EP0301117B1 - Einrichtung zur Gefriertrocknung - Google Patents

Einrichtung zur Gefriertrocknung Download PDF

Info

Publication number
EP0301117B1
EP0301117B1 EP87110955A EP87110955A EP0301117B1 EP 0301117 B1 EP0301117 B1 EP 0301117B1 EP 87110955 A EP87110955 A EP 87110955A EP 87110955 A EP87110955 A EP 87110955A EP 0301117 B1 EP0301117 B1 EP 0301117B1
Authority
EP
European Patent Office
Prior art keywords
valve
chamber
condensation surface
condensor
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87110955A
Other languages
English (en)
French (fr)
Other versions
EP0301117A1 (de
Inventor
Heinrich Steinkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Lyophil GmbH
Original Assignee
Finn Aqua Santasalo Sohlberg GmbH
Amsco Finn Aqua GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8197162&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0301117(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Finn Aqua Santasalo Sohlberg GmbH, Amsco Finn Aqua GmbH filed Critical Finn Aqua Santasalo Sohlberg GmbH
Priority to DE3750847T priority Critical patent/DE3750847D1/de
Priority to ES87110955T priority patent/ES2068809T3/es
Priority to EP87110955A priority patent/EP0301117B1/de
Priority to JP63173852A priority patent/JP2676374B2/ja
Priority to US07/226,536 priority patent/US4949473A/en
Publication of EP0301117A1 publication Critical patent/EP0301117A1/de
Application granted granted Critical
Publication of EP0301117B1 publication Critical patent/EP0301117B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the present invention relates to a device for freeze drying with an evacuable chamber and an evacuation system.
  • Freeze drying is primarily used to preserve temperature-sensitive products, the properties of which should be retained. Freeze-drying is mainly used in the fields of pharmacy, biology and medicine.
  • the usual freeze-drying process takes place approximately as follows: after freezing the product containing water, the sublimation of the water present in ice form takes place under vacuum (about 10 perennial1 mbar). After this main drying, the post-drying takes place, during which the adsorptively bound moisture is removed in order to achieve extremely low residual moisture. During the final drying, the product is warmed up in compliance with permissible temperature limits. The pressure at which post-drying takes place is around 10 ⁇ 3 mbar.
  • the prior art also includes the content of US-A-40 60 400.
  • This document discloses a truck with a cooling container and a refrigerator. Food is transported in the truck's cooling container at normal pressure. In the event of special temperature conditions or if the chiller fails liquid nitrogen is sprayed into the cooling container.
  • the present invention has for its object to provide a freeze-drying device of the type mentioned, in which the product batches are no longer at risk from accidents of the type described or a similar type.
  • the valve between the further condensation surface in the condenser and the storage container is opened, so that the refrigerant flows into the condensation surface.
  • the further condensation surface thus takes over the pumping effect.
  • the vacuum in the freeze-drying chamber remains independent of the equipment so that there is no risk of thawing or thawing of the product.
  • the additional condensation surface can be accommodated in the freeze-drying chamber, in the condenser which is usually connected to the freeze-drying chamber or in a separate chamber.
  • the device for freeze drying shown in the figure comprises the vacuum chamber 1 with the shelves 2 on which the product is located during the course of the freeze drying process.
  • the shelves 2 are usually both coolable and heatable.
  • the shelves 2 are equipped with cavities, not shown in detail, through which a temperature control agent (for example silicone oil) flows.
  • the temperature control circuit is shown in dash-dotted lines and labeled 3.
  • the setting plates 2 are parallel to each other and the feed pump 4 is switched on. If the circulating refrigerant is to be cooled, then the compressor refrigeration machine 5 is started up.
  • the compressor refrigeration machine 5 is located in the refrigerant circuit 6, which usually comprises the water-cooled condenser 7, the heat exchanger 8 and the valve 9.
  • the condenser 7 is preferably water-cooled.
  • the heat exchanger 8 is in the Temperature control circuit 3 switched on. Often, several compressor chillers are used at this point to either ensure operation (separate circuits) or to reach lower temperatures (cascade connection). It is also possible to use another chiller (for example an adsorption chiller).
