EP0308644A2 - Fokussierender Ultraschallwandler - Google Patents

Fokussierender Ultraschallwandler Download PDF

Info

Publication number
EP0308644A2
EP0308644A2 EP88113188A EP88113188A EP0308644A2 EP 0308644 A2 EP0308644 A2 EP 0308644A2 EP 88113188 A EP88113188 A EP 88113188A EP 88113188 A EP88113188 A EP 88113188A EP 0308644 A2 EP0308644 A2 EP 0308644A2
Authority
EP
European Patent Office
Prior art keywords
transducer
converter
elements
zones
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88113188A
Other languages
English (en)
French (fr)
Other versions
EP0308644B1 (de
EP0308644A3 (en
Inventor
Helmut Dipl.-Ing. Wurster
Werner Dipl.-Ing. Krauss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Wolf GmbH
Original Assignee
Richard Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Wolf GmbH filed Critical Richard Wolf GmbH
Publication of EP0308644A2 publication Critical patent/EP0308644A2/de
Publication of EP0308644A3 publication Critical patent/EP0308644A3/de
Application granted granted Critical
Publication of EP0308644B1 publication Critical patent/EP0308644B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0625Annular array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to a focusing transducer for generating ultrasound pulses for the destruction of objects inside the body, such as concrements and tissue parts, consisting of a spherical cap with mosaic-like arranged on the concave spherical cap, piezoelectric transducer elements which can be excited to oscillate by means of a control device, the transducer can be aligned with the focus on the transducer axis on the respective object and the generated ultrasound pulses can be transmitted to the patient's body via a coupling medium.
  • DE-A1 27 12 341 shows an ultrasound transducer made of piezoelectric material suitable for ultrasound examination in diagnostic medicine, in which the transducer body is concavely curved is to achieve acoustic focusing of the sound waves in a fixed focus, which is given by the curvature of the transducer.
  • concentric ring electrodes are arranged around a central electrode, which face an electrode extending over the entire active surface.
  • the position of the focal point on the axis of the transducer can be varied in the sense of a shortening or lengthening of the acoustic focal length given by the geometric structure, to the point of infinity.
  • DE-Al 31 19 295 also discloses a device similar to the device described above for destroying concrements located in body cavities.
  • Characteristic feature of this device is a focusing ultrasonic transducer, which is designed as a direct sound system and is so large that the sound power density on the transmission path is so small that tissue damage is avoided, but in the acoustic focal point it is so large that it destroys the concretion at the focal point is sufficient.
  • the division of the transducer surface into rings or into individual transducers assembled in a matrix serves to be able to variably adjust the transducer focus electronically according to the phased array principle.
  • the aim of lithrotripsy has been to avoid the occurrence of negative pressure pulses or at least to reduce them to such an extent that cavitation phenomena can be excluded.
  • the measures taken here relate to a special mechanical structure of the transducer, the aim being that the wave resistance of the material forming the carrier calotte for the transducer elements largely coincides with that of the transducer elements and that the rear calotte surface has no focusing effect. Due to the freedom of reflection given thereby, the deformations of the transducer elements can follow the electrically predetermined pulse shape.
  • Such measures make a transducer designed in this way particularly suitable for the destruction of concrements, but they cannot be used for the targeted destruction of tissue cells, for example in cancer therapy.
  • the object of the invention is to provide an ultrasonic transducer which is suitable for the destruction of concretions as well as tissue cells and which enables the sound pulses to be generated almost arbitrarily in terms of their amplitude, phase position, polarity, shape and duration .
  • transducer mentioned at the outset in that the active transducer surface is subdivided into a plurality of zones oriented to the transducer focus, each of which is assigned a selected number of transducer elements, and in that the transducer zones are optionally serial and / or for generating at least one sound pulse can be controlled in parallel individually, in groups and overall with the control unit.
  • the converter zones can be in the form of concentric rings elements run around the transducer axis or form the shape of spherical surface sectors, but they can also have a shape which is characterized by a combination of the aforementioned transducer shapes.
  • the shape of the sound lobe generated can be influenced by appropriate wiring of the transducer elements or transducer zones, so that it can have, for example, an oval or elliptical cross section if, for example, some transducer zones located on the edge of the transducer surface are not activated.
  • This has the advantage, among other things, that the sound lobe can be adapted to the anatomical conditions, which is important in the case when the patient's ribs should narrow the sound window to a concrement located in the kidney.
  • the amplitude and / or the duration and / or the polarity of the overall sound pulse effective in the converter focus can also be set by serial control of converter zones and by superimposing the sound pulses generated by these in the focus area.
  • a targeted use of the transducer according to the invention as a device for destroying concrements is possible by means of a special circuitry and control of transducer elements in such a way that the active transducer surface ent by the respective oscillation of the respectively activated transducer zones standing negative half-waves of the sound impulses can be compensated by controlling other converter elements in phase opposition, that is to say that essentially only a positive pressure surge will develop at the focal point.
