EP0300319B1 - Piezoelektrisch anregbares Resonanzsystem zur Ultraschall-Zerstäubung einer Flüssigkeit - Google Patents

Piezoelektrisch anregbares Resonanzsystem zur Ultraschall-Zerstäubung einer Flüssigkeit Download PDF

Info

Publication number
EP0300319B1
EP0300319B1 EP88111066A EP88111066A EP0300319B1 EP 0300319 B1 EP0300319 B1 EP 0300319B1 EP 88111066 A EP88111066 A EP 88111066A EP 88111066 A EP88111066 A EP 88111066A EP 0300319 B1 EP0300319 B1 EP 0300319B1
Authority
EP
European Patent Office
Prior art keywords
resonance system
plate
base plate
neck
working plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88111066A
Other languages
English (en)
French (fr)
Other versions
EP0300319A3 (en
EP0300319A2 (de
Inventor
Johannes Dr. Däges
Klaus Dipl.-Ing. Van Der Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0300319A2 publication Critical patent/EP0300319A2/de
Publication of EP0300319A3 publication Critical patent/EP0300319A3/de
Application granted granted Critical
Publication of EP0300319B1 publication Critical patent/EP0300319B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/04Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving focusing or reflecting

Definitions

  • the invention is in the field of devices for generating resonant vibrations in the ultrasonic frequency range. It can be used in the structural design of a piezoelectrically excitable, resonant system with which liquids are atomized.
  • a known device for liquid atomization consists of a rotationally symmetrical metal body with a piezoceramic vibrator coupled to the base of the metal body.
  • the metal body of this resonance system (which carries out a bending vibration) has three areas, namely a disk-shaped base plate, a vibrating plate referred to as a “work plate” and a web connecting the base plate and the work plate and lying in the axis of symmetry of the metal body.
  • the worktop is used to hold a liquid. Aerosols that can be generated with such a resonance system have droplet diameters that are largely not respirable. Such a resonance system is therefore not very suitable for the production of aerosols for inhalation purposes.
  • the invention is based on a resonance system with the features of the preamble of claim 1. It is based on the object of improving the resonance system in such a way that, with the smallest possible electrical excitation power, a droplet diameter of the aerosol of less than 15 micrometers can be achieved in order to further increase the aerosol's ability to move into the lungs.
  • the piezoceramic ultrasonic vibrator is a vibrator working in thickness resonance
  • the base plate of the metal body has a parabolic cover surface opposite the base surface
  • the worktop is plate-shaped or bowl-shaped
  • the center of the Worktop is located in or near the actual focal point of the parabolic cover surface or the focal point of the parabolic cover surface reflected through the neck on the base surface of the base plate.
  • the term “parabolic cover surface” is understood to mean a surface that reflects the ultrasound waves incident into a focal point. Approximately, this can also be a spherical surface or a surface adapted to a paraboloid from annular partial surfaces (truncated cone surfaces with different cone opening angles).
  • the ultrasonic waves fed into the metal body by the piezoceramic thickness transducer are on the parabolic cover surface reflected from the base plate and focused through the neck into the area of the worktop. Since the ultrasonic waves hit the worktop at an angle of inclination, some of these sound waves are reflected in the direction of the edge of the worktop; another part runs as a surface wave in the direction of the edge. This ensures an even distribution of the liquid to be atomized on the worktop and thus uniform atomization over the entire atomization period. In addition, the liquid surface is close to the optimal atomization point during the entire atomization process.
  • aerosols are generated in which more than 50% of the atomizable volume is in droplets with a diameter of less than or equal to 15 ⁇ m and the most common droplet diameter is less than or equal to 5 ⁇ m.
  • compliance with a specific resonance frequency is ensured in such a resonance system within the framework of manageable manufacturing tolerances.
  • the metal body of the resonance system can be designed such that the base of the base plate is a circular ring, and that the base plate merges into a conical neck which penetrates the central opening of the circular ring beyond the base plate. This results in a relatively compact design of the resonance system.
  • the piezoceramic thickness transducer also has the shape of a circular ring in this case.
  • the worktop can be integrated directly into the neck, in that the neck is designed as a truncated cone with a plate-shaped or bowl-shaped depression at the tapering end.
  • the focal point of the ultrasonic waves can be placed in the hollow of the cone tip and thus directly in the liquid to be atomized.
  • the metal body can also be designed such that the conical neck at the tapered end merges into the plate or bowl-shaped worktop in the form of an extension. This enables the atomization of a larger amount of liquid.
  • a particularly advantageous embodiment of the metal body is that the disc-shaped base plate on the side of the parabolic cover surface near the axis of symmetry merges into the neck carrying the worktop.
  • the ultrasonic waves are reflected twice before they hit the worktop. Interference effects associated with this double reflection, bundle dislocations (DE-Z "Material Institute", 1965, page 281 ff.) And reentry of the ultrasonic waves into the piezoceramic lead to parallel beam displacements, as a result of which the feeding of the ultrasound into the liquid to be atomized is improved. This can be further taken into account by a special design of the worktop.