  • the heating of the setting plates 2 is usually carried out by means of an electrical heating, not shown in detail, of the temperature control medium circulating in the temperature control circuit 3.
  • an electrical heating not shown in detail
  • the use of waste heat from the chillers or the use of steam-heated heat exchangers is also possible.
  • An evacuation system 11 is connected to the vacuum chamber 1 and comprises a condenser 12 and a vacuum pump 13 (gas ballast pump).
  • the valve 15 is located in the connecting line 14 between the vacuum chamber 1 and the condenser 12.
  • the line 16 with the valve 17 extends between the condenser 12 and the vacuum pump 13.
  • condensation surfaces 18 are accommodated within the condenser 12 and serve to remove water vapor from the chamber 1 during normal operation of the freeze-drying system.
  • the condensation surfaces usually consist of coils through which the refrigerant (for example chlorofluorocarbons) flows. The outer surfaces of these coils form the actual condensation surfaces.
  • the compressor refrigeration machine 5 also serves to supply the condensation surfaces 18 with refrigerant.
  • the condensation surfaces 18 can be connected to the refrigerant circuit 6 via the lines 19 and 21 with the valve 22.
  • the storage container 26 contains a low-boiling refrigerant 27, for example liquid nitrogen.
  • the line 28 is connected to the lower region of the storage container 26, which opens into its upper region above the refrigerant level.
  • an evaporator 29 and a pressure control valve 31 are switched on. With the aid of these elements, a certain pressure, for example a few bar, preferably 3 bar, can be maintained within the storage container 26.
  • An alternative in which the further condensation surface is located inside the chamber 1 is shown in dashed lines. The connected via the valve 25 to the reservoir 26 line 24 'opens into the condensation surface 23', which is arranged next to the adjusting plates 2.
  • the freeze-drying device shown works as follows: After a sterilization process, the product is introduced into the chamber 1 and frozen. For this purpose, the temperature control medium flowing in the temperature control circuit 3 is brought to correspondingly low temperatures with the aid of the compressor refrigerator 5. The valve 15 is closed during the freezing phase.
  • valves 15 and 17 are opened and the temperature control medium flowing in the temperature control circuit 3 is warmed up.
  • the valve 9 in the refrigerant circuit 6 is closed and the heating, not shown, is put into operation.
  • the chamber 1 is evacuated to a pressure of about 10 ⁇ 1 mbar.
  • the condensation surfaces 18 serve to remove the relatively large amounts of water vapor during normal operation, which are cooled with the aid of the compressor refrigerator 5. Small amounts of permanent gases still present flow through the condenser 12 and are removed using the gas ballast pump 13.
  • the cooling for the condensation surfaces 18 fails.
  • the pumping speed for water vapor decreases and returns to 0 relatively quickly.
  • the water vapor escaping from the product is no longer removed. Since the temperature control medium in the temperature control circuit 3 is warm during the main and post-drying (room temperature or slightly above), the product on the setting plates 2 begins to heat up immediately. If the product thaws or thaws, there is often a loss of quality or even a change that renders the product unusable.
  • the condensation surface 23 is provided in the condenser 12.
  • the low-boiling refrigerant 27 enters the tube coil forming the condensation surface 23 from below, evaporates there and thus cools the condensation surface 23 very quickly to relatively low temperatures.
  • the evaporated refrigerant is discharged into the atmosphere via line 32, for example.
  • the condensation surface 23 takes effect before the water vapor absorbency of the condensation surfaces 18 has significantly decreased.
  • the water vapor suction capacity of the condenser 12 is thus retained regardless of the operating medium, and that is until the refrigerant is finally used up in the storage container 26.
  • the emergency cooling can therefore be maintained for a sufficiently long time in order to be able to remedy the incident that has occurred.
  • valve 15 When an accident occurs, the valve 15 must keep its open position, close the valve 17 and open the valve 25.