  • the use of the transducer particularly as a device for the destruction of tissue parts, is possible in that the positive half-waves of the sound impulses which arise on the active surface of the transducer elements being operated can be compensated for by counter-phase control of other transducer elements or zones in the focal point.
  • the possibility of increasing and adjusting the amplitudes of positive and negative half-waves of the sound pulses by controlling several or all converter zones in phase.
  • variable wiring and control of the converter zones therefore allows, for example, only a part of the converter zones to be used to generate the sound pulse and the remaining converter zones to be used for counter-control and cancellation of undesired pulse components.
  • all converter zones can be activated in parallel and occasionally controlled with different pulse shapes according to the requirements, whereby a special embodiment can consist in that not only individual pulses are generated, but also, for example, a damped oscillation that adapts to the transient response of the converter is.
  • the transducer zones arranged in the area of the edge zones of the transducer can also be controlled with a lower or higher amplitude than the other transducer zones, in order to achieve a sound pulse shape of special effectiveness.
  • a piezoelectric ultrasound transducer 2 in the form of a spherical cap 3 is located below a lying surface 1 receiving the patient P.
  • the transducer axis is denoted by A, on which the focal point F of the transducer also lies.
  • the radiation surfaces of the transducer elements are firmly aligned with this focal point.
  • the concave transducer surface 4 is directed against an opening 5 arranged in the lying surface 1. This is surrounded by a sealing sleeve 6, which adapts to the patient's body and ensures that the opening 5 is sealed against the part of the patient's body intended for treatment.
  • the spherical cap 3 is surrounded by a bellows 7, which forms a container 8 together with the surface 4 of the spherical cap 3 as the bottom, connected to the underside of the lying surface 1 in the region of the opening 5.
  • the elasticity of the bellows 7 enables the spherical cap 3 to be adjusted in three planes, which can be done in a known manner by means of a coordinate adjustment table, not shown.
  • the container 8 is filled with degassed water heated to body temperature.
  • the concave surface 4 of the spherical cap 3 is equipped with piezoelectric transducer elements.
  • Their arrangement is such that, for example, there is a structure of concentric spherical ring elements 10 and 11, which are arranged around central spherical segments 9, the entire transducer surface 4 being separated by concentric and radial separating joints into individual, electrically and mechanically insulated ring elements 10.1 to 10.5 and 11.1 to 11.5 or spherical segments 9.1 to 9.5.
  • the active surfaces of the ring elements 10, 11 and the spherical segments 9 are electrically connected to a control circuit according to FIG. 2, in which the ring elements 10 and 11 and the spherical segments 9 are shown in simplified form in the form of block symbols.
  • the electrical voltage potential activating the ultrasound transducer 2 lies between these connections and a common surface electrode on the back of the transducer elements.
  • the selection of the transducer elements or zones to be activated, the preselection of the respective pulse intensity and polarity and their temporal use are carried out with a multiplexer 12 for positive pulse shaping and a multiplexer 13 for negative pulse shaping. The different polarity is ensured by corresponding pulse generators 14 and 15.
  • each circuit then has a choice switch 16, a controllable amplifier 17 for setting the respective amplitude of the pulse and a timer 18 for setting the time of activation, so that each converter zone 11.1 to 11.5 can be controlled individually or together with others.
  • some transducer elements or zones can first be driven with a positive pulse and then with a negative pulse other transducer zones can be driven for countermeasures, taking into account the transient response of the transducer elements, so that only a positive pressure surge will occur in focus F. It is also possible to connect all transducer elements in parallel and to control them with different pulse shapes, it also being possible to set the pulse generators 14 and 15 so that, for example, instead of a single pulse, a damped oscillation can be generated which is adapted to the oscillating behavior of the transducer.
  • the individual transducer zones 9, 10 and 11 can be designed as monolithic piezoelectric vibrators, this will generally lead to a limitation of the available sound power. If higher powers are required, the converter and therefore the converter zones will therefore be constructed from mosaic-like converter elements. In addition, all converter zones can consist of ring elements or spherical spherical sectors. Finally, other divisions of the entire active area of the transducer into zones of a different configuration are also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Es ist ein fokussierender Wandler (2) zur Erzeugung von Ultraschallimpulsen für die Zerstörung von körperinneren Objekten, wie von Konkrementen und Gewebeteilen, beschrieben. Der Wandler (2) besteht aus einer Kugelkalotte (3) mit mosaikartig auf der konkaven Kalottenfläche (4) angeordneten, piezoelektrischen Wandlerelementen (9,10,11), die mit einem Steuergerät (12 - 18) zum Schwingen und zur Erzeugung von Stoßwellen angeregt werden können. Der Wandler kann mit seinem auf der Wandlerachse (A) liegenden Fokus (F) auf das jeweilige Objekt ausgerichtet werden, während die von ihm erzeugten Ultraschallimpulse über ein Koppelmedium auf den Körper des Patienten übertragen werden. Um für den jeweiligen Anwendungsfall zu einer optimalen Impulsformung zu kommen, ist die aktive Wandlerfläche in mehrere auf den Wandlerfokus (F) ausgerichtete Zonen (9,10,11) unterteilt, denen jeweils eine ausgewählte Anzahl von Wandlerelementen zugeordnet ist. Die Wandlerzonen können zur Erzeugung mindestens eines Schallimpulses wahlweise seriell und/oder parallel einzeln, in Gruppen und insgesamt mit dem Steuergerät (12 - 18) betrieben werden.