  • This configuration consists in the fact that the side part of the worktop forms a conical jacket, and that the transition area between the neck and the plate-shaped worktop and the inclination of the side part relative to the central part of the worktop is selected such that ultrasonic waves reflected on the worktop are directed into the side part and be reflected several times in the direction of the plate.
  • the dimensioning of the resonance system depends on the speed of sound in the metal body, which is preferably made of chromium-nickel steel, and on the desired frequency.
  • the frequency should be in the favorable transmission range of the piezoceramic thickness transducer. Since the continuous atomization of a liquid preferably takes place with standing ultrasound waves, the ultrasound path in the metal body should be a multiple of half the wavelength, in particular 6-28 times.
  • the thickness of the disk-shaped base plate approximately twice as large as the ultrasonic wavelength and to dimension the diameter of the plate-shaped worktop with approximately three times this wavelength.
  • the diameter of the base area of the disk-shaped base plate should be approximately ten times this wavelength.
  • the one-piece metal body 1 shown is - geometrically speaking - a ring part which is penetrated by a cone with a parabolically shaped underside 4, the ring part and the cone having the same axis of symmetry 10 and the same outside diameter.
  • the metal body 1 thus has a disk-shaped base plate 2 with a flat, annular base surface 3 running perpendicular to the axis of symmetry or rotation 10 and with an opposite symmetrical parabolic cover surface 4; it also has a conically tapering neck 5, which penetrates the annular base surface 3, that is, protrudes therefrom, and which is formed at the tapered end with a plate-shaped or bowl-shaped recess 6.
  • the recess 6 in the neck 5 also forms the worktop of the resonance system. It is intended to hold a liquid to be atomized.
  • the center of the depression 6 lies in or in the vicinity of the actual focal point F1 of the base area 4.
  • the ultrasound oscillator 7 which in this case is ring-shaped, is coupled to the flat base area 3, which runs perpendicular to the axis of symmetry 10. It lies symmetrically to the axis of symmetry 10. It operates in what is known as a thickness resonance.
  • the resonance system is constructed on the basis of the exemplary embodiment according to FIG. 1.
  • a one-piece, rotationally symmetrical metal body 11 is provided, which consists of a disk-shaped base plate 12 with a flat, ring-shaped base surface 13, an opposite parabolic cover surface 14 and a conically tapering neck 15.
  • the neck 15 also protrudes from the base 13 here.
  • a plate-shaped projecting part 16 is provided, which is molded onto the tapered end of the neck 15.
  • the plate-shaped worktop 16 has the shape of an extension and has a flat central part and a tapered side part (conical plate wall).
  • the resonance system is excited via an electrically loadable piezoceramic ring body 17, which is coupled to the metal body 11 (preferably made of chromium-nickel steel) on the base surface 13, e.g. is glued.
  • the common axis of symmetry is designated 20.
  • An ultrasound wave US excited by the piezoceramic ring body 17, which also works here as a thickness oscillator, is reflected on the parabolic cover surface 14 and focused in the vicinity of the center of the plate-shaped worktop 16 at the focal point F2.
  • the liquid on the worktop 16 is atomized as a result.
  • an oscillatable, rotationally symmetrical metal body 21 has a disk-shaped base plate 22, the base surface 23 of which is designed as a flat circular surface. Opposite it is a parabolic cover surface 24.
  • the base plate 22 merges on the side of its parabolic cover surface 24 in the region of the axis of symmetry 30 via a neck 25 into a plate-shaped worktop 26.
  • This plate 26 has a flat central part 28 and a tapered side part 29 (conical plate wall).
  • the entire resonance system is rotationally symmetrical with respect to the axis of symmetry 30.
  • a piezoceramic thickness transducer 27 is here cylindrical (with a circular coupling surface) and glued to the flat base surface 23 and thereby coupled.
  • An ultrasonic wave US1 excited by the thickness transducer 27 is reflected both at the parabolic cover surface 24 and at the interface 23 between the thickness transducer 27 and the base plate 22 and is focused toward the center of the plate-shaped work surface 26.
  • the focal point F3 of the ultrasonic waves US1 is therefore a mirror image of the focal point of the parabolic surface 24, the base surface 23 forming the mirror surface.
  • the focussing point F3 of the ultrasonic wave US1 and the atomization location lie here on the same side of the base area 23.
  • the transition area between the neck 25 and the plate-shaped worktop 26 and the inclination of the side part 29 against the central part 28 are chosen accordingly.
  • a circumferential, ring-shaped notch 33 - preferably on the underside of the plate wall 29 as shown on the left - in the vicinity of the plate edge shields the plate edge from the ultrasonic waves. As a result, it calms down the liquid on the worktop 26 in the edge region.
  • the diameter of the plate-shaped worktop 26 is approximately three times the ultrasonic wavelength in the metal body 21, the diameter of the neck 25 and the plate middle part is approximately one Wavelength, a height of Neck 25 of likewise approximately one wavelength, a thickness of the base plate 22 of twice the wavelength and a diameter of the base surface 23 of approximately ten times the wavelength have proven to be expedient.
  • the thickness of the piezoceramic thickness transducer 27 preferably corresponds to approximately half the wavelength of the excited ultrasound wave in the thickness transducer 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Special Spraying Apparatus (AREA)