  • these valves are therefore equipped with electrical or electropneumatic actuators which are designed such that the valves 15 and 25 assume their open position in the event of a power failure and the valve 17 in its closed position in the event of a power failure. This ensures a safe function of the emergency cooling device.
  • valve 25 also opens in the event of a fault, while valve 15 closes.
  • the refrigerant 27 flows via line 24 'into the condensation surface 23', evaporates there and is discharged via line 32 'into the atmosphere.
  • the condensation surface 23 ' is sufficiently cold to maintain the vacuum in the chamber 1. The product batch contained therein is therefore not endangered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf eine Einrichtung zur Gefriertrocknung mit einer evakuierbaren Kammer und einem Evakuierungssystem.
  • Die Gefriertrocknung wird in erster Linie zur Konservierung temperaturempfindlicher Produkte eingesetzt, deren Eigenschaften erhalten bleiben sollen. In den bereichen Pharmazie, Biologie und Medizin findet die Gefriertrocknung ihr Hauptanwendungsgebiet.
  • Der übliche Gefriertrocknungsprozeß läuft etwa folgendermaßen ab: Nach dem Einfrieren des Wasser enthaltenden Produktes findet die Sublimation des in Eisform vorliegenden Wassers statt, und zwar unter vakuum (etwa 10⁻¹ mbar). Nach dieser Haupttrocknung findet die Nachtrocknung statt, während der die adsorptiv gebundene Feuchtigkeit entfernt wird, um extrem niedrige Restfeuchten zu erzielen. Während der Nachtrocknung wird das Produkt unter Einhaltung zulässiger Temperaturgrenzen erwärmt. Der Druck, bei dem die Nachtrocknung stattfindet, liegt bei etwa 10⁻³ mbar.
  • Da die Gefriertrocknung im Chargenbetrieb durchgeführt wird, ist man bemüht, die Chargen möglichst groß zu wählen. Entsprechend hoch ist dann auch der Wert der Chargen. Es ist inzwischen durchaus üblich, mit Chargen zu fahren, deren Wert über 100 TDM liegt. Der Verlust der Charge infolge eines Störfalles führt deshalb zu empfindlichen Verlusten.
  • Folgende, eine Produktcharge gefährdende Störfälle können eintreten:
    • Ausfall der Verdichter-Kältemaschinen, die die Produktstellflächen in der Vakuumkammer und die Kondensationsflächen im Kondensator mit Kühlmittel versorgen; dabei kann der Kältemittelverdichter selbst defekt gehen oder ein Verlust des Kältemittels aus dem Kältekreislauf eintreten;
    • Stromausfall, komplett oder teilweise;
    • Ausfall der Kühlung der Verflüssiger im Kühlmittelkreislauf der Kältemittelverdichter, wenn zum Beispiel die Wasserversorgung ausfällt;
    • Ausfall der Anlagensteuerung.
  • Sämtliche dieser angegebenen Störfälle haben einen Ausfall der Kondensatorkühlung und damit einen Ausfall der Pumpleistung des Evakuierungssytems zur Folge. Da dem zu trocknenden Produkt während der Trocknung die für die Sublimation des Wassers erforderliche Energie in Form von Wärme zugeführt werden muß, führt ein Ausfall des Evakuierungssystems zu einer Erwärmung des Produktes, da vom Produkt abgegebener Wasserdampf nicht mehr abgepumpt wird. Gleichzeitig mit einem Druckanstieg in der Gefriertrocknungskammer beginnt das Produkt aufzutauen. Dieser Vorgang führt insbesondere bei hochempfindlichen Medikamenten zu Qualitätsverlusten, unter Umständen zum Verlust der kompletten Gefriertrocknungscharge.
  • Aus der US-A-24 53 033 ist eine Gefriertrocknungseinrichtung mit einer Kammer, in der sich Stellflächen für das zu gefriertrocknende Produkt befinden, mit einem aus Kondensator und Vakuumpumpe bestehenden Evakuierungssystem sowie mit einer dreistufigen Kältemaschine bekannt. Im Kondensator befinden sich zwei der Evakuierung der Kammer dienende Kondensationsflächen, die auf unterschiedlichen Temperaturen gehalten werden. Beide Kondensationsflächen werden während des normalen Betriebs der Gefriertrocknungsanlage von der dreistufigen Kältemaschine mit Kühlmitteln versorgt. Maßnahmen zur Rettung einer Charge bei einem Störfall sind offenbart.
  • Aus der DE-A-31 07 241 ist es bekannt, zur Versorgung des Kondensators, der der Evakuierung einer Gefriertrocknungskammer dient, mehrere Kältemaschinen einzusetzen. Eine der Kältemaschinen wird nur dann eingeschaltet ("stand by"), wenn Störfälle an den anderen Kältemaschinen auftreten. Eine derartige Lösung ist technisch aufwendig. Außerdem ist ihr Betriebsverhalten träge, wenn jedem der Kälteaggregate eine separate Kondensationsfläche zugeordnet ist. In kritischen Phasen des Gefriertrocknungsprozesses können Produkt-Qualitätsverluste bereits dann auftreten, wenn von der Betriebskondensationsfläche auf die Reservekondensationsfläche umgeschaltet wird. Die Reservekondensationsfläche hat nicht sofort ihre Betriebstemperatur, so daß ein unzulässig hoher Druckanstieg in der Kammer unvermeidlich ist. Schließlich kann die "stand by"-Kältemaschine bei einem Stromausfall oder bei einem Ausfall der Anlagensteuerung ihren Betrieb gar nicht erst aufnehmen.