Description

  • Die Erfindung betrifft einen fokussierenden Wandler zur Erzeugung von Ultraschallimpulsen für die Zerstörung von körperinneren Objekten, wie von Konkrementen und Gewebeteilen, bestehend aus einer Kugelkalotte mit mosaikartig auf der konkaven Kalottenfläche angeordneten, piezoelektrischen Wandlerelementen, die mittels eines Steuergerätes zum Schwingen anregbar sind, wobei der Wandler mit seinem auf der Wandlerachse liegenden Fokus auf das jeweilige Objekt ausrichtbar ist und die er­zeugten Ultraschallimpulse über ein Koppelmedium auf den Körper des Patienten übertragbar sind.
  • Direkt fokussierende Ultraschallwandler dieser Art sind bekannt. So zeigt die DE-Al 27 12 341 einen für die Ultraschalluntersuchung in der diagnostischen Medizin geeigneten Ultraschallwandler aus piezoelektrischem Material, bei welchem der Wandlerkörper konkav gekrümmt ist, um auf diese Weise eine akustische Fokussierung der Schallwellen in einem festen Brennpunkt zu erreichen, der durch die Krümmung des Wandlers gegeben ist. An der Außenfläche des Wandlerkörpers sind um eine Mittel­elektrode konzentrisch angelegte Ringelelektroden ange­ordnet, die einer sich über die gesamte aktive Fläche erstreckenden Elektrode gegenüberstehen. Durch Ansteuern der Ringelelektroden unter variabler Verzögerung läßt sich die Lage des Brennpunktes auf der Achse des Wandlers im Sinne einer Verkürzung oder Verlängerung der durch den geometrischen Aufbau vorgegebenen akustischen Brenn­weite variieren, und zwar bis nach unendlich hin.
  • Aus der DE-Al 31 19 295 ist weiter eine für die Zerstörung von in Körperhöhlen befindlichen Konkrementen vorgesehene Ein­richtung ähnlichen Aufbaues wie die vorbeschriebenen Einrich­tung bekannt. Kennzeichnendes Merkmal dieser Einrichtung ist ein fokussierender Ultraschallwandler, der als Direktbeschaller und so großflächig ausgebildet ist, daß die Schalleistungs­dichte auf dem Transmissionsweg so klein ist, daß Gewebeschä­den vermieden werden, im akustischen Brennpunkt aber so groß ist, daß sie zur Zerstörung des im Brennpunkt befindlichen Konkrementes ausreicht. Auch in diesem Fall dient die Auftei­lung der Wandlerfläche in Ringe oder in matrixartig zusammen­gestellte Einzelwandler dazu, den Wandlerbrennpunkt elektro­nisch nach dem phased-array-Prinzip variabel einstellen zu können.
  • In der Natur der Impulsformung mittels der beschriebenen Wand­ler liegt es nun, daß einem positiven Druckimpuls meist ein mehr oder weniger großer negativer Impuls folgt. Dabei können in der Unterdruckphase Kavitationserscheinungen auftreten, die sich, sofern dies unmittelbar im Bereich des zu zerstören­den Konkremtentes geschieht, in Form einer beschleunigten Zer­störung positiv auswirken können. Wird aber bei einer an sich nur gewünschten Steinzertrümmerung die für das benachbarte Gewebe akzeptable Kavitationsschwelle im vorgelagerten Gewebe überschritten, so kann das zu unerwünschten Gewebezerstörun­gen und Blutungen insbesondere dann führen, wenn der Brenn­punkt des Wandlers nicht exakt auf das Konkrement ausgerich­tet ist.
  • Es ist daher auch schon, wie beispielsweise aus der DE-Al 34 25 992 ersichtlich ist, bei der Lithrotripsie das Ziel ver­folgt worden, das Auftreten von Unterdruckimpulsen zu ver­meiden oder zumindest so weit zu reduzieren, daß Kavitations­ erscheinungen ausgeschlossen werden können. Die hierbei ge­troffenen Maßnahmen beziehen sich auf einen speziellen me­chanischen Aufbau des Wandlers, wobei darauf abgezielt wird, daß der Wellenwiderstand des die Trägerkalotte für die Wand­lerelemente bildenden Werkstoffes mit dem der Wandlerelemente weitgehend übereinstimmend und daß die rückwärtige Kalotten­oberfläche keine fokussierende Wirkung hat. Aufgrund der da­durch gegebenen Reflexionsfreiheit können die Deformationen der Wandlerelemente der elektrisch vorgegebenen Impulsform folgen. Solche Maßnahmen machen einen so konzipierten Wand­ler für die Zerstörung von Konkrementen besonders geeignet, sie können aber nicht für eine gezielte Zerstörung von Gewe­bezellen, beispielsweise in der Krebs- Therapie, zur Anwendung kommen.
  • Die Aufgabe der Erfindung besteht in der Schaffung eines Ul­traschallwandlers, welcher sowohl für die Zerstörung von Kon­krementen als auch von Gewebezellen geeignet ist und der es ermöglicht, daß die Schallimpulse nahezu beliebig in bezug auf ihre Amplitude, Phasenlage, Polarität, Form und Dauer er­zeugt werden können.
  • Diese Aufgabe wird erfindungsgemäß bei einem eingangs erwähn­ten Wandler dadurch gelöst, daß die aktive Wandlerfläche in mehrere auf den Wandlerfokus ausgerichtete Zonen unterteilt ist, denen jeweils eine ausgewählte Anzahl von Wandlerele­menten zugeordnet ist, und daß die Wandlerzonen zur Erzeu­gung mindestens eines Schallimpulses wahlweise seriell und/­oder parallel einzeln, in Gruppen und insgesamt mit dem Steu­ergerät ansteuerbar sind.
  • Dabei können die Wandlerzonen in Form konzentrischer Ringele­ mente um die Wandlerachse verlaufen oder die Form von Kugel­flächensektoren bilden, sie können aber auch eine Form auf­weisen, die durch eine Kombination der vorgenannten Wandler­formen gekennzeichnet ist.
  • Damit ist die Möglichkeit gegeben, jede Wandlerzone einzeln oder in Gruppen frei wählbar anzusteuern, und zwar seriell und/oder parallel und auch negativ sowie positiv nach Phase und Amplitude. Darüberhinaus kann durch entsprechende Be­schaltung der Wandlerelemente bzw. Wandlerzonen die Form der erzeugten Schallkeule beeinflußt werden, so daß sie beispiels­weise einen ovalen oder ellipsenförmigen Querschnitt aufwei­sen kann, wenn beispielsweise einige am Rande der Wandler­fläche befindliche Wandlerzonen nicht angesteuert werden. Das hat unter anderem den Vorteil, daß man die Schallkeule den anatomischen Gegebenheiten anpassen kann, was für den Fall wichtig ist, wenn die Rippen des Patienten das Schall­fenster zu einem in der Niere befindlichen Konkrement ein­engen sollten.
  • Durch serielle Ansteuerung von Wandlerzonen und durch Überla­gerung der von diesen im Fokusbereich erzeugten Schallimpulse können weiterhin die Amplitude und/oder die Dauer und/oder die Polarität des insgesamt im Wandlerfokus wirksamen Schall­impulses eingestellt werden.
  • Ein gezielter Einsatz des erfindungsgemäßen Wandlers als Ge­rät zur Zerstörung von Konkrementen ist durch eine spezielle Beschaltung und Ansteuerung von Wandlerelementen in der Weise möglich, daß die an der aktiven Wandlerfläche durch jeweili­ges Rückschwingen der jeweils angesteuerten Wandlerzonen ent­ stehenden negativen Halbwellen der Schallimpulse durch eine gegenphasige Ansteuerung anderer Wandlerelemente kompensier­bar sind, das heißt, daß sich im Brennpunkt im wesentlichen nur ein positiver Druckstoß ausbilden wird.