Description

  • Die Erfindung liegt auf dem Gebiet der Geräte zum Erzeugen von Resonanzschwingungen im Ultraschall-Frequenzbereich. Sie ist bei der konstruktiven Ausgestaltung eines piezoelektrisch anregbaren, resonanzfähigen Systems anwendbar, mit dem Flüssigkeiten zerstäubt werden.
  • Ein bekanntes Gerät (DE-A1-20 32 433) zur Flüssigkeitszerstäubung besteht aus einem rotationssymmetrischen Metallkörper mit einem an die Grundfläche des Metallkörpers angekoppelten piezokeramischen Schwinger. Der Metallkörper dieses (eine Biegeschwingung ausführenden) Resonanzsystems weist dabei drei Bereiche auf, nämlich eine scheibenförmige Grundplatte, eine als "Arbeitsplatte" bezeichnete Schwingplatte und einen die Grundplatte und die Arbeitsplatte verbindenden, in der Symmetrieachse des Metallkörpers liegenden Steg. Die Arbeitsplatte dient der Aufnahme einer Flüssigkeit. Mit einem derartigen Resonanzsystem erzeugbare Aerosole weisen Tröpfchendurchmesser auf, die zu einem großen Teil nicht lungengängig sind. Ein solches Resonanzsystem ist daher für die Erzeugung von Aerosolen für Inhalationszwecke wenig geeignet.
  • Zur Verbesserung des bekannten Flüssigkeitszerstäubers ist bereits vorgeschlagen worden (EP-A-0 246 515, Veröffentlichungstag 25.11.1987), bei kegelig ausgebildeter Grundplatte die Arbeitsplatte als Hohlspiegel auszubilden und über einen speziell dimensionierten Hals mit der kegeligen Grundplatte zu verbinden. Dadurch lassen sich bei Anregung in Dickenresonanz sehr kleine Flüssigkeitsvolumina (kleiner oder gleich 15 Mikroliter) ohne ein mechanisches Tröpfchenfilter bei geringer elektrischer Anregungsleistung sowie ohne Ankopplung über ein Flüssigkeitsmedium in Tröpfchen mit einem Durchmesser von kleiner oder gleich 40 Mikrometer zerstäuben. Die Schwingfrequenz dieses Resonanzsystems liegt dabei im Megahertz-Bereich.
  • Die Erfindung geht von einem Resonanzsystem mit den Merkmalen des Oberbegriffes des Patentanspruches 1 aus. Ihr liegt die Aufgabe zugrunde, das Resonanzsystem derart zu verbessern, daß bei möglichst kleiner elektrischer Anregungsleistung ein Tröpfchendurchmesser des Aerosols von kleiner als 15 Mikrometer erzielt werden kann, um die Lungengängigkeit des Aerosols weiter zu steigern.
  • Zur Lösung dieser Aufgabe ist gemäß der Erfindung vorgesehen, daß der piezokeramische Ultraschall-Schwinger ein in Dickenresonanz arbeitender Schwinger ist, daß die Grundplatte des Metallkörpers eine der Grundfläche gegenüberliegende parabolische Deckfläche aufweist, daß die Arbeitsplatte tellerförmig oder schalenförmig ausgebildet ist, und daß der Mittelpunkt der Arbeitsplatte im oder in der Nähe des eigentlichen Brennpunktes der parabolischen Deckfläche oder des an der Grundfläche der Grundplatte durch den Hals hindurch gespiegelten Brennpunktes der parabolischen Deckfläche liegt.
  • Unter dem Begriff "parabolische Deckfläche" wird im Rahmen der Erfindung eine Fläche verstanden, die die auftreffenden Ultraschallwellen in einen Brennpunkt reflektiert. Näherungsweise kann es sich hierbei auch um eine Kugelfläche oder um eine einem Paraboloid angepaßte Fläche aus ringförmigen Teilflächen (Kegelstumpfoberflächen mit verschiedenen Kegelöffnungswinkeln) handeln.
  • Bei einem derart ausgestalteten Resonanzsystem werden die von dem piezokeramischen Dickenschwinger in den Metallkörper eingespeisten Ultraschallwellen an der parabolischen Deckfläche der Grundplatte reflektiert und durch den Hals hindurch in den Bereich der Arbeitsplatte fokussiert. Da die Ultraschallwellen unter einem Neigungswinkel auf die Arbeitsplatte treffen, wird ein Teil dieser Schallwellen in Richtung des Randes der Arbeitsplatte reflektiert; ein weiterer Teil läuft als Oberflächenwelle in Richtung des Randes. Dadurch wird eine gleichmäßige Verteilung der zu zerstäubenden Flüssigkeit auf der Arbeitsplatte und damit eine gleichmäßige Zerstäubung über den gesamten Zerstäubungszeitraum erreicht. Außerdem befindet sich die Flüssigkeitsoberfläche während des gesamten Zerstäubungsvorganges in der Nähe des optimalen Zerstäubungspunktes. Demzufolge werden bei einer Anregungsleistung kleiner/gleich 20 W Aerosole erzeugt, bei denen mehr als 50 % des zerstäubbaren Volumens in Tröpfchen mit einem Durchmesser kleiner/gleich 15 µm vorliegt und der häufigste Tröpfchendurchmesser kleiner/gleich 5 µm ist. Im übrigen ist bei einem derartigen Resonanzssystem im Rahmen gut beherrschbarer Herstellungstoleranzen die Einhaltung einer bestimmten Resonanzfrequenz gewährleistet.
  • In Weiterbildung der Erfindung kann der Metallkörper des Resonanzsystems so ausgebildet sein, daß die Grundfläche der Grundplatte ein Kreisring ist, und daß die Grundplatte in einen kegelförmigen Hals übergeht, der die zentrale Öffnung des Kreisringes über die Grundplatte hinaus durchdringt. Dadurch erhält man eine relativ kompakte Ausgestaltung des Resonanzsystems. Der piezokeramische Dickenschwinger hat in diesem Fall ebenfalls die Form eines Kreisringes.
  • Bei dieser Ausgestaltung kann die Arbeitsplatte direkt in den Hals integriert sein, indem der Hals als Kegelstumpf mit einer teller- oder schalenförmigen Vertiefung am spitz zulaufenden Ende ausgebildet ist. Bei dieser Ausführungsform kann der Fokussierungspunkt der Ultraschallwellen in die Aushöhlung der Kegelspitze und damit direkt in die zu zerstäubende Flüssigkeit gelegt werden.
