EP0306941B1 - Veränderliche Bitraten-Taktwiedergewinnungsschaltung - Google Patents

Veränderliche Bitraten-Taktwiedergewinnungsschaltung Download PDF

Info

Publication number
EP0306941B1
EP0306941B1 EP88114680A EP88114680A EP0306941B1 EP 0306941 B1 EP0306941 B1 EP 0306941B1 EP 88114680 A EP88114680 A EP 88114680A EP 88114680 A EP88114680 A EP 88114680A EP 0306941 B1 EP0306941 B1 EP 0306941B1
Authority
EP
European Patent Office
Prior art keywords
signal
output
phase error
signals
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88114680A
Other languages
English (en)
French (fr)
Other versions
EP0306941A2 (de
EP0306941A3 (en
Inventor
Shousei C/O Nec Corporation Yoshida
Susumu C/O Nec Corporation Otani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of EP0306941A2 publication Critical patent/EP0306941A2/de
Publication of EP0306941A3 publication Critical patent/EP0306941A3/en
Application granted granted Critical
Publication of EP0306941B1 publication Critical patent/EP0306941B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0334Processing of samples having at least three levels, e.g. soft decisions

Definitions

  • the present invention relates to a clock recovery circuit for recovering a reference clock signal from a digitally modulated signal and, more particularly, to a variable bit rate clock recovery circuit required for a data communication system with a variable bit rate.
  • US-A-4,270,093 relates to a PLL using a VCO wherein, when the PLL is put in an abnormal state, the output of the loop filter becomes +V, and causes a transistor to turn on, thereby supplying a predetermined voltage value to the VCO for outputting an output with a predetermined frequency.
  • a predetermined voltage value to the VCO for outputting an output with a predetermined frequency.
  • such frequency is limited within the pull-in range at the PLL.
  • Fig. 1 shows one of such circuits.
  • a clock phase error detector 1 receives a demodulated signal S DEM and the reference clock signal CLK, detects a phase difference between the two signals, and outputs the phase difference as a digitized time serial signal S ER .
  • Fig. 2 shows an arrangement of the clock phase error detector 1. Referring to Fig. 2, the demodulated signal S DEM is supplied to an A/D converter 6. The reference clock signal CLK is supplied to a frequency multiplier 5, a phase error detector 7, and a zero-cross detector 8.
  • the frequency multiplier 5 supplies a sampling signal having a frequency twice that of the reference clock signal CLK to the A/D converter 6.
  • the A/D converter 6 A/D-converts the demodulated signal S DEM by using the sampling signal.
  • the digital output signal from the A/D converter 6 is input to the phase error detector 7 and the zero-cross detector 8.
  • the phase error detector 7 selects an odd-numbered sampling signal, i.e., the sampled value at a zero-cross point of the demodulated signal S DEM .
  • the zero-cross detector 8 selects an even-numbered sampling signal, i.e., the sampled value at a signal point of the demodulated signal S DEM , and outputs a signal representing the polarity of the selected signal to the phase error detector 7.
  • the phase error detector 7 multiplies the sampled value at the zero-cross point of the detected demodulated signal by the polarity of the sampled value at the signal point of the demodulated signal detected by the zero-cross detector 8, and obtains a phase error.
  • the output from the phase error detector 7 represents a correct phase error only when the polarity is inverted at a signal point before or after the phase error detection point of the demodulated signal S DEM , i.e., at the zero-cross point. Therefore, when the zero-cross detector 8 detects that the polarity is inverted at a signal point before or after the phase error detection point of the demodulated signal S DEM , it outputs a zero-cross detection pulse to a selector 9.
  • the selector 9 selects an output from the phase error detector 7 by using this zero-cross detection pulse.
  • the selector 9 outputs a zero or outputs a value of the immediately preceding sampling period again.
  • the outputs from the selector 9 become clock phase error signals S ER .
  • the timings of the demodulated signal S DEM and the reference clock signal CLK coincide with each other, the mean value of the clock phase error signals S ER converges to zero.
  • an output from the clock phase error detector 1 is input to the loop filter 2. Then, high-frequency components are removed from the output in accordance with the low-pass filter characteristics of the loop filter 2.
  • This loop filter 2 is generally constituted by an infinite impulse response digital filter and is an important factor determining a noise bandwidth and synchronization characteristics of the clock recovery closed loop.
  • a primary type loop can be formed.
  • the digital time serial signal as the output from the loop filter 2 is converted into an analog signal by the D/A converter 3.
  • the output frequency and phase of the voltage controlled oscillator 4 are controlled by the output voltage from the D/A converter 13, and the output from the voltage controlled oscillator 4 becomes the reference clock signal CLK.