  • Ebenso ist der Einsatz des Wandlers speziell als Gerät zur Zerstörung von Gewebeteilen dadurch möglich, daß die an der aktiven Fläche der jeweils betriebenen Wandlerelemente durch jeweiliges Vorschwingen entstehenden positiven Halbwellen der Schallimpulse durch eine gegenphasige Ansteuerung von anderen Wandlerelementen bzw- zonen im Brennpunkt kompensiert werden können. Schließlich ist auch die Möglichkeit gegeben, die Amplituden von positiven und negativen Halbwellen der Schall­impulse dadurch zu erhöhen und einzustellen, daß eine gleich­phasige Ansteuerung mehrerer oder aller Wandlerzonen erfolgt.
  • Die variable Beschaltung und Ansteuerung der Wandlerzonen ge­stattet es also, zum Beispiel nur einen Teil der Wandlerzonen zur Erzeugung des Schallimpulses zu benutzen und die restlichen Wandlerzonen für eine Gegensteuerung und Aufhebung unerwünsch­ter Impulsanteile zu verwenden. Wie auch schon gesagt wurde, können alle Wandlerzonen parallel aktiviert und entsprechend den Erfordernissen zeitweise mit verschiedenen Pulsformen angesteuert werden, wobei eine besondere Ausführungsform da­rin bestehen kann, daß nicht nur Einzelimpulse erzeugt wer­den, sondern auch beispielsweise eine gedämpfte Schwingung, die dem Einschwingverhalten des Wandlers angepaßt ist. Schließlich können auch die im Bereich der Randzonen des Wandlers angeordneten Wandlerzonen mit geringerer oder höhe­rer Amplitude angesteuert werden als die anderen Wandlerzo­nen, um so zu einer Schallimpulsform von spezieller Wirksam­keit zu kommen.
  • Der erfindungsgemäße Wandler wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher er­läutert. Es zeigt:
    • Figur 1 einen Wandler schematisch im Teilschnitt und in axo­metrischer Darstellung,
    • Figur 2 die Ansteuerschaltung für den Wandler nach Figur 1 als Blockschaltbild und
    • Figur 3 das Schalbild eines Multiplexers in vereinfachter Darstellung.
  • Gemäß Figur 1 befindet sich unterhalb einer den Patienten P aufnehmenden Liegefläche 1 ein piezoelektrischer Ultraschall­wandler 2 in Form einer Kugelkalotte 3. Die Wandlerachse ist mit A bezeichnet, auf der auch der Brennpunkt F des Wandlers liegt. Die Abstrahlflächen der Wandlerelemente sind fest auf diesen Brennpunkt ausgerichtet.
  • Die konkave Wandlerfläche 4 ist gegen eine in der Liegefläche 1 angeordnete Öffnung 5 gerichtet. Diese ist von einer Dicht­manschette 6 umgeben, die sich an den Körper des Patienten anpaßt und für einen dichten Verschluß der Öffnung 5 gegen­über der für die Behandlung vorgesehenen Körperpartie des Patienten sorgt.
  • Die Kugelkalotte 3 ist von einem Faltenbalg 7 umgeben, der unter Anschluß an die Unterseite der Liegefläche 1 im Bereich der Umgebung der Öffnung 5 einen Behälter 8 zusammen mit der Fläche 4 der Kugelkalotte 3 als Boden bildet. Die Elastizi­tät des Faltenbalges 7 ermöglicht eine Verstellung der Kugel­kalotte 3 in drei Ebenen, was in bekannter Weise mittels ei­nes nicht gezeigten Koordinaten-Verstelltisches geschehen kann. Zur Ankopplung der von der Kugelkalotte 3 ausgehenden Stoßwellen an den Patienten wird der Behälter 8 mit entgas­tem und auf Körpertemperatur erwärmten Wasser gefüllt.
  • Die konkave Fläche 4 der Kugelkalotte 3 ist mit piezoelektri­schen Wandlerelementen bestückt. Deren Anordnung ist so ge­troffen, daß sich beispielsweise eine Struktur von konzen­trisch angelegten sphärischen Ringelementen 10 und 11 ergibt, die um zentrale Kalottensegmente 9 herum angeordnet sind, wobei die gesamte Wandlerfläche 4 durch konzentrisch und radial verlaufende Trennfugen in einzelne, elektrisch und mechanisch isolierte Ringelemente 10.1 bis 10.5 und 11.1 bis 11.5 bzw. Kalottensegmente 9.1 bis 9.5 aufgeteilt ist.
  • Die aktiven Flächen der Ringelemente 10, 11 und der Kalotten­segmente 9 sind elektrisch mit einer Ansteuerschaltung ge­mäß Figur 2 verbunden, in der die Ringelemente 10 und 11 und die Kalottensegmente 9 vereinfacht in Form von Blocksymbolen dargestellt sind. Das den Ultraschallwandler 2 aktivierende elektrische Spannungspotential liegt zwischen diesen An­schlüsse und einer gemeinsamen Flächenelektrode an der Rück­seite der Wandlerelemente. Dabei erfolgt die Auswahl der zu aktivierenden Wandlerelemente bzw. - zonen, die Vorwahl der jeweiligen Pulsintensität und -polarität sowie ihr zeitlicher Einsatz mit jeweils einem Multiplexer 12 für eine positive Pulsformung und einem Multiplexer 13 für eine negative Puls­formung. Die unterschiedliche Polarität wird dabei durch ent­sprechende Impulsgeneratoren 14 und 15 besorgt.
  • Der Aufbau der Multiplexer 12 und 13 ist der Figur 3 zu ent­nehmen, welche der besseren Übersicht halber lediglich Ein­blick in die Schaltkreise für die Aktivierung der Ringele­mente 11 gibt. Jeder Schaltkreis weist danach einen Wahl­ schalter 16, einen regelbaren Verstärker 17 für die Einstel­lung der jeweiligen Amplitude des Pulses und ein Zeitglied 18 für die Einstellung des Zeitpunktes der Aktivierung auf, so daß jede Wandlerzone 11.1 bis 11.5 individuell oder gemeinsam mit anderen angesteuert werden kann.
  • So können zum Beispiel einige Wandlerelemente bzw.-zonen zu­nächst mit einem positiven Impuls angesteuert und dann mit einem negativen Impuls andere Wandlerzonen unter Berücksich­tigung des Einschwingverhaltens der Wandlerelemente zum Ge­gensteuern angesteuert werden, so daß im Fokus F nur ein po­sitiver Druckstoß auftreten wird. Es können auch alle Wand­lerelemente parallel geschaltet und mit verschiedenen Puls­formen angesteuert werden, wobei es auch möglich ist, die Puls­generatoren 14 und 15 so einzustellen, daß statt eines Einzel­impulses zum Beispiel eine gedämpfte Schwingung erzeugt werden kann, die dem Schwingverhalten des Wandlers angepaßt ist.
  • Man kann natürlich auch die Ringelemente 10, 11 mit geringerer Amplitude ansteuern als die Kalottensegmente 9. Schließlich ist auch möglich, den Ultraschallwandler 2 zur Abgabe einer gedämpften Schwingung immer mit dem Impuls anzusteuern, den der Wandler gerade machen will, womit sich die Amplitude die­ses Pulses erhöhen läßt. Man erhält dabei zwar keinen Einzel­impuls, sondern eine Pulsfolge, bei der aber der negative oder positive Teil jeweils gegenüber dem anderen erhöht wer­den kann. Eine solche Pulsfolge könnte insbesondere bei der Zerstörung von Gewebe von Nutzen sein.
  • Die einzelnen Wandlerzonen 9, 10 und 11 können zwar als mono­lithische piezoelektrische Schwinger ausgebildet sein, dies wird aber im allgemeinen zu einer Einschränkung der verfüg­baren Schalleistung führen. Falls höhere Leistungen gefordert sind, wird man deshalb den Wandler und damit auch die Wand­lerzonen aus mosaikartig zusammengesetzen Wandlerelementen aufbauen. Außerdem können auch alle Wandlerzonen insgesamt aus Ringelementen oder Kugelkalottensektoren bestehen. Schließlich sind auch sonstige Aufteilungen der gesamten aktiven Fläche des Wandler in Zonen von anderer Kofiguration möglich.