  • Man kann den Metallkörper aber auch so ausbilden, daß der kegelförmige Hals am spitz zulaufenden Ende in Form einer Erweiterung in die teller- oder schalenförmig gestaltete Arbeitsplatte übergeht. Dadurch ist die Zerstäubung einer größeren Flüssigkeitsmenge ermöglicht.
  • Eine besonders vorteilhafte Ausgestaltung des Metallkörpers besteht darin, daß die scheibenförmige Grundplatte auf der Seite der parabolischen Deckfläche in der Nähe der Symmetrieachse in den die Arbeitsplatte tragenden Hals übergeht. Bei dieser Ausführungsform werden die Ultraschallwellen zweimal reflektiert, bevor sie auf die Arbeitsplatte treffen. Mit dieser zweifachen Reflexion verbundene Interferenzeffekte, Bündelversetzungen (DE-Z "Materialprüfung", 1965, Seite 281 ff.) und Wiedereintritt der Ultraschallwellen in die Piezokeramik führen dabei zu parallelen Strahlverschiebungen, wodurch die Einspeisung des Ultraschalls in die zu zerstäubende Flüssigkeit verbessert wird. Dem kann durch eine spezielle Ausgestaltung der Arbeitsplatte weiter Rechnung getragen werden. Diese Ausgestaltung besteht darin, daß das Seitenteil der Arbeitsplatte einen Kegelmantel bildet, und daß der Übergangsbereich zwischen dem Hals und der tellerförmigen Arbeitsplatte sowie die Neigung des Seitenteils gegenüber dem Mittelteil der Arbeitsplatte so gewählt ist, daß an der Arbeitsplatte reflektierte Ultraschallwellen in das Seitenteil gelenkt und dort in Richtung des Tellerrandes mehrfach reflektiert werden.
  • Die Dimensionierung des Resonanzsystems ist abhängig von der Schallgeschwindigkeit in dem Metallkörper, der vorzugsweise aus Chrom-Nickel-Stahl besteht, und von der gewünschten Frequenz. Die Frequenz sollte im günstigen Übertragungsbereich des piezokeramischen Dickenschwingers liegen. Da die kontinuierliche Zerstäubung einer Flüssigkeit bevorzugt mit stehenden Ultraschallwellen erfolgt, sollte die Ultraschallaufstrecke in dem Metallkörper ein Vielfaches der halben Wellenlänge betragen, insbesondere das 6 - 28fache.
  • Im Hinblick auf die Ausführung mit zweifacher Reflexion der Ultraschallwellen hat es sich als zweckmäßig erwiesen, die Dicke der scheibenförmigen Grundplatte etwa doppelt so groß wie die Ultraschallwellenlänge zu wählen und den Durchmesser der tellerförmigen Arbeitsplatte mit etwa dem Dreifachen dieser Wellenlänge zu bemessen. Der Durchmesser der Grundfläche der scheibenförmigen Grundplatte sollte etwa das Zehnfache dieser Wellenlänge betragen. Dabei sollte die Halshöhe, d. h. der Abstand zwischen dem Scheitelpunkt der parabolischen Deckfläche und dem Mittelpunkt der tellerförmigen Arbeitsplatte, zweckmäßigerweise gleich der einfachen Wellenlänge sein.
  • Drei Ausführungsbeispiele des neuen Resonanzsystems sind in den Figuren 1 bis 3 dargestellt. Dabei zeigt
  • Fig. 1
    ein Resonanzsystem, bei dem im Betrieb einfache Reflexion der Ultraschallwellen vorliegt und eine Arbeitsplatte in den Hals integriert ist,
    Fig. 2
    ein Resonanzsystem, bei dem einfache Reflexion vorliegt und eine Arbeitsplatte als tellerförmiges Teil an den Hals angeformt ist, und
    Fig. 3
    eine Ausführungsform, bei dem die Ultraschallwellen zweifach reflektiert werden, bevor sie auf eine an den Hals anschließende tellerförmige Arbeitsplatte treffen.
  • Fig. 1 zeigt ein Schwing- oder Resonanzsystem, das aus einem zu einer Symmetrie- oder Rotationsachse 10 symmetrischen, schwingungsfähigen Metallkörper 1 insbesondere aus Chrom-Nickel-Stahl und einem piezokeramischen Dickenschwinger 7 für Ultraschall besteht. Bei dem dargestellten einstückigen Metallkörper 1 handelt es sich - geometrisch gesehen - um ein Ringteil, das von einem Kegel mit einer parabolisch geformten Unterseite 4 durchdrungen ist, wobei das Ringteil und der Kegel dieselbe Symmetrieachse 10 und denselben Außendurchmesser aufweisen.
  • Der Metallkörper 1 besitzt somit eine scheibenförmige Grundplatte 2 mit einer ebenen, senkrecht zur Symmetrie- oder Rotationsachse 10 verlaufenden ringförmigen Grundfläche 3 und mit einer gegenüberliegenden symmetrischen parabolischen Deckfläche 4; er besitzt weiter einen kegelförmig zulaufenden Hals 5, der die ringförmige Grundfläche 3 durchdringt, also aus dieser herausragt, und der am spitz zulaufenden Ende mit einer tellerförmigen oder schalenförmigen Vertiefung 6 ausgebildet ist. Die Vertiefung 6 bildet im Hals 5 zugleich die Arbeitsplatte des Resonanzsystems. Sie ist zur Aufnahme einer zu zerstäubenden Flüssigkeit vorgesehen. Der Mittelpunkt der Vertiefung 6 liegt im oder in der Nähe des eigentlichen Brennpunktes F1 der Grundfläche 4. Der vorliegend ringförmig ausgebildete Ultraschall-Schwinger 7 ist an die ebene, senkrecht zur Symmetrieachse 10 verlaufende Grundfläche 3 angekoppelt. Er liegt symmetrisch zur Symmetrieachse 10. Er arbeitet beim Betrieb in sogenannnter Dickenresonanz.
