraînement hydraulique (1) selon une des revendications précédentes,
    caractérisé en ce que
    tant le cylindre de travail (2) que le cylindre de déplacement (3) sont des cylindres synchrones présentant des surfaces annulaires (23, 33) respectives en tant que surfaces de piston.
  7. Entraînement hydraulique (1) selon la revendication 6,
    caractérisé en ce que
    le cylindre de travail (2) et le cylindre de déplacement (3) sont disposés en tant que cylindres tandem présentant des tiges de piston (8) communes.
  8. Entraînement hydraulique (1) selon la revendication 6 ou 7,
    caractérisé en ce que
    les surfaces (33) de piston du cylindre de déplacement (3) sont plus petites que les surfaces (23) de piston du cylindre de travail (2).
  9. Entraînement hydraulique (1) selon une des revendications précédentes,
    caractérisé en ce que
    la machine hydraulique (5) ne comprend qu'une seule pompe (53) et un moteur (54) accouplé mécaniquement à la pompe (53) pour l'entraînement de la pompe (53), le moteur (54) étant un moteur à vitesse variable et/ou la pompe (53) étant une pompe réglable.
  10. Machine à presser, à cintrer ou à poinçonner, comprenant un entraînement hydraulique (1) selon une des revendications 1 à 9.
  11. Procédé pour le fonctionnement d'un entraînement hydraulique (1) selon une des revendications 1 à 9, comprenant un cylindre de travail et un cylindre de déplacement (2, 3) accouplés mécaniquement présentant chacun une chambre de cylindre supérieure et une chambre de cylindre inférieure (21, 22, 31, 32), les quatre chambres de cylindre (21, 22, 31, 32) du cylindre de travail et du cylindre de déplacement (2, 3) étant reliées l'une à l'autre de manière appropriée dans un circuit de pression (4) fermé et précontraint, rempli d'un liquide hydraulique (F) et une machine hydraulique (5) présentant un premier et un deuxième raccord de pression (51, 52) étant disposée dans le circuit de pression (4) pour transférer le liquide hydraulique (F) entre les différentes chambres de cylindre (21, 22, 31, 32) du cylindre de travail et du cylindre de déplacement (2, 3) pendant le fonctionnement de l'entraînement hydraulique (1), comprenant les étapes de
    - fonctionnement (BE) de l'entraînement hydraulique (1) dans un processus rapide vers le haut ou vers le bas au moyen de la machine hydraulique (5) et d'une première et d'une deuxième soupape de distribution (6, 7), la première soupape de distribution (6) étant disposée dans une première conduite de pression (41) du circuit de pression (4) et actionnée dans une première position de commutation (61), qui court-circuite les deux chambres de cylindre (21, 22) du cylindre de travail (2) pour le passage des deux côtés du liquide hydraulique (F), la deuxième soupape de distribution (7) étant actionnée dans une position de clapet anti-retour (72), de telle sorte que le passage vers la chambre de cylindre supérieure (31) du cylindre de déplacement (3) soit bloqué et la machine hydraulique (5) transportant le liquide hydraulique (F), pour un déplacement (R1) de la tige (8) de piston, vers les chambres de cylindre inférieures (22, 32) et pour un déplacement (R2) vers les chambres de cylindre supérieures (21, 31),
    - fonctionnement (BK) de l'entraînement hydraulique (1) dans un processus de force, la première soupape de distribution (6) étant actionnée dans une deuxième position de commutation (62), qui bloque la première conduite de pression (41) dans les deux sens, la deuxième soupape de distribution (7) restant dans la position de clapet anti-retour (72) du processus rapide et la machine hydraulique (5) transportant le liquide hydraulique (F) vers les chambres de cylindre supérieures (21, 31),
    - détente (BS) de l'entraînement hydraulique (1) après le processus de force, la première soupape de distribution (6) restant dans la deuxième position de commutation (62) du processus de force, la deuxième soupape de distribution (7) étant actionnée dans une première position de commutation (71), qui permet un passage des deux côtés du liquide hydraulique (F) pour court-circuiter les deux chambres de cylindre supérieures (21, 31) et la machine hydraulique (5) transportant le liquide hydraulique (F) vers les chambres de cylindre inférieures (22, 32).
  12. Procédé selon la revendication 11, comprenant l'étape supplémentaire de fonctionnement (BH) de l'entraînement hydraulique (1) dans une position à l'arrêt, la première et la deuxième soupape de distribution (6, 7) étant actionnées dans une position de commutation (62, 73) qui bloque les conduites de pression (41, 42) respectives dans les deux sens et la machine hydraulique (5) ne transportant pas le liquide hydraulique (F).
  13. Procédé selon une des revendications 11 ou 12 comprenant l'étape supplémentaire de fonctionnement à vitesse variable de la machine hydraulique (5) au moyen d'un moteur électrique (54) accouplé de manière mécanique.
EP14171118.4A 2014-06-04 2014-06-04 Système hydraulique Active EP2952750B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14171118.4A EP2952750B1 (fr) 2014-06-04 2014-06-04 Système hydraulique
US15/316,085 US10626889B2 (en) 2014-06-04 2015-06-03 Hydraulic system
PCT/EP2015/062409 WO2015185644A1 (fr) 2014-06-04 2015-06-03 Système hydraulique
CN201580029083.XA CN106471262B (zh) 2014-06-04 2015-06-03 液压系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14171118.4A EP2952750B1 (fr) 2014-06-04 2014-06-04 Système hydraulique