  • Zum Stand der Technik gehört außerdem noch der Inhalt der US-A-40 60 400. Dieses Dokument offenbart einen Lastwagen mit einem Kühlbehälter und einer Kältemaschine. Im Kühlbehälter des Lastwagens werden Nahrungsmittel transportiert, und zwar bei Normaldruck. Bei besonderen Temperaturverhältnissen oder bei einem Ausfall der Kältemaschine wird flüssiger Stickstoff in den Kühlbehälter eingesprüht.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Gefriertrocknungseinrichtung der eingangs genannten Art zu schaffen, bei der die Produktchargen nicht mehr durch Störfälle der beschriebenen oder einer ähnlichen Art gefährdet sind.
  • Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Patentanspruchs 1 gelöst.
  • Bei einem Störfall wird das Ventil zwischen der weiteren Kondensationsfläche im Kondensator und dem Vorratsbehälter geöffnet, so daß das Kältemittel in die Kondensationsfläche einströmt. Die weitere Kondensationsfläche übernimmt damit die Pumpwirkung. Das Vakuum in der Gefriertrocknungskammer bleibt betriebsmittelunabhängig erhalten, so daß die Gefahr des An- oder Auftauens des Produktes nicht besteht. Die zusätzliche Kondensationsfläche kann in der Gefriertrocknungskammer, in dem üblicherweise an die Gefriertrocknungskammer angeschlossenen Kondensator oder auch in einer separaten Kammer untergebracht sein.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand eines in der Figur schematisch dargestellten Ausführungsbeispieles erläutert werden.
  • Die in der Figur dargestellte Einrichtung zur Gefriertrocknung umfaßt die Vakuumkammer 1 mit den Stellflächen 2, auf denen sich das Produkt während des Ablaufs des Gefriertrocknungsprozesses befindet. Üblicherweise sind die Stellflächen 2 sowohl kühlbar als auch aufheizbar. Dazu sind die Stellflächen 2 mit im einzelnen nicht dargestellten Hohlräumen ausgerüstet, die von einem Temperiermittel (zum Beispiel Silikonöl) durchströmt werden. Der Temperierkreislauf ist strichpunktiert eingezeichnet und mit 3 bezeichnet. In diesen Temperaturkreislauf 3 sind die Stellplatten 2 parallel zueinander und die Förderpumpe 4 eingeschaltet. Soll das umströmende Kältemittel gekühlt werden, dann wird die Verdichter-Kältemaschine 5 in Betrieb gesetzt. Die Verdichter-Kältemaschine 5 befindet sich im Kältemittelkreislauf 6, der üblicherweise den mit Wasser gekühlten Verflüssiger 7, den Wärmetauscher 8 und das Ventil 9 umfaßt. Der Verflüssiger 7 ist vorzugsweise wassergekühlt. Der Wärmetauscher 8 ist in den Temperierkreislauf 3 eingeschaltet. Häufig werden mehrere Verdichter-Kältemaschinen an dieser Stelle eingesetzt, um entweder den Betrieb zu sichern (getrennte Kreisläufe) oder tiefere Temperaturen zu erreichen (Kaskadenschaltung). Auch der Einsatz einer anderen Kältemaschine (zum Beispiel Adsorptionskältemaschine) ist möglich.
  • Die Erwärmung der Stellplatten 2 erfolgt üblicherweise mittels einer im einzelnen nicht dargestellten elektrischen Beheizung des im Temperierkreislauf 3 umlaufenden Temperiermittels. Auch die Verwendung der Abwärme der Kältemaschinen oder der Einsatz dampfbeheizter Wärmetauscher ist möglich.
  • An die Vakuumkammer 1 ist ein Evakuierungssystem 11 angeschlossen, das einen Kondensator 12 und eine Vakuumpumpe 13 (Gasballastpumpe) umfaßt. In der Verbindungsleitung 14 zwischen Vakuumkammer 1 und Kondensator 12 befindet sich das Ventil 15. Zwischen Kondensator 12 und Vakuumpumpe 13 erstreckt sich die Leitung 16 mit dem Ventil 17.
  • Innerhalb des Kondensators 12 sind eine oder mehrere Kondensationsflächen 18 untergebracht, die während des Normalbetriebs der Gefriertrocknungsanlage der Entfernung von Wasserdampf aus der Kammer 1 dienen. Die Kondensationsflächen bestehen üblicherweise aus Rohrschlangen, die von dem Kältemittel (zum Beispiel Fluorchlorkohlenwasserstoffe) durchströmt sind. Die Außenflächen dieser Rohrschlangen bilden die eigentlichen Kondensationsflächen. Der Versorgung der Kondensationsflächen 18 mit Kältemittel dient ebenfalls die Verdichterkältemaschine 5. Über die Leitungen 19 und 21 mit dem Ventil 22 sind die Kondensationsflächen 18 an den Kältemittelkreislauf 6 anschließbar.