Claims (8)

1. Fokussierender Wandler zur Erzeugung von Ultraschallimpul­sen für die Zerstörung von körperinneren Objekten, wie von Konkrementen und Gewebeteilen, bestehend aus einer Kugel­kalotte mit mosaikartig auf der konkaven Kalottenfläche angeordneten, piezoelektrischen Wandlerelementen, die mittels eines Steuergerätes zum Schwingen anregbar sind, wobei der Wandler mit seinem auf der Wandlerachse liegen­den Fokus auf das jeweilige Objekt ausrichtbar ist und die erzeugten Ultraschallimpulse über ein Koppelmedium auf den Körper des Patienten übertragbar sind, dadurch ge­kennzeichnet, daß die aktive Wandlerfläche in mehrere auf den Wandlerfokus (F) ausgerichtete Zonen (9-11) unterteilt ist, denen jeweils eine ausgewählte Anzahl von Wandlerele­menten zugeordnet ist, und daß die Wandlerzonen zur Er­zeugung mindestens eines Schallimpulses wahlweise seriell und/oder parallel einzeln, in Gruppen und insgesamt mit dem Steuergerät (12-18) ansteuerbar sind.
2. Wandler nach Anspruch 1, dadurch gekennzeichnet, daß die Wandlerzonen in Form von Ringelementen (10,11) um die Wandlerachse (A) verlaufen.
3. Wandler nach Anspruch 1, dadurch gekennzeichnet, daß die Wandler die Form von Kugelflächensektoren (9) haben.
4. Wandler nach Anspruch 1, gekennzeichnet durch eine Kombi­nation der Wandlerzonenformen nach den Ansprüchen 2 und 3.
5. Wandler nach einem der Ansprüche 1 bis 4, dadurch ge­kennzeichnet, daß durch serielle Ansteuerung von Wandler­zonen (9-11) und durch Überlagerung der von den Wandler­zonen im Fokusbereich erzeugten Schallimpulse die Ampli­tude und/oder die Dauer und/oder die Polarität des ins­gesamt im Wandlerfokus (F) wirksamen Schallimpulses ein­stellbar ist bzw. sind.
6. Wandler zur Zerstörung von Konkrementen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die im Fokus (F) durch jeweiliges Rückschwingen von Wandler­elementen entstehenden negativen Halbwellen der Schall­impulse durch eine gegenphasige Ansteuerung anderer Wand­lerelemente kompensierbar sind.
7. Wandler zur Zerstörung von Gewebeteilen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die im Fokus (F) durch jeweiliges Vorschwingen von Wandlerele­menten entstehenden positiven Halbwellen der Schallim­pulse durch eine gegenphasige Ansteuerung von anderen Wandlerelementen kompensierbar sind.
8. Wandler nach einem der Ansprüche 1 bis 7, dadurch gekenn­zeichnet, daß die Amplituden von positiven und negativen Halbwellen der Schallimpulse durch gleichphasige Ansteue­rung erhöhbar sind.
EP88113188A 1987-09-24 1988-08-13 Fokussierender Ultraschallwandler Expired - Lifetime EP0308644B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3732131 1987-09-24
DE19873732131 DE3732131A1 (de) 1987-09-24 1987-09-24 Fokussierender ultraschallwandler

Publications (3)

Publication Number Publication Date
EP0308644A2 true EP0308644A2 (de) 1989-03-29
EP0308644A3 EP0308644A3 (en) 1990-05-30
EP0308644B1 EP0308644B1 (de) 1994-10-26

Family

ID=6336744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113188A Expired - Lifetime EP0308644B1 (de) 1987-09-24 1988-08-13 Fokussierender Ultraschallwandler