Publications (2)

Publication Number Publication Date
EP2952750A1 EP2952750A1 (fr) 2015-12-09
EP2952750B1 true EP2952750B1 (fr) 2018-09-05

Family

ID=50884743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14171118.4A Active EP2952750B1 (fr) 2014-06-04 2014-06-04 Système hydraulique

Country Status (4)

Country Link
US (1) US10626889B2 (fr)
EP (1) EP2952750B1 (fr)
CN (1) CN106471262B (fr)
WO (1) WO2015185644A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876523B2 (en) 2013-08-13 2020-12-29 Ameriforge Group Inc. Well service pump system
EP3109488B1 (fr) * 2015-06-25 2017-12-13 MOOG GmbH Entraînement hydraulique de fonctionnement sécurisé
JP6768351B2 (ja) * 2016-05-31 2020-10-14 コマツ産機株式会社 プレスブレーキ、および曲げ加工方法
DE102016113882A1 (de) * 2016-07-27 2018-02-01 Moog Gmbh Elektro-hydrostatisches Antriebssystem
CN110831750B (zh) * 2017-08-01 2022-03-04 穆格股份有限公司 用于控制液压缸切换的装置
CN111432951A (zh) * 2018-02-23 2020-07-17 宇部兴产机械株式会社 挤压装置和挤压方法
CN108723203B (zh) * 2018-07-12 2024-02-02 重庆伦瑞风传动科技有限公司 微耕机壳体冲压装置
DE102018120000A1 (de) * 2018-08-16 2020-02-20 Moog Gmbh Elektrohydrostatisches Aktuatorsystem mit Nachsaugbehälter
MX2021002864A (es) * 2018-09-13 2021-05-28 Smc Corp Cilindro hidraulico.
US11891987B2 (en) * 2018-12-14 2024-02-06 Schwing Gmbh Piston pump and method for operating a piston pump
DE102018222425A1 (de) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Hydrostatischer Antrieb, insbesondere für eine Presse oder eine Spritzgießmaschine
CN110126327A (zh) * 2019-05-17 2019-08-16 扬州地龙机械有限公司 一种快速定位的液压机
CN111486142B (zh) * 2020-06-08 2021-12-28 香河博钒汽车零部件有限公司 用于齿轮坯料的冲压装置
JP7518700B2 (ja) 2020-09-02 2024-07-18 住友重機械工業株式会社 液圧プレス及び液圧プレスの制御方法
DE102021121461A1 (de) 2021-08-18 2023-02-23 Dorst Technologies Gmbh & Co. Kg Pulverpresse mit hydraulischem Pressenantrieb