  • Eine nach elektrischer Beaufschlagung vom piezokeramischen Dickenschwinger 7 angeregte Ultraschallwelle US wird in den Metallkölrper 1 übertragen, dort an der parabolischen Deckfläche 4 reflektiert und damit in Richtung auf die schalenförmige Vertiefung 6 fokussiert. Hier im Brennpunkt F1, also praktisch im Bereich der gesamten Vertiefung 6, führt die Ultraschallwelle US zur Zerstäubung der Flüssigkeit in feine Partikel.
  • Bei dem Ausführungsbeispiel gemäß Fig. 2 ist das Resonanzsystem in Anlehnung an das Ausführungsbeispiel gemäß Fig. 1 aufgebaut. Hier ist ein einstückiger rotationssymmetrischer Metallkörper 11 vorgesehen, der aus einer scheibenförmigen Grundplatte 12 mit einer ebenen, ringförmigen Grundfläche 13, einer gegenüberliegenden parabolischen Deckfläche 14 und einem kegelförmig sich verjüngenden Hals 15 besteht. Der Hals 15 ragt auch hier wieder aus der Grundfläche 13 heraus. Als Arbeitsplatte ist hier ein tellerförmiges überkragendes Teil 16 vorgesehen, das an das spitz zulaufende Ende des Halses 15 angeformt ist. Die tellerförmige Arbeitsplatte 16 hat die Form einer Erweiterung und besitzt einen ebenen Mittelteil und ein kegelig verlaufendes Seitenteil (kegelige Tellerwand).
  • Die Anregung des Resonanzsystems erfolgt über einen elektrisch beaufschlagbaren piezokeramischen Ringkörper 17, der mit dem Metallkörper 11 (bevorzugt aus Chrom-Nickel-Stahl) an der Grundfläche 13 gekoppelt, z.B. verklebt ist. Die gemeinsame Symmetrieachse ist mit 20 bezeichnet. Eine von dem piezokeramischen Ringkörper 17, der auch hier als Dickenschwinger arbeitet, angeregte Ultraschallwelle US wird an der parabolischen Deckfläche 14 reflektiert und in die Nähe des Mittelpunktes der tellerförmigen Arbeitsplatte 16 im Brennpunkt F2 fokussiert. Die auf der Arbeitsplatte 16 befindliche Flüssigkeit wird dadurch zerstäubt.
  • Bei dem Ausführungsbeispiel gemäß Fig. 3 besitzt ein schwingungsfähiger, rotationssymmetrischer Metallkörper 21 eine scheibenförmige Grundplatte 22, deren Grundfläche 23 als ebene Kreisfläche ausgebildet ist. Ihr gegenüber liegt eine parabolische Deckfläche 24. Die Grundplatte 22 geht auf der Seite ihrer parabolischen Deckfläche 24 im Bereich der Symmetrieachse 30 über einen Hals 25 in eine tellerförmige Arbeitsplatte 26 über. Diese Platte 26 weist ein ebenes Mittelteil 28 und ein kegelig verlaufendes Seitenteil 29 (kegelige Tellerwand) auf. Das gesamte Resonanzsystem ist rotationssymmetrisch zur Symmetrieachse 30. Ein piezokeramischer Dickenschwinger 27 ist hier zylindrisch (mit kreisförmiger Koppelfläche) gestaltet sowie mit der ebenen Grundfläche 23 verklebt und dadurch gekoppelt. Eine von dem Dickenschwinger 27 angeregte Ultraschallwelle US1 wird sowohl an der parabolischen Deckfläche 24 als auch an der Grenzfläche 23 zwischen dem Dickenschwinger 27 und der Grundplatte 22 reflektiert und zum Mittelpunkt der tellerförmigen Arbeitsplatte 26 hin fokussiert. Bei diesem Ausführungsbeispiel liegt der Fokussierungspunkt F3 der Ultraschallwellen US1 also spiegelbildlich zum Brennpunkt der parabolischen Fläche 24, wobei die Grundfläche 23 die Spiegelfläche bildet. Mit anderen Worten: Der Fokussierungspunkt F3 der Ultraschallwelle US1 und der Zerstäubungsort liegen hier auf derselben Seite der Grundfläche 23.
  • Bei der Reflexion der Ultraschallwellen an der Grenzfläche Dickenschwinger 27/Grundplatte 22 treten Interferenzerscheinungen, aber auch Bündelversetzungen auf, die zu Parallelverschiebungen der Ultraschallwellen führen, beispielsweis zu der Ultraschallwelle US2. Infolge des Neigungswinkels zwischen den auftreffenden Ultraschallwellen und der tellerförmigen Arbeitsplatte 26 dringt ein erster Teil der jeweiligen Ultraschallwelle in die auf die Arbeitsfläche 26 aufgebrachte Flüssigkeit ein; ein zweiter Teil läuft als Oberflächenwelle in Richtung auf den Tellerrand 31; ein dritter Teil wird an der Grenzfläche reflektiert. Von dem reflektierten dritten Teil gelangt ein Teil in die Tellerwand 29 und durch weitere Reflexionen in der Tellerwand 29 zum Tellerrand 31, was rechts im Seitenteil 29 gestrichelt angedeutet ist. Der Übergangsbereich zwischen dem Hals 25 und der tellerförmigen Arbeitsplatte 26 sowie die Neigung des Seitenteils 29 gegen das Mittelteil 28 sind entsprechend gewählt. Eine umlaufende, ringförmige Einkerbung 33 - vorzugsweise auf der Unterseite der Tellerwand 29 wie links eingezeichnet - in der Nähe des Tellerrandes schirmt den Tellerrand vor den Ultraschallwellen ab. Sie bewirkt dadurch eine Beruhigung der auf der Arbeitsplatte 26 befindlichen Flüssigkeit im Randbereich.
  • Bei Wahl einer zur Zerstäubung positionierten Flüssigkeitsmenge von ca. 15 Mikrolitern hat sich bei dem Ausführungsbeispiel gemäß Figur 3 ein Durchmesser der tellerförmigen Arbeitsplatte 26 von ca. dem Dreifachen der Ultraschallwellenlänge in dem Metallkörper 21, ein Durchmesser des Halses 25 und des Tellermittelteils von ca. einer Wellenlänge, eine Höhe des Halses 25 von ebenfalls ca. einer Wellenlänge, eine Dicke der Grundplatte 22 von dem Doppelten der Wellenlänge und ein Durchmesser der Grundfläche 23 von etwa dem Zehnfachen der Wellenlänge als zweckmäßig erwiesen. Die Dicke des piezokeramischen Dickenschwingers 27 entspricht bevorzugt etwa der halben Wellenlänge der angeregten Ultraschallwelle in dem Dickenschwinger 27.