  • Im Kondensator 12 befindet sich eine weitere Kondensationsfläche 23, die über die Leitung 24 mit dem Ventil 25 an den unteren Bereich eines Vorratsbehälters 26 angeschlossen ist. Der Vorratsbehälter 26.enthält ein niedrigsiedendes Kältemittel 27, beispielsweise flüssigen Stickstoff. Weiterhin ist an den unteren Bereich des Vorratsbehälters 26 die Leitung 28 angeschlossen, die in seinen oberen Bereich oberhalb des Kältemittelspiegels mündet. In dieser Leitung sind ein Verdampfer 29 und ein Druckregelventil 31 eingeschaltet. Mit Hilfe dieser Elemente kann innerhalb des Vorratsbehälters 26 ein bestimmter Druck, beispielsweise einige Bar, vorzugsweise 3 bar, aufrechterhalten werden. Eine Alternative, bei der sich die weitere Kondensationsfläche innerhalb der Kammer 1 befindet, ist gestrichelt dargestellt. Die über das Ventil 25 mit dem Vorratsbehälter 26 verbundene Leitung 24′ mündet in die Kondensationsfläche 23′, die neben den Stellplatten 2 angeordnet ist.
  • Die dargestellte Gefriertrocknungseinrichtung arbeitet folgendermaßen: Nach einem Sterilisationsvorgang wird das Produkt in die Kammer 1 eingebracht und eingefroren. Dazu wird das im Temperierkreislauf 3 strömende Temperiermittel mit Hilfe der Verdichter-Kältemaschine 5 auf entsprechend niedrige Temperaturen gebracht. Das Ventil 15 ist während der Einfrierphase geschlossen.
  • Zur Durchführung der Haupttrocknung werden die Ventile 15 und 17 geöffnet und das im Temperierkreislauf 3 strömende Temperiermittel aufgewärmt. Dazu wird das Ventil 9 im Kältemittelkreislauf 6 geschlossen und die nicht dargestellte Beheizung in Betrieb gesetzt.
  • Die Kammer 1 wird auf einen Druck von etwa 10⁻¹ mbar evakuiert. Der Entfernung der relativ großen Wasserdampfmengen dienen bei Normalbetrieb die Kondensationsflächen 18, die mit Hilfe der Verdichter-Kältemaschine 5 gekühlt werden. Geringe Mengen noch vorhandener Permanentgase durchströmen den Kondensator 12 und werden mit Hilfe der Gasballastpumpe 13 entfernt.
  • Tritt einer der eingangs beschriebenen Störfälle ein, dann fällt die Kühlung für die Kondensationsflächen 18 aus. Das Saugvermögen für Wasserdampf nimmt ab und geht relativ schnell auf 0 zurück. Der aus dem Produkt entweichende Wasserdampf wird nicht mehr abgeführt. Da das Temperiermittel im Temperierkreislauf 3 während der Haupt- und der Nachtrocknung warm ist (Zimmertemperatur oder etwas darüber), beginnt sofort eine Erwärmung des auf den Stellplatten 2 befindlichen Produktes. Taut das Produkt an oder auf, tritt häufig ein Qualitätsverlust oder gar eine Veränderung ein, durch die das Produkt unbrauchbar wird.
  • Um bei einem Störfall dieser Art das Wasserpumpsaugvermögen des Kondensators 12 betriebsmittelunabhängig, das heißt, unabhängig von den beim Normalbetrieb der Gefriertrocknungsanlage erforderlichen Mittel wie Strom, Wasser und dergleichen, aufrechterhalten zu können, ist im Kondensator 12 die Kondensationsfläche 23 vorgesehen. Durch Öffnen des Ventils 25 gelangt das niedrigsiedende Kältemittel 27 von unten in die die Kondensationsfläche 23 bildende Rohrschlange, verdampft dort und kühlt damit die Kondensationsfläche 23 sehr schnell auf relativ tiefe Temperaturen ab. Das verdampfte Kältemittel wird über die Leitung 32 zum Beispiel in die Atmosphäre abgeführt. Die Kondensationsfläche 23 wird wirksam, bevor das Wasserdampfsaugvermögen der Kondensationsflächen 18 maßgeblich abgenommen hat. Das Wasserdampfsaugvermögen des Kondensators 12 bleibt damit betriebsmittelunabhängig erhalten, und zwar bis zum endgültigen Verbrauch des Kältemittels im Vorratsbehälter 26.
  • Bei einer entsprechenden Wahl der Größe des Vorrats an Kältemittel 27 kann deshalb die Notkühlung ausreichend lange aufrechterhalten werden, um den eingetretenen Störfall beheben zu können.
  • Bei Eintritt eines Störfalles muß das Ventil 15 seine offene Stellung behalten, das Ventil 17 schließen und das Ventil 25 öffnen. Zweckmäßigerweise sind diese Ventile deshalb mit elektrischen oder elektropneumatischen Betätigungseinrichtungen ausgerüstet, die derart ausgebildet sind, daß die Ventile 15 und 25 bei Stromausfall ihre Offenstellung und das Ventil 17 bei Stromausfall seine Schließstellung einnehmen. Eine sichere Funktion der Notkühleinrichtung wird dadurch erreicht.
  • Bei der gestrichelt dargestellten Alternativlösung öffnet sich ebenfalls im Störfall das Ventil 25, während das Ventil 15 schließt. Das Kältemittel 27 strömt über die Leitung 24′ in die Kondensationsfläche 23′, verdampft dort und wird über die Leitung 32′ in die Atmosphäre abgeführt. Unmittelbar nach dem Eintritt des Störfalles wird die Kondensationsfläche 23′ ausreichend kalt, um das Vakuum in der Kammer 1 aufrechtzuerahalten. Die darin befindliche Produktcharge ist somit nicht gefährdet.