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676572A (en) * 1949-08-10 1954-04-27 Perry Fay Company Fluid pressure tool slide control assembly
US3017865A (en) * 1959-02-16 1962-01-23 Martin Marietta Corp Infinitely variable hydraulic damper and locking mechanism
GB917808A (en) * 1960-05-12 1963-02-06 Fairey Eng Improvements relating to servo systems
US4030299A (en) * 1974-12-20 1977-06-21 Ex-Cell-O Corporation Intensified cylinder assembly
FR2391844A1 (fr) 1977-05-25 1978-12-22 Manceau Marcel Verin hydraulique a courses differentielles
DE3734329A1 (de) * 1987-10-10 1989-04-20 Bosch Gmbh Robert Hydraulische steuereinrichtung fuer eine presse
JP2513964Y2 (ja) * 1992-10-20 1996-10-09 内田油圧機器工業株式会社 プレス用油圧回路
WO1997002132A1 (fr) * 1995-07-06 1997-01-23 Komatsu Ltd. Dispositif de cylindre a charge et vitesse elevee et procede de commande
KR100266339B1 (ko) * 1995-07-25 2000-09-15 와타나베 모토아키 유압 프레스의 고속 안전 회로
JP2004526604A (ja) * 2001-05-19 2004-09-02 ボッシュ レックスロート アクチエンゲゼルシャフト 駆動装置、特にプラスチック射出成形機の閉鎖ユニットまたは射出ユニットの可動な部分を駆動するための駆動装置
CN100423934C (zh) 2003-05-16 2008-10-08 博世力士乐股份有限公司 液压传动装置
JP4422593B2 (ja) * 2004-11-22 2010-02-24 日立オートモティブシステムズ株式会社 パワーステアリング装置
CN1932215B (zh) * 2006-09-30 2010-08-11 三一重工股份有限公司 用于抑制混凝土泵车臂架振动的方法及装置
US8037678B2 (en) * 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
DE102009043034A1 (de) 2009-09-25 2011-03-31 Robert Bosch Gmbh Vorgespannter hydraulischer Antrieb mit drehzahlvariabler Pumpe
AT509239B1 (de) * 2009-12-17 2013-03-15 Trumpf Maschinen Austria Gmbh Antriebsvorrichtung für eine biegepresse
CN103201093B (zh) * 2010-11-11 2017-02-15 罗伯特·博世有限公司 液压轴
DE102010053811A1 (de) * 2010-12-08 2012-06-14 Moog Gmbh Störungssicheres Betätigungssystem
US9488199B2 (en) * 2014-06-27 2016-11-08 Peter Nellessen Subsea actuator with three-pressure control
DE102014214739B3 (de) * 2014-07-28 2015-12-31 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Stanzvorrichtung, verfahren zum stanzen eines werkstücks und computerprogrammprodukt zur durchführung des verfahrens
DE102014218887B3 (de) * 2014-09-19 2016-01-28 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
US11137000B2 (en) * 2014-10-10 2021-10-05 MEA Inc. Self-contained energy efficient hydraulic actuator system
JP6289358B2 (ja) * 2014-12-17 2018-03-07 株式会社コガネイ 間欠エア吐出装置

Also Published As

Publication number Publication date
US20170108014A1 (en) 2017-04-20
CN106471262A (zh) 2017-03-01
CN106471262B (zh) 2020-02-07
WO2015185644A1 (fr) 2015-12-10
EP2952750A1 (fr) 2015-12-09
US10626889B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
EP2952750B1 (fr) Système hydraulique
DE102014218887B3 (de) Hydraulischer Antrieb mit Eilhub und Lasthub
EP2480405B1 (fr) Entrainement hydraulique precontraint dote d'une pompe a vitesse variable
EP2676036B1 (fr) Système d'entraînement hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses, et procédé permettant de faire fonctionner un tel système d'entraînement hydraulique sans accumulateur de pression
EP3159549B1 (fr) Dispositif de recuperation d'energie hydraulique pour un engin de travail et engin de travail correspondant
DE102014218885A1 (de) Hydraulischer Antrieb mit Eilhub und Lasthub
EP1780420A2 (fr) Unité hydraulique d'alimentation en pression et unité de traitement électro-hydraulique
DE102011078241B3 (de) Hydraulikeinheit und Verfahren zum Betreiben einer Hydraulikeinheit
WO2013167111A1 (fr) Presse à filer hydraulique et procédé de fonctionnement d'une presse à filer hydraulique
DE102017000523B4 (de) Hydraulikvorrichtung für eine Formgebungsmaschine
DE102019204874A1 (de) Umschaltvorrichtung und Schmierpumpe
DE102015211305B3 (de) Druckabhängig einlegbare Parksperre für hydraulisches Schaltgetriebe
EP1958754A1 (fr) Dispositif d'entraînement, en particulier pour un composant mobile sur une machine de moulage par injection de matière plastique ou une machine de formage par soufflage
DE102015212101A1 (de) Hydrauliksteuerung für einen Aktuator in einem Fahrzeuggetriebe
DE102015210350A1 (de) Hydraulische Schaltung zur Druckmittelversrgung eines hydraulischen Verbrauchers in einem geschlossenen hydraulischen Kreis
DE102013227053B4 (de) Hydraulische Achse
DE102018203367A1 (de) Hydrostatischer Linearantrieb
DE102013007668B4 (de) Hydraulisches Antriebssystem für zwei in etwa parallel angeordnete Zylinder
EP2549123A2 (fr) Hydro-pneumatic drive system with one or more double medium working cylinders
DE102019100287B4 (de) Formgebungsmaschine
DE102016206017A1 (de) Hydraulische Schaltelementanordnung
DE102016002555A1 (de) Vorrichtung und Verfahren zum Aufrechterhalten eines erzeugten hydraulischen Druckes
EP3698051B1 (fr) Unité hydraulique à commutation
DE102017117621B3 (de) Verfahren zum Betreiben eines Hydrauliksystems mit einer Niederdruckpumpe und zwei Drucktransformationsspeichern
DE102005041252A1 (de) Elektrohydraulischer Pressenantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160606

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1038148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009353

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014009353

Country of ref document: DE

Representative=s name: WITHERS & ROGERS LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009353

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190604

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1038148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140604

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 11