Claims (12)

  1. Piezoelektrisch anregbares Resonanzsystem zur Zerstäubung einer Flüssigkeit, mit einem schwingungsfähigen, rotationssymmetrischen Metallkörper (1, 11, 21) mit einer scheibenförmigen Grundplatte (2, 12, 22), einer Arbeitsplatte (6, 16, 26) und einem die Arbeitsplatte (6, 16, 26) mit der Grundplatte (2, 12, 22) verbindenden Hals (5, 15, 25) sowie mit einem piezokeramischen Ultraschall-Schwinger (7, 17, 27), der an eine ebene, senkrecht zur Symmetrieachse (10, 20, 30) verlaufende Grundfläche (3, 13, 23) der Grundplatte (2, 12, 22) angekoppelt ist, dadurch gekennzeichnet,
    a) daß der piezokeramische Ultraschall-Schwinger (7, 17, 27) ein in Dickenresonanz arbeitender Schwinger ist,
    b) daß die Grundplatte (2, 12, 22) des Metallkörpers (1, 11, 21) eine der Grundfläche (3, 13, 23) gegenüberliegende parabolische Deckfläche (4, 14, 24) aufweist,
    c) daß die Arbeitsplatte (6, 16, 26) tellerförmig oder schalenförmig ausgebildet ist, und
    d) daß der Mittelpunkt der Arbeitsplatte (6, 16, 26) im oder in der Nähe
    d1) des eigentlichen Brennpunktes (F1, F2) der parabolischen Deckfläche (4, 14) oder
    d2) des an der Grundfläche (23) der Grundplatte (22) durch den Hals (25) hindurch gespiegelten Brennpunktes (F3) der parabolischen Deckfläche (24)
    liegt.
  2. Resonanzsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Grundfläche (3, 13) der Grundplatte (2, 12) ein Kreisring ist, und daß die Grundplatte (2, 12) in einen kegelförmigen Hals (5, 15) übergeht, der die zentrale Öffnung des Kreisringes über die Grundfläche (3, 15) hinaus durchdringt.
  3. Resonanzsystem nach Anspruch 2, dadurch gekennzeichnet, daß der Hals (5) als Kegelstumpf mit einer tellerförmigen Vertiefung (6) am spitz zulaufenden Ende ausgebildet ist.
  4. Resonanzsystem nach Anspruch 2, dadurch gekennzeichnet, daß der kegelförmige Hals (15) am spitz zulaufenden Ende in Form einer Erweiterung in die teller- oder schalenförmige Arbeitsplatte (16) übergeht.
  5. Resonanzsystem nach Anspruch 1, dadurch gekennzeichnet, daß die scheibenförmige Grundplatte (22) auf der Seite der parabolischen Deckfläche (24) im Bereich der Symmetrieachse (30) in den Hals (25), der die Arbeitsplatte (26) trägt, übergeht.
  6. Resonanzsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Seitenteil (29) der Arbeitsplatte (26) kegelig ausgebildet ist, und daß der Übergangsbereich zwischen dem Hals (25) und der tellerförmigen Arbeitsplatte (26) sowie die Neigung des Seitenteiles (29) gegen das Mittelteil (28) der Arbeitsplatte (26) so gewählt sind, daß an der Arbeitsplatte (26) reflektierte Ultraschallwellen in das Seitenteil (29) gelenkt und dort in Richtung des Tellerrandes (31) mehrfach reflektiert werden.
  7. Resonanzsystem nach Anspruch 6, dadurch gekennzeichnet, daß das Seitenteil (29) in der Nähe des Tellerrandes (31) mit einer umlaufenden Einkerbung (33) versehen ist.
  8. Resonanzsystem nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, daß die Dicke der scheibenförmigen Grundplatte (22) etwa doppelt so groß ist wie die Wellenlänge des Ultraschalls in der Grundplatte (22).
  9. Resonanzsystem nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der Durchmesser der tellerförmigen Arbeitsplatte (26) etwa das Dreifache der Ultraschallwellenlänge beträgt.
  10. Resonanzsystem nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß der Durchmesser der Grundfläche (23) der Grundplatte (22) etwa das Zehnfache der Ultraschallwellenlänge beträgt.
  11. Resonanzsystem nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß der Durchmesser des Halses (25) etwa gleich der einfachen Ultraschallwellenlänge ist.
  12. Resonanzsystem nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß die Höhe des Halses (25) etwa gleich der einfachen Wellenlänge des Ultraschalls im Metallkörper (21) ist.
EP88111066A 1987-07-22 1988-07-11 Piezoelektrisch anregbares Resonanzsystem zur Ultraschall-Zerstäubung einer Flüssigkeit Expired - Lifetime EP0300319B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3724629 1987-07-22
DE19873724629 DE3724629A1 (de) 1987-07-22 1987-07-22 Piezoelektrisch anregbares resonanzsystem