Claims (7)

  1. Einrichtung zur Gefriertrocknung
    - mit einer evakuierbaren Kammer (1), in der sich Stellflächen (2) für das gefrierzutrocknende Produkt befinden,
    - mit einem an die Kammer (1) über eine Leitung (14) angeschlossenen Evakuierungssystem (11), das einen Kondensator (12) mit mindestens einer Kondensationsfläche (18) sowie eine über eine Leitung (16) an den Kondensator angeschlossene Vakuumpumpe (13) umfaßt,
    - mit einer Kältemaschine (5), die die Kondensationsfläche (18) mit einem Kältemittel versorgt, und
    - mit einer zusätzlichen, von der Kältemaschine (5) unabhängigen Kondensationsfläche (23, 23′), die über ein Ventil (25) an einen Vorratsbehälter (26) mit einem niedrigsiedenden Kältemittel (27) angeschlossen ist und die sich entweder im Kondensator (12, Kondensationsfläche 23), in der Kammer (1, Kondensationsfläche 23′) oder in einer separaten Kammer befindet.
  2. Einrichtung nach Anspruch 1 mit einer in der Kammer (1) befindlichen zusätzlichen Kondensationsfläche (23′) und mit einem in der Leitung (14) zwischen der Kammer (1) und dem Kondensator (12) befindlichen Ventil (15).
  3. Einrichtung nach Anspruch 2, bei der das zwischen der Kammer (1) und dem Kondensator (12) befindliche Ventil (15) sowie das zwischen der zusätzlichen Kondensationsfläche (23′) und dem Vorratsbehälter (26) befindliche Ventil (25) mit elektrischen oder elektropneumatischen Betätigungseinrichtungen ausgerüstet sind, derart, daß bei Stromausfall das Ventil (15) seine Schließstellung und das Ventil (25) seine Offenstellung einnehmen bezw. beibehalten.
  4. Einrichtung nach Anspruch 1 mit einer im Kondensator (12) befindlichen zusätzlichen Kondensationsfläche (23) und mit jeweils zwischen Kammer (1) und Kondensator (12) sowie in der Leitung (16) zwischen Kondensator (12) und Vakuumpumpe (13) befindlichem Ventil (15) bzw. (17).
  5. Einrichtung nach Anspruch 4, bei der das zwischen der Kammer (1) und dem Kondensator (12) befindliche Ventil (15), das zwischen Kondensator (12) und Vakuumpumpe (13) befindliche Ventil (17) sowie das zwischen der zusätzlichen Kondensationsfläche (23) und dem Vorratsbehälter (26) befindliche Ventil (25) mit elektrischen oder elektropneumatischen Betätigungseinrichtungen ausgerüstet sind, derart, daß bei Stromausfall das Ventil (17) seine Schließstellung und die Ventile (15) und (25) ihre Offenstellung einnehmen bzw. beibehalten.
  6. Einrichtung nach einem der vorhergehenden Ansprüche, bei der dem Vorratsbehälter (26) für das flüssige Kältemittel (27) Mittel (28, 29, 31) zugeordnet sind, die der Erzeugung eines erhöhten Behälterinnendruckes dienen.
  7. Einrichtung nach einem der vorhergehenden Ansprüche, bei der das Kältemittel (27) im Vorratsbehälter (26) flüssiger Stickstoff ist.
EP87110955A 1987-07-29 1987-07-29 Einrichtung zur Gefriertrocknung Expired - Lifetime EP0301117B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE3750847T DE3750847D1 (de) 1987-07-29 1987-07-29 Einrichtung zur Gefriertrocknung.
ES87110955T ES2068809T3 (es) 1987-07-29 1987-07-29 Dispositivo para la liofilizacion.
EP87110955A EP0301117B1 (de) 1987-07-29 1987-07-29 Einrichtung zur Gefriertrocknung
JP63173852A JP2676374B2 (ja) 1987-07-29 1988-07-14 冷凍乾燥装置
US07/226,536 US4949473A (en) 1987-07-29 1988-07-29 Freeze drying apparatus with additional condensation surface and refrigeration source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87110955A EP0301117B1 (de) 1987-07-29 1987-07-29 Einrichtung zur Gefriertrocknung