Country Status (3)

Country Link
US (1) US4888746A (de)
EP (1) EP0308644B1 (de)
DE (2) DE3732131A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450364A2 (de) * 1990-04-05 1991-10-09 Dornier Medizintechnik Gmbh Kombinationsstosswellenquelle
EP0450868A2 (de) * 1990-03-29 1991-10-09 Fujitsu Limited Ultraschallsonde mit piezoelektrischem Element
EP0497261A2 (de) * 1991-01-29 1992-08-05 Richard Wolf GmbH Anordnung zum Bestimmen der akustischen Leistung eines fokussierenden elektroakustischen Wandlers
WO2008003910A1 (fr) * 2006-07-05 2008-01-10 Edap S.A. Appareil de therapie a fonctionnement sequentiel
FR2903315A1 (fr) * 2006-07-05 2008-01-11 Edap S A Procede et appareil de therapie a emetteurs ultrasonores actives sequentiellement

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195844A (ja) * 1988-01-29 1989-08-07 Yokogawa Medical Syst Ltd 超音波受波整相回路
JPH02215452A (ja) * 1989-02-17 1990-08-28 Toshiba Corp 結石破砕装置
DE8912723U1 (de) * 1989-10-27 1989-12-28 Dornier Medizintechnik GmbH, 8000 München Lithotripter
DE3940808A1 (de) * 1989-12-09 1991-06-20 Dornier Medizintechnik Wandlerelement fuer die beruehrungsfreie lithotripsie
US5316000A (en) * 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
GB9408668D0 (en) * 1994-04-30 1994-06-22 Orthosonics Ltd Untrasonic therapeutic system
US5582578A (en) * 1995-08-01 1996-12-10 Duke University Method for the comminution of concretions
US5800365A (en) * 1995-12-14 1998-09-01 Duke University Microsecond tandem-pulse electrohydraulic shock wave generator with confocal reflectors
US6128958A (en) * 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
US6237419B1 (en) * 1999-08-16 2001-05-29 General Electric Company Aspherical curved element transducer to inspect a part with curved entry surface
WO2001028623A2 (en) * 1999-10-18 2001-04-26 Focus Surgery, Inc. Split beam transducer
US6613004B1 (en) * 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
WO2002040093A2 (en) 2000-11-17 2002-05-23 Gendel Limited Ablation of cells using combined electric field and ultrasound therapy
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
WO2002063606A1 (en) * 2001-02-09 2002-08-15 Koninklijke Philips Electronics N.V. Ultrasound transducer and method of manufacturing an ultrasound transducer
US20050043726A1 (en) * 2001-03-07 2005-02-24 Mchale Anthony Patrick Device II
AU2002361607A1 (en) 2001-11-09 2003-05-26 Duke University Method and apparatus to reduce tissue injury in shock wave lithotripsy
US7894877B2 (en) * 2002-05-17 2011-02-22 Case Western Reserve University System and method for adjusting image parameters based on device tracking
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US7087023B2 (en) * 2003-02-14 2006-08-08 Sensant Corporation Microfabricated ultrasonic transducers with bias polarity beam profile control and method of operating the same
US7780597B2 (en) * 2003-02-14 2010-08-24 Siemens Medical Solutions Usa, Inc. Method and apparatus for improving the performance of capacitive acoustic transducers using bias polarity control and multiple firings
US7635332B2 (en) * 2003-02-14 2009-12-22 Siemens Medical Solutions Usa, Inc. System and method of operating microfabricated ultrasonic transducers for harmonic imaging
US7618373B2 (en) * 2003-02-14 2009-11-17 Siemens Medical Solutions Usa, Inc. Microfabricated ultrasonic transducer array for 3-D imaging and method of operating the same
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US7850613B2 (en) * 2003-05-30 2010-12-14 Orison Corporation Apparatus and method for three dimensional ultrasound breast imaging
US20050038361A1 (en) * 2003-08-14 2005-02-17 Duke University Apparatus for improved shock-wave lithotripsy (SWL) using a piezoelectric annular array (PEAA) shock-wave generator in combination with a primary shock wave source
WO2005018469A1 (en) 2003-08-14 2005-03-03 Duke University Apparatus for improved shock-wave lithotripsy (swl) using a piezoelectric annular array (peaa) shock-wave generator in combination with a primary shock wave
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
WO2006051542A1 (en) * 2004-11-12 2006-05-18 Kpe Ltd. Nanoparticle mediated ultrasound therapy and diagnostic imaging
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8608672B2 (en) 2005-11-23 2013-12-17 Insightec Ltd. Hierarchical switching in ultra-high density ultrasound array
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US7942809B2 (en) * 2006-05-26 2011-05-17 Leban Stanley G Flexible ultrasonic wire in an endoscope delivery system
US8262591B2 (en) * 2006-09-07 2012-09-11 Nivasonix, Llc External ultrasound lipoplasty
US7955281B2 (en) * 2006-09-07 2011-06-07 Nivasonix, Llc External ultrasound lipoplasty
CN101715320B (zh) * 2007-01-10 2012-01-25 周宇峰 冲击波碎石系统
US8323201B2 (en) 2007-08-06 2012-12-04 Orison Corporation System and method for three-dimensional ultrasound imaging
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
CA2770452C (en) 2009-08-17 2017-09-19 Histosonics, Inc. Disposable acoustic coupling medium container
US9289154B2 (en) 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
WO2011028609A2 (en) 2009-08-26 2011-03-10 The Regents Of The University Of Michigan Devices and methods for using controlled bubble cloud cavitation in fractionating urinary stones
WO2011024074A2 (en) 2009-08-26 2011-03-03 Insightec Ltd. Asymmetric phased-array ultrasound transducer
JP5863654B2 (ja) 2009-08-26 2016-02-16 リージェンツ オブ ザ ユニバーシティー オブ ミシガン 治療および画像処理超音波変換器用のマイクロマニピュレータ制御アーム
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8661873B2 (en) 2009-10-14 2014-03-04 Insightec Ltd. Mapping ultrasound transducers
US8368401B2 (en) 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
KR101999078B1 (ko) * 2010-06-09 2019-07-10 리전츠 오브 더 유니버스티 오브 미네소타 초음파 치료의 전달을 제어하기 위한 이중 모드 초음파 트랜스듀서(dmut) 시스템 및 방법
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
CN102579127B (zh) * 2011-01-14 2014-09-03 深圳市普罗惠仁医学科技有限公司 超声聚焦换能器
FR2973550B1 (fr) * 2011-03-30 2015-12-04 Edap Tms France Procede et appareil de generation d'ondes ultrasonores focalisees a modulation de surface
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
EP2771712B1 (de) 2011-10-28 2023-03-22 Decision Sciences International Corporation Spreizspektrencodierte wellenformen in der ultraschallabbildung
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
WO2013166019A1 (en) 2012-04-30 2013-11-07 The Regents Of The University Of Michigan Ultrasound transducer manufacturing using rapid-prototyping method
WO2014055906A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
WO2015003142A1 (en) 2013-07-03 2015-01-08 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
WO2015027164A1 (en) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US9844359B2 (en) 2013-09-13 2017-12-19 Decision Sciences Medical Company, LLC Coherent spread-spectrum coded waveforms in synthetic aperture image formation
WO2015192134A1 (en) 2014-06-13 2015-12-17 University Of Utah Research Foundation Therapeutic ultrasound breast treatment
BR112017000856A2 (pt) 2014-07-23 2017-12-05 Dow Global Technologies Llc adesivos estruturais tendo resistência à lavagem melhorada e método para distribuir os mesmos
JP6835744B2 (ja) 2015-02-25 2021-02-24 ディスィジョン サイエンシズ メディカル カンパニー,エルエルシー カプラントデバイス
JP6979882B2 (ja) 2015-06-24 2021-12-15 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン 脳組織の治療のための組織破砕療法システムおよび方法
CA3001315C (en) 2015-10-08 2023-12-19 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
RU2697566C2 (ru) * 2017-12-28 2019-08-15 Общество с ограниченной ответственностью "ГидроМаринн" Электроакустический преобразователь для параметрической генерации ультразвука
WO2020113083A1 (en) 2018-11-28 2020-06-04 Histosonics, Inc. Histotripsy systems and methods
CA3130104A1 (en) 2019-03-06 2020-09-10 Decision Sciences Medical Company, LLC Methods for manufacturing and distributing semi-rigid acoustic coupling articles and packaging for ultrasound imaging
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
CN116685847A (zh) 2020-11-13 2023-09-01 决策科学医疗有限责任公司 用于对象的合成孔径超声成像的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369768A1 (fr) * 1976-11-01 1978-05-26 Stanford Research Inst Transducteur ultrasonore a distance focale variable
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
FR2567394A1 (fr) * 1984-07-14 1986-01-17 Wolf Gmbh Richard Transducteur piezoelectrique pour la destruction de concretions a l'interieur du corps
EP0289382A1 (de) * 1987-04-28 1988-11-02 Edap International Generator für elastische Impulse von vorgegebener gewünschter Form und seine Anwendung in medizinischer Behandlung oder Diagnose
EP0307300A1 (de) * 1987-09-07 1989-03-15 Technomed International S.A. Piezoelektrisches Gerät zur Anwendung von Signalen mit verringerten negativen Halbwellen und dessen Anwendung bei ausserkörperlicher Lithotripsie oder bei Zerstörung von speziellen Geweben