Publications (3)

Publication Number Publication Date
EP0300319A2 EP0300319A2 (de) 1989-01-25
EP0300319A3 EP0300319A3 (en) 1990-05-09
EP0300319B1 true EP0300319B1 (de) 1995-11-02

Family

ID=6332325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111066A Expired - Lifetime EP0300319B1 (de) 1987-07-22 1988-07-11 Piezoelektrisch anregbares Resonanzsystem zur Ultraschall-Zerstäubung einer Flüssigkeit

Country Status (6)

Country Link
US (1) US4888516A (de)
EP (1) EP0300319B1 (de)
JP (1) JP2543493B2 (de)
AT (1) ATE129651T1 (de)
CA (1) CA1307555C (de)
DE (2) DE3724629A1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152456A (en) * 1989-12-12 1992-10-06 Bespak, Plc Dispensing apparatus having a perforate outlet member and a vibrating device
US5938117A (en) * 1991-04-24 1999-08-17 Aerogen, Inc. Methods and apparatus for dispensing liquids as an atomized spray
US6629646B1 (en) * 1991-04-24 2003-10-07 Aerogen, Inc. Droplet ejector with oscillating tapered aperture
US5449502A (en) * 1992-12-30 1995-09-12 Sanden Corp. Sterilizing apparatus utilizing ultrasonic vibration
JPH0824739A (ja) * 1994-06-29 1996-01-30 Siemens Ag 超音波噴霧器
NZ304285A (en) * 1995-03-14 1998-12-23 Siemens Ag Ultrasonic atomizer device with a removable precision dosing unit
WO1996028206A1 (en) * 1995-03-14 1996-09-19 Siemens Aktiengesellschaft Ultrasonic atomizer device with removable precision dosating unit
US6085740A (en) 1996-02-21 2000-07-11 Aerogen, Inc. Liquid dispensing apparatus and methods
US6205999B1 (en) 1995-04-05 2001-03-27 Aerogen, Inc. Methods and apparatus for storing chemical compounds in a portable inhaler
US6782886B2 (en) 1995-04-05 2004-08-31 Aerogen, Inc. Metering pumps for an aerosolizer
US6014970A (en) * 1998-06-11 2000-01-18 Aerogen, Inc. Methods and apparatus for storing chemical compounds in a portable inhaler
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
DE19533370C2 (de) * 1995-09-09 1999-10-28 Wilk Bernd Ulrich Verfahren und Anlage zur biologischen Mineralisierung von Schlamm in stehenden und fließenden Gewässern
US6417602B1 (en) 1998-03-03 2002-07-09 Sensotech Ltd. Ultrasonic transducer
US6739333B1 (en) * 1999-05-26 2004-05-25 Boehringer Ingelheim Pharma Kg Stainless steel canister for propellant-driven metering aerosols
DE19924098A1 (de) * 1999-05-26 2000-12-07 Boehringer Ingelheim Pharma Edelstahlkanister für treibgasbetriebene Dosieraerosole
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US7100600B2 (en) 2001-03-20 2006-09-05 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US6948491B2 (en) 2001-03-20 2005-09-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US6543443B1 (en) 2000-07-12 2003-04-08 Aerogen, Inc. Methods and devices for nebulizing fluids
US6546927B2 (en) 2001-03-13 2003-04-15 Aerogen, Inc. Methods and apparatus for controlling piezoelectric vibration
US6550472B2 (en) 2001-03-16 2003-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids using flow directors
US6732944B2 (en) 2001-05-02 2004-05-11 Aerogen, Inc. Base isolated nebulizing device and methods
US6554201B2 (en) 2001-05-02 2003-04-29 Aerogen, Inc. Insert molded aerosol generator and methods
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
AU2003202925B2 (en) 2002-01-07 2008-12-18 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
ES2603067T3 (es) 2002-01-15 2017-02-23 Novartis Ag Métodos y sistemas para hacer funcionar un generador de aerosol
WO2003097126A2 (en) 2002-05-20 2003-11-27 Aerogen, Inc. Aerosol for medical treatment and methods
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
AU2006249574B2 (en) * 2005-05-25 2012-01-19 Novartis Ag Vibration systems and methods
DE102006033372B4 (de) * 2006-02-17 2010-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschallaktor zur Reinigung von Objekten
FR2898468B1 (fr) 2006-03-15 2008-06-06 Lvmh Rech Dispositif de pulverisation a element piezoelectrique, et son utilisation en cosmetologie et en parfumerie.
JP2008006644A (ja) * 2006-06-28 2008-01-17 Fujifilm Corp ミスト吐出ヘッド及びこれを備えた画像形成装置、液体吐出装置
US8348177B2 (en) 2008-06-17 2013-01-08 Davicon Corporation Liquid dispensing apparatus using a passive liquid metering method
RU2577582C1 (ru) * 2014-10-20 2016-03-20 Федеральное государственное бюджетное учреждение науки Институт механики Уральского отделения Российской академии наук Пластинчатый распылитель жидкости
CN111841205A (zh) * 2020-06-24 2020-10-30 重庆工程职业技术学院 一种具有节水特性的离心射流雾化与超声雾化结合的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE883358C (de) * 1942-03-22 1953-07-16 Siemens Ag Einrichtung zur Behandlung von Stoffen, insbesondere von Fluessigkeiten, mittels Ultraschallschwingungen
DE1425897A1 (de) * 1964-10-20 1969-02-06 Lierke Dipl Phys Ernst Guenter Vorrichtung zum Vernebeln von Fluessigkeiten mit Ultraschall
FR1545920A (fr) * 1967-10-06 1968-11-15 Siderurgie Fse Inst Rech Dispositif de sondage ultrasonore
US3904896A (en) * 1970-06-30 1975-09-09 Siemens Ag Piezoelectric oscillator system
SU434623A1 (ru) * 1972-09-07 1974-06-30 М. В. Королев , О. Г. Галкин Ультразвуковой пьезоэлектрический преобразователь
US3904894A (en) * 1974-07-24 1975-09-09 Gen Motors Corp Circuit for producing an output signal during the period between the pulses of repeating time displaced pulse pairs
DE2557958B2 (de) * 1975-12-22 1981-01-29 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart Piezoelektrischer Ultraschall-Flüssigkeitszerstäuber
US4384231A (en) * 1979-05-11 1983-05-17 Hitachi, Ltd. Piezoelectric acoustic transducer with spherical lens
DE3112339A1 (de) * 1980-04-12 1982-02-25 Battelle-Institut E.V., 6000 Frankfurt "vorrichtung zur zerstaeubung von fluessigkeiten"
US4474326A (en) * 1981-11-24 1984-10-02 Tdk Electronics Co., Ltd. Ultrasonic atomizing device
DE3616713A1 (de) * 1986-05-20 1987-11-26 Siemens Ag Ultraschall-mhz-schwinger, insbesondere zur fluessigkeitszerstaeubung