Publications (2)

Publication Number Publication Date
EP0301117A1 EP0301117A1 (de) 1989-02-01
EP0301117B1 true EP0301117B1 (de) 1994-12-07

Family

ID=8197162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110955A Expired - Lifetime EP0301117B1 (de) 1987-07-29 1987-07-29 Einrichtung zur Gefriertrocknung

Country Status (5)

Country Link
US (1) US4949473A (de)
EP (1) EP0301117B1 (de)
JP (1) JP2676374B2 (de)
DE (1) DE3750847D1 (de)
ES (1) ES2068809T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469151A (zh) * 2018-02-10 2018-08-31 扬子江药业集团南京海陵药业有限公司 一种注射用磷酸左奥硝唑酯二钠商业化生产的冻干工艺

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665338B1 (fr) * 1990-08-02 1994-02-04 Blaizat Claude Procede de concentration, deshydratation de liquide alimentaire ou autre, son dispositif et le produit obtenu.
US5236041A (en) * 1991-07-22 1993-08-17 Hull Corporation Cyclonic vapor flow condenser
US5199187A (en) * 1991-07-31 1993-04-06 Sp Industries Freeze dryer apparatus having an interim condensing system and use thereof
DE4233479C2 (de) * 1991-10-04 1999-09-02 Inst Mikrobiologie Und Biochem Verfahren und Einrichtung zum Gefriertrocknen, insbesondere von Flüssigkeiten mit Mikroorganismen
JPH0735951B2 (ja) * 1991-10-30 1995-04-19 西部瓦斯株式会社 真空乾燥処理装置
US5291751A (en) * 1992-04-21 1994-03-08 Liquid Carbonic Corporation Cryo-mechanical vapor recovery apparatus
US5456084A (en) * 1993-11-01 1995-10-10 The Boc Group, Inc. Cryogenic heat exchange system and freeze dryer
US6122836A (en) * 1998-05-07 2000-09-26 S.P. Industries, Inc., The Virtis Division Freeze drying apparatus and method employing vapor flow monitoring and/or vacuum pressure control
US6220048B1 (en) * 1998-09-21 2001-04-24 Praxair Technology, Inc. Freeze drying with reduced cryogen consumption
CA2360112A1 (en) * 1999-01-05 2000-07-13 Victor Bronshtein Vacuum control system for foam drying apparatus
EP1711214A1 (de) * 2004-02-02 2006-10-18 Interface Multigrad Technology (IMT) Ltd. Vorrichtung zum gerichteten kühlen von biomasse
CA2782908C (en) 2009-12-11 2016-02-09 Edward Weisselberg Apparatus and method for continuous lyophilization
EP2517001A4 (de) * 2009-12-22 2014-08-20 Ima Life North America Inc Überwachung von gefriertrocknung mit gasmessung am vakuumpumpenauslass
CN103123206A (zh) * 2013-03-21 2013-05-29 楚天科技股份有限公司 一种冻干机
JP6173495B2 (ja) * 2013-05-29 2017-08-02 ゲア・プロセス・エンジニアリング・アクティーゼルスカブ トロリに収容されたトレイ内の製品の直列滅菌凍結乾燥を実現する方法、方法を実施するためのシステム、および方法の使用
CN103344096A (zh) * 2013-07-18 2013-10-09 上海千山远东制药机械有限公司 冻干机捕水器
CN105509422B (zh) * 2015-12-24 2018-09-25 甘肃银光化学工业集团有限公司 一种真空冷冻干燥系统及采用该系统对含能材料真空冷冻干燥的方法
CN106468501B (zh) * 2016-08-29 2019-12-27 浙江金石生物科技有限公司 一种氮气保护的铁皮石斛冷冻干燥装置及其冷冻干燥方法
DE102016123490A1 (de) * 2016-12-05 2018-06-07 Innovations-Transfer Uphoff Gmbh & Co. Kg Verfahren und Vorrichtung zur Trocknung im Dampfexplosionsverfahren
WO2020201822A2 (en) * 2019-01-27 2020-10-08 Nguyen Vien Lam Convection current freeze drying apparatus and method of operating the same
CN111504003B (zh) * 2020-03-30 2021-06-11 广西农业职业技术学院 一种冷冻干燥方法及其干燥装置
CN113865273B (zh) * 2021-09-01 2023-01-31 广州韩秀科技有限公司 开放式负压低温干燥设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR784430A (fr) * 1934-04-14 1935-07-22 Installation pour la préparation de produits en poudre sèche
GB552821A (en) * 1941-12-18 1943-04-27 Arthur Sproul Mcfarlane Improvements in and relating to the desiccation of solutions at low temperatures
US2453033A (en) * 1945-03-08 1948-11-02 York Corp Vacuum drying apparatus using a refrigerant system for heating and cooling
US3230633A (en) * 1961-10-27 1966-01-25 Pennsalt Chemicals Corp Freeze drying apparatus and method
DE1196579B (de) * 1962-02-27 1965-07-08 Leybold Hochvakuum Anlagen Verfahren zum Steuern der Trocknungsgut-Heiztemperatur beim Gefriertrocknen, abhaengig vom Partialdruck eines in der Kammer vorhandenen Gases oder Dampfes
DE1196578B (de) * 1962-02-27 1965-07-08 Leybold Hochvakuum Anlagen Gefriertrocknungsverfahren mit Rueckgewinn dabei fluechtiger Bestandteile
US3191395A (en) * 1963-07-31 1965-06-29 Chicago Bridge & Iron Co Apparatus for storing liquefied gas near atmospheric pressure
US3385073A (en) * 1966-10-06 1968-05-28 Cryo Therm Inc Refrigeration system for shipping perishable commodities
FR1586349A (de) * 1968-10-24 1970-02-13
US3648379A (en) * 1970-03-16 1972-03-14 Horton John T Continuous freeze drying system
US4060400A (en) * 1975-08-22 1977-11-29 Henry L. Franke Refrigerated semitrailer truck for long and local deliveries
US4353222A (en) * 1979-07-04 1982-10-12 Kyowa Vacuum Engineering, Ltd. Vacuum apparatus
JPS5728977A (en) * 1980-07-25 1982-02-16 Osaka Gas Co Ltd Vacuum refrigeration drying and apparatus used therefor
DE3107241A1 (de) * 1981-02-26 1982-09-09 Leybold-Heraeus GmbH, 5000 Köln Kondensator fuer trocknungsanlagen
JPS6015867A (ja) * 1983-07-06 1985-01-26 Fujitsu Ltd 磁気記録再生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469151A (zh) * 2018-02-10 2018-08-31 扬子江药业集团南京海陵药业有限公司 一种注射用磷酸左奥硝唑酯二钠商业化生产的冻干工艺