  • Fig. 3 shows a variable bit rate clock recovery circuit according to the embodiment of the present invention.
  • a clock phase error detector 1 may employ the arrangement shown in Fig. 2.
  • the clock phase error detector 1 receives a demodulated signal S DEM and a reference clock signal CLK, and outputs a clock phase error signal S ER having a value proportional to a phase difference between the signals S DEM and CLK.
  • the detected clock phase error signal S ER is input to a loop filter 2.
  • the loop filter 2 removes high-frequency components such as noise from the signal S ER .
  • the loop filter 2 has low-pass filter characteristics which is an important factor determining a noise bandwidth, synchronization characteristics, and response characteristics of the loop.
  • the type and the constant of the filter are selected in accordance with a required performance of the loop.
  • a primary type loop can be formed by simply replacing the loop filter 2 with multiplication of DC gain K.
  • An output signal from the loop filter 2 is supplied to an integrator 13 and is integrated therein.
  • the integrator 4 can be easily realized by an adder 30 and a delay circuit 31 for delaying an input sampled value by one sampling period.
  • Outputs from the integrator 13 are respectively supplied as addresses to ROMs 14 and 15, which store data of cosine and sine waves in a digital form in advance.
  • Output digital signals from the ROMs 14 and 15 are respectively converted into analog signals by D/A converters 16 and 17.
  • a variable frequency signal generator 18 generates signals S f having various frequencies in accordance with external frequency control signals S c .
  • the output signal S f from the variable frequency signal generator 18 is supplied to a multiplier 20 and a ⁇ /2 phase shifter 19.
  • the multiplier 20 multiplies the output signal from the D/A converter 16 by the output signal S f from the variable frequency signal generator 18, and supplies the multiplication result to one input terminal of a synthesizer 22.
  • the ⁇ /2 phase shifter 19 shifts the output signal S f from the variable frequency signal generator 18 by ⁇ /2 radians, and supplies it to a multiplier 21.
  • the multiplier 21 multiplies the output signal from the D/A converter 17 by the output signal from the ⁇ /2 phase shifter, and supplies the multiplication result to the other input terminal of the synthesizer 22.
  • the synthesizer 22 adds the input signals to its respective input terminals together, and outputs the addition result as the reference clock signal CLK upon SSB (signal sideband) modulation.
  • V c (t) cos( ⁇ t + ⁇ o ) (1)
  • V s (t) sin( ⁇ t + ⁇ o ) (2)
  • ⁇ ⁇ and ⁇ o are a frequency error and an initial phase error between the reference clock signal CLK and the output signal from the variable frequency signal generator 18, respectively, in a normal state of the loop.
  • variable frequency signal generator 18 cos ⁇ c t (3)
  • v s (t) sin ⁇ c t (4)
  • the SSB-modulated output obtained by the synthesizer 22 can be given by: and hence the reference clock signal CLK is obtained.
  • a ring counter is constituted by two D flip-flops 32 and 33 so that a clock signal is frequency-divided at a ratio of 1/4 to obtain a clock signal Q1 and a clock signal Q2 delayed by ⁇ /2 radians, as shown in Fig. 6.
  • Fig. 7 is a circuit diagram showing the multipliers 20 and 21 according to the embodiment.
  • the multiplier 20 comprises a differential converter 24 for differentially converting an output from the D/A converter 16, and switches 26 and 27 respectively connected to the inverted and noninverted signal output terminals of the differential converter 24.
  • the switches 26 and 27 are respectively ON/OFF-controlled by the output signals Q1 and Q 1 from the variable frequency signal generator 18.
  • the multiplier 21 comprises a differential converter 25 for differentially converting an output from the D/A converter 17, and switches 28 and 29 respectively connected to the inverted and noninverted signal output terminals of the differential converter 25.
  • the switches 28 and 29 are respectively ON/OFF-controlled by the output signals Q2 and Q 2 from the ⁇ /2 phase shifter 19.
  • the outputs from the D/A converters 16 and 17 are respectively converted by the differential converters 24 and 25 into in-phase and opposite-phase signals.
  • the switch 26 or 28 is closed during an interval of an amplitude A in the waveform shown in Fig. 8 to output the in-phase signal.
  • the switch 27 or 29 is opened to inhibit the opposite-phase signal.
  • the switch 26 or 28 is opened during an interval of an amplitude -A to inhibit the in-phase signal.
  • the switch 27 or 29 is closed to output the opposite-phase signal.
  • a clock phase error signal detected by the clock phase error detector is filtered by the loop filter, and is then integrated.
  • the frequency and phase of an output signal from the variable frequency signal generator are controlled by the ROM, the D/A converter, the multiplier, the ⁇ /2 phase shifter, and the synthesizer using the integrated output, thereby outputting a reference clock signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Claims (2)