Also Published As

Publication number Publication date
JPS6451162A (en) 1989-02-27
DE3854634D1 (de) 1995-12-07
US4888516A (en) 1989-12-19
DE3724629A1 (de) 1989-02-02
ATE129651T1 (de) 1995-11-15
EP0300319A3 (en) 1990-05-09
EP0300319A2 (de) 1989-01-25
CA1307555C (en) 1992-09-15
JP2543493B2 (ja) 1996-10-16

Similar Documents

Publication Publication Date Title
EP0300319B1 (de) Piezoelektrisch anregbares Resonanzsystem zur Ultraschall-Zerstäubung einer Flüssigkeit
EP0246515B1 (de) Ultraschall-MHz-Schwinger, insbesondere zur Flüssigkeitszerstäubung
EP0021194B1 (de) Ultraschall-Zerstäuber für flüssige Brennstoffe
KR100916871B1 (ko) 액체 스트림 내에서 초음파 음향 에너지를 집속하기 위한장치
CH653924A5 (de) Vorrichtung zur zerstaeubung von fluessigkeiten.
WO1997003764A1 (de) Ultraschallwandler
DE2415481C3 (de) Ultraschallgenerator
EP0657226B1 (de) Ultraschallzerstäuber
EP0689879B1 (de) Ultraschallzerstäuber
EP0615471B1 (de) Schall- oder ultraschallwandler
DE3112339C2 (de)
DE4238384C1 (de) Sonotrode für ein Ultraschall-Bearbeitungsgerät
DE3933519C2 (de) Vorrichtung zur Reinigung von Gegenständen mit Ultraschall
EP0772495B1 (de) Verfahren und vorrichtung zur erzeugung und dosierung eines pulveraerosols
DE19623071C2 (de) Ultraschallwandler
DE3842759C2 (de) Richtscharfer Ultraschall-Wandler mit gekrümmter Abstrahlfläche
DE2613614C3 (de) Ultraschall-Schwinger, geeignet zur Flüssigkeitszerstäubung
DE2741996B2 (de) Vorrichtung zum Zerstäuben von Flüssigkeitsstrahlen oder -tropfen
DE2631037C2 (de) Anordnung zum Erfassen der Höhenlage einer Grenzfläche zwischen zwei Medien in einem Behälter
WO1992008413A1 (de) Vorrichtung zur erzeugung von fokussierten akustischen schallwellen
EP0223038B1 (de) Prüfkopf zur Ultraschallprüfung
DE1099239B (de) Ultraschall-Vibrator zum Dispergieren von Fluessigkeiten in einem Gas
EP0390959A2 (de) Ultraschallwandler
DE10245324A1 (de) Ultraschall-Stehwellen-Zerstäuberanordnung
DE3911047A1 (de) Ultraschallwandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901218

17Q First examination report despatched

Effective date: 19931115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951102

REF Corresponds to:

Ref document number: 129651

Country of ref document: AT

Date of ref document: 19951115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3854634

Country of ref document: DE

Date of ref document: 19951207

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS-ALBIS AKTIENGESELLSCHAFT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960112

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980707

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980709

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980728

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030618

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030721

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030728

Year of fee payment: 16

Ref country code: CH

Payment date: 20030728

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050711