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645727A (en) * 1948-03-26 1953-07-14 Bell Telephone Labor Inc Focusing ultrasonic radiator
FR2252580B1 (de) * 1973-11-22 1980-02-22 Realisations Ultrasoniques Sa
FR2292978A1 (fr) * 1974-11-28 1976-06-25 Anvar Perfectionnements aux dispositifs de sondage par ultra-sons
US4183249A (en) * 1975-03-07 1980-01-15 Varian Associates, Inc. Lens system for acoustical imaging
FR2332531A1 (fr) * 1975-11-24 1977-06-17 Commissariat Energie Atomique Camera ultra-sonore
FR2334953A1 (fr) * 1975-12-11 1977-07-08 Labo Electronique Physique Systeme d'analyse par ultrasons et son application a l'echographie
US4159462A (en) * 1977-08-18 1979-06-26 General Electric Company Ultrasonic multi-sector scanner
FR2410469A1 (fr) * 1977-12-05 1979-06-29 Labo Electronique Physique Systeme electronique a ultrasons pour la determination de directions privilegiees dans des structures biologiques
CA1153097A (en) * 1978-03-03 1983-08-30 Jack Jellins Rotating ultrasonic scanner
US4156863A (en) * 1978-04-28 1979-05-29 The United States Of America As Represented By The Secretary Of The Navy Conical beam transducer array
US4155259A (en) * 1978-05-24 1979-05-22 General Electric Company Ultrasonic imaging system
US4241611A (en) * 1979-03-02 1980-12-30 Smith Kline Instruments, Inc. Ultrasonic diagnostic transducer assembly and system
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
US4281550A (en) * 1979-12-17 1981-08-04 North American Philips Corporation Curved array of sequenced ultrasound transducers
JPS56121541A (en) * 1980-02-28 1981-09-24 Tokyo Shibaura Electric Co Ultrasonic imaging apparatus
US4622972A (en) * 1981-10-05 1986-11-18 Varian Associates, Inc. Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
NL8200478A (nl) * 1982-02-09 1983-09-01 Philips Nv Ultrasone zender.
JPS58157454A (ja) * 1982-03-15 1983-09-19 株式会社東芝 超音波診断装置
EP0090567B1 (de) * 1982-03-20 1988-07-27 Fujitsu Limited Ultraschallsonde zur Sektorabtastung
JPS58216294A (ja) * 1982-06-10 1983-12-15 松下電器産業株式会社 音響レンズ
US4534221A (en) * 1982-09-27 1985-08-13 Technicare Corporation Ultrasonic diagnostic imaging systems for varying depths of field
US4471785A (en) * 1982-09-29 1984-09-18 Sri International Ultrasonic imaging system with correction for velocity inhomogeneity and multipath interference using an ultrasonic imaging array
US4537074A (en) * 1983-09-12 1985-08-27 Technicare Corporation Annular array ultrasonic transducers
FR2556582B1 (fr) * 1983-12-14 1986-12-19 Dory Jacques Appareil a impulsions ultrasonores destine a la destruction des calculs
US4582065A (en) * 1984-06-28 1986-04-15 Picker International, Inc. Ultrasonic step scanning utilizing unequally spaced curvilinear transducer array
DE3543867C3 (de) * 1985-12-12 1994-10-06 Wolf Gmbh Richard Vorrichtung zur räumlichen Ortung und zur Zerstörung von Konkrementen in Körperhöhlen
EP0229981B1 (de) * 1985-12-20 1990-02-28 Siemens Aktiengesellschaft Verfahren zur Kontrolle der Eigenschaften des Fokus eines Ultraschallfeldes und Vorrichtung zur Durchführung des Verfahrens
JPS6346147A (ja) * 1986-04-24 1988-02-27 株式会社東芝 超音波治療装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369768A1 (fr) * 1976-11-01 1978-05-26 Stanford Research Inst Transducteur ultrasonore a distance focale variable
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
FR2567394A1 (fr) * 1984-07-14 1986-01-17 Wolf Gmbh Richard Transducteur piezoelectrique pour la destruction de concretions a l'interieur du corps
EP0289382A1 (de) * 1987-04-28 1988-11-02 Edap International Generator für elastische Impulse von vorgegebener gewünschter Form und seine Anwendung in medizinischer Behandlung oder Diagnose
EP0307300A1 (de) * 1987-09-07 1989-03-15 Technomed International S.A. Piezoelektrisches Gerät zur Anwendung von Signalen mit verringerten negativen Halbwellen und dessen Anwendung bei ausserkörperlicher Lithotripsie oder bei Zerstörung von speziellen Geweben

