EP0300170B1 - Procédé et dispositif de séparation de produits se chevauchant, en particulier de produits imprimés - Google Patents
Procédé et dispositif de séparation de produits se chevauchant, en particulier de produits imprimés Download PDFInfo
- Publication number
- EP0300170B1 EP0300170B1 EP88108586A EP88108586A EP0300170B1 EP 0300170 B1 EP0300170 B1 EP 0300170B1 EP 88108586 A EP88108586 A EP 88108586A EP 88108586 A EP88108586 A EP 88108586A EP 0300170 B1 EP0300170 B1 EP 0300170B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- products
- grippers
- guides
- zone
- conveyor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/669—Advancing articles