  1. Veränderliche Bitraten-Taktwiedergewinnungsschaltung mit:
    - einer Taktphasenfehlerdetektoreinrichtung (1) zum Empfang eines demodulierten Signals (SDEM) eines digital modulierten Signals und eines Referenztaktsignals (CLK), zur Detektion eines Phasenfehlers zwischen den Eingangssignalen und zur Ausgabe eines Taktphasenfehlersignals;
    - einem Schleifenfilter (2) zum Entfernen einer Hochfrequenzkomponente aus dem Taktphasenfehlersignal; und
    - Oszillatoreinrichtungen (13-22) zur Erzeugung des Referenztaktsignals, die auf eine Ausgabe des Schleifenfilters ansprechen;
       dadurch gekennzeichnet, daß diese Oszillatoreinrichtungen umfassen:
    - einen Integrator (13) zur Integration der Ausgabe des Schleifenfilters;
    - erste und zweite ROMs (14, 15) zur Vorausspeicherung von Kosinus- und Sinuswellendaten in digitaler Form, wobei auf die ersten und zweiten ROMs durch eine Ausgabe des Integrators (13) zugegriffen wird;
    - erste und zweite D/A-Wandler (16, 17) zur jeweiligen Konvertierung von digitalen Ausgangssignalen aus dem ersten und zweiten ROM in analoge Signale;
    - einen veränderlichen Frequenzsignalgenerator (18), der durch ein Frequenzsteuersignal gesteuert wird, zur Erzeugung von Signalen mit verschiedenen Frequenzen;
    - einen Phasenschieber (19) zur Phasenverschiebung jedes Signals des veränderbaren Frequenzsignalgenerators (18) um π/2 Radiant;
    - einen ersten Multiplizierer (20) zur Modulation jeder Ausgabe des ersten D/A-Wandlers (16);
    - einen zweiten Multiplizierer (21) zur Modulation einer Ausgabe des Phasenschiebers (19) unter Verwendung eines Ausgabesignals des zweiten D/A-Wandlers (17); und
    - einen Synthesizer (22) zur Addition der Ausgaben der ersten und zweiten Multiplizierer (20, 21) und zur Ausgabe des Referenztaktsignals.
  2. Ein Schaltkreis gemäß Anspruch 1, in dem jeder der genannnten ersten und zweiten Multiplizierer (20, 21) einen differenziellen Wandler (24, 25) und einen Schalter (26, 27; 28, 29), der durch Rechteckausgangssignale aus dem veränderbaren Frequenzsignalgenerator (18) ein/ausgeschaltet wird, und einen π/2 Phasenschieber (19) aufweist.
EP88114680A 1987-09-09 1988-09-08 Veränderliche Bitraten-Taktwiedergewinnungsschaltung Expired - Lifetime EP0306941B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP224148/87 1987-09-09
JP62224148A JPH0620197B2 (ja) 1987-09-09 1987-09-09 速度可変型クロック再生回路

Publications (3)

Publication Number Publication Date
EP0306941A2 EP0306941A2 (de) 1989-03-15
EP0306941A3 EP0306941A3 (en) 1989-11-15
EP0306941B1 true EP0306941B1 (de) 1993-06-02

Family

ID=16809296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114680A Expired - Lifetime EP0306941B1 (de) 1987-09-09 1988-09-08 Veränderliche Bitraten-Taktwiedergewinnungsschaltung

Country Status (6)