Also Published As

Publication number Publication date
EP0301117A1 (de) 1989-02-01
JPS6449882A (en) 1989-02-27
US4949473A (en) 1990-08-21
ES2068809T3 (es) 1995-05-01
JP2676374B2 (ja) 1997-11-12
DE3750847D1 (de) 1995-01-19

Similar Documents

Publication Publication Date Title
EP0301117B1 (de) Einrichtung zur Gefriertrocknung
EP2066991B1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
EP0368111B1 (de) Sorptionskühlsystem
DE10297837B4 (de) Verfahren zum Befestigen einer Kühlmaschine und Befestigungsvorrichtung dafür
DE602004008461T2 (de) Verfahren zum kühlen eines produkts, besonders zur verflüssigung eines gases und vorrichtung für die durchführung dieses verfahrens
DE4491062B4 (de) Cryogene Vakuumpumpe mit elektronisch gesteuerter bzw. geregelter Regeneration
DE60022440T2 (de) Verfahren und Vorrichtung zum Gefrieren von Produkten
DE2157079A1 (de) Zweistufige Kälteanlage
EP1876402A2 (de) Wärmepumpe mit einer Temperiereinrichtung
DE1628440A1 (de) Verfahren zur schnellen Verminderung des Druckes eines Gasgemisches innerhalb einer Kammer und Vakuumsystem zur Durchfuehrung dieses Verfahrens
DE69917722T2 (de) Gefriertrocknung mit reduziertem Kryogenmittelverbrauch
DE69314390T2 (de) Kryogenes-Kühlsystem und Kühlungsverfahren dazu
AT520000B1 (de) Kältemittelkreislauf einer Kälteanlage mit einer Anordnung zum Abtauen eines Wärmeübertragers und Verfahren zum Betreiben des Kältemittelkreislaufs
DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
EP1742234B1 (de) Unterkühlte Horizontalkryostatanordnung
DE69407699T2 (de) Verfahren und Vorrichtung zur Kühlung
DE102008043807B4 (de) Kälteanlage
DE19920726A1 (de) Kälteanlage
EP3430329A1 (de) Kühl- und/oder gefriergerät
DE102016223050A1 (de) Kühlkreislauf für ein Fahrzeug, insbesondere zur Kühlung eines Kühlgutraums eines Transportfahrzeugs
EP2369280A2 (de) Verfahren und Vorrichtung zum Erzeugen kalter gasförmiger oder flüssiger Luft
EP1983276A1 (de) Kälteanlage
EP0955384B1 (de) Verfahren zum Abschrecken von Werkstücken und Wärmebehandlungsanlage zur Durchführung des Verfahrens
DE4233479C2 (de) Verfahren und Einrichtung zum Gefriertrocknen, insbesondere von Flüssigkeiten mit Mikroorganismen
DE19723566C1 (de) Verfahren zum Vakuumverdampfen von einem mit einem Lösungsmittel versetzten Substrat sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19890422

17Q First examination report despatched

Effective date: 19900321

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FINN-AQUA SANTASALO-SOHLBERG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 3750847

Country of ref document: DE

Date of ref document: 19950119

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950309

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AMSCO FINN-AQUA GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2068809

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: AMSCO FINN-AQUA GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060717

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060726

Year of fee payment: 20

Ref country code: ES

Payment date: 20060726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060831

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070730