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450868A2 (de) * 1990-03-29 1991-10-09 Fujitsu Limited Ultraschallsonde mit piezoelektrischem Element
EP0450868A3 (en) * 1990-03-29 1992-07-08 Fujitsu Limited Ultrasonic probe having a piezoelectric element
US5174296A (en) * 1990-03-29 1992-12-29 Fujitsu Limited Ultrasonic probe having a piezoelectrical element
EP0450364A2 (de) * 1990-04-05 1991-10-09 Dornier Medizintechnik Gmbh Kombinationsstosswellenquelle
EP0450364A3 (en) * 1990-04-05 1992-06-24 Dornier Medizintechnik Gmbh Combination shock wave generator
EP0497261A2 (de) * 1991-01-29 1992-08-05 Richard Wolf GmbH Anordnung zum Bestimmen der akustischen Leistung eines fokussierenden elektroakustischen Wandlers
EP0497261A3 (en) * 1991-01-29 1993-04-07 Richard Wolf Gmbh Method for determining the acoustic intensity of focussing electroacoustic transducers and apparatus for carrying out this method
WO2008003910A1 (fr) * 2006-07-05 2008-01-10 Edap S.A. Appareil de therapie a fonctionnement sequentiel
FR2903315A1 (fr) * 2006-07-05 2008-01-11 Edap S A Procede et appareil de therapie a emetteurs ultrasonores actives sequentiellement

Also Published As

Publication number Publication date
US4888746A (en) 1989-12-19
EP0308644B1 (de) 1994-10-26
DE3851930D1 (de) 1994-12-01
EP0308644A3 (en) 1990-05-30
DE3732131A1 (de) 1989-04-06

Similar Documents

Publication Publication Date Title
EP0308644B1 (de) Fokussierender Ultraschallwandler
DE3907605C2 (de) Stosswellenquelle
DE3119295C2 (de)
DE3888273T3 (de) Medizinischer Apparat zur Behandlung mit Ultraschall.
DE4117638C2 (de)
EP0133946B1 (de) Einrichtung zum berührungslosen Zertrümmern von Konkrementen
EP0327917B1 (de) Stosswellenquelle zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
EP0300315B1 (de) Stosswellengenerator für eine Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE4241161C2 (de) Akustische Therapieeinrichtung
EP0189756B1 (de) Einrichtung zur Erzeugung zeitlich versetzter Stosswellen
DE60104899T2 (de) Ultraschallunterstütze lipolyse
DE69227688T2 (de) Verwendung von piezoelektrischem kompositwandler für ultrasonische therapievorrichtung
DE3312014A1 (de) Einrichtung zur beruehrungsfreien zertruemmerung von konkrementen im koerper von lebewesen
DE4318237A1 (de) Vorrichtung zur Behandlung von biologischem Gewebe und Körperkonkrementen
DE3328039C2 (de) Einrichtung zum beruehrungslosen zertruemmern eines im koerper eines lebewesens befindlichen konkrements
DE202007002218U1 (de) Strichfokussierende Schallwellenquelle
EP0332871A2 (de) Steinzerkleinerung durch kombinierte Behandlung
DE69018853T2 (de) Vorrichtung zum Zerstören von Konkrementen.
DE2712341A1 (de) Ultraschallwandler mit variablem brennpunkt
EP0355178B1 (de) Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
EP3289781B1 (de) Ultraschallpulse aussendende hörprothese
EP0400196B1 (de) Stosswellenkopf für die Zertrümmerung von Konkrementen
EP0783870A1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP0240923A1 (de) Stosswellenquelle mit piezokeramischer Druckquelle
EP0167670B1 (de) Einrichtung zum Zertrümmern von im Körper eines Lebewesens befindlichen Konkrementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19901126

17Q First examination report despatched

Effective date: 19920710

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3851930

Country of ref document: DE

Date of ref document: 19941201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941213

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950620

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960831

BERE Be: lapsed

Owner name: RICHARD WOLF G.M.B.H.

Effective date: 19960831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970813

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980813

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011019

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813