Country Link
US (1) US4891598A (de)
EP (1) EP0306941B1 (de)
JP (1) JPH0620197B2 (de)
AU (1) AU601132B2 (de)
CA (1) CA1289200C (de)
DE (1) DE3881457T2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011662A1 (fr) * 1989-03-29 1990-10-04 Sharp Kabushiki Kaisha Generateur de signaux d'horloge
GB9019491D0 (en) * 1990-09-06 1990-10-24 Ncr Co Clock recovery for a wireless local area network station
US5237290A (en) * 1992-05-08 1993-08-17 At&T Bell Laboratories Method and apparatus for clock recovery
JPH06307025A (ja) * 1993-04-23 1994-11-01 Masayuki Tokida 瓦棟補強材並びに瓦棟の形成方法
JPH0682234U (ja) * 1993-05-06 1994-11-25 常田 正行 瓦棟面戸
JPH07193564A (ja) * 1993-12-25 1995-07-28 Nec Corp クロック再生装置および再生方法
US6285722B1 (en) 1997-12-05 2001-09-04 Telcordia Technologies, Inc. Method and apparatus for variable bit rate clock recovery
US6807228B2 (en) 1998-11-13 2004-10-19 Broadcom Corporation Dynamic regulation of power consumption of a high-speed communication system
US6363129B1 (en) * 1998-11-09 2002-03-26 Broadcom Corporation Timing recovery system for a multi-pair gigabit transceiver
US6928106B1 (en) * 1998-08-28 2005-08-09 Broadcom Corporation Phy control module for a multi-pair gigabit transceiver
ATE368344T1 (de) * 1999-04-22 2007-08-15 Broadcom Corp Gigabit-ethernt mit zeitverschiebungen zwischen verdrillten leitungspaaren

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270093A (en) * 1979-06-27 1981-05-26 Gte Automatic Electric Laboratories Incorporated Apparatus for forcing a phase-lock oscillator to a predetermined frequency when unlocked
US4274067A (en) * 1979-09-27 1981-06-16 Communications Satellite Corporation Universal clock recovery network for QPSK modems
US4280099A (en) * 1979-11-09 1981-07-21 Sperry Corporation Digital timing recovery system
WO1984000089A1 (en) * 1982-06-14 1984-01-05 Western Electric Co Timing recovery circuit
FR2548488B1 (fr) * 1983-06-28 1985-10-18 Thomson Csf Dispositif de generation d'un signal module en frequence
US4694196A (en) * 1984-12-07 1987-09-15 American Telephone And Telegraph Company And At&T Information Systems Clock recovery circuit
US4631484A (en) * 1984-12-21 1986-12-23 Allied Corporation Multimode pulse generator
US4707842A (en) * 1985-04-03 1987-11-17 Siemens Aktiengesellschaft Apparatus and method for acquiring data and clock pulses from asynchronous data signals

Also Published As

Publication number Publication date
US4891598A (en) 1990-01-02
AU601132B2 (en) 1990-08-30
EP0306941A2 (de) 1989-03-15
DE3881457D1 (de) 1993-07-08
JPS6468149A (en) 1989-03-14
DE3881457T2 (de) 1993-09-09
JPH0620197B2 (ja) 1994-03-16
AU2199688A (en) 1989-03-23
CA1289200C (en) 1991-09-17
EP0306941A3 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
US4642573A (en) Phase locked loop circuit for demodulating suppressed carrier signals
EP0306941B1 (de) Veränderliche Bitraten-Taktwiedergewinnungsschaltung
US5031191A (en) Spread spectrum signal demodulation circuit
US5173663A (en) Demodulation circuit enabling independent recovery of the carrier and sampling timing
US5317602A (en) Base-band delayed detector with synchronizing circuit
EP0479305B1 (de) Einrichtung zur Ratenumwandlung
JPH0442851B2 (de)
EP1006660B1 (de) Vorrichtung zur Wiedergewinnung und Identifizierung eines Taktsignals
US5903593A (en) Spread spectrum signal receiver
JP2994836B2 (ja) 復調器のafc回路
EP0535591A2 (de) Phasenregelschaltung die schnell in einem synchronisierten Zustand gebracht werden kann
US4618830A (en) PSK demodulator using asynchronous local oscillator
US5850161A (en) Digital FM demodulator using pulse generators
JP2964196B2 (ja) ディジタル直交検波復調器
EP0533191B1 (de) PSK-Demodulator mit Frequenzmultiplikation zur Phasen- und Frequenzkorrektur
KR100247349B1 (ko) 심볼타이밍복구장치
US4547751A (en) System for frequency modulation
KR0157569B1 (ko) 심볼클럭 복원장치
EP0709992B1 (de) Costas-Schleife
JPH0897874A (ja) オフセットqpsk復調器
JPH0770995B2 (ja) 位相同期ループ
JPH0344247A (ja) 全ディジタル形搬送波再生回路
EP0534180B1 (de) Demodulatorschaltung für MSK-Signale
GB2193065A (en) Phase lock loop
RU2024201C1 (ru) Способ адаптивной коррекции многопозиционных сигналов

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880908

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19910913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3881457

Country of ref document: DE

Date of ref document: 19930708

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020904

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020910

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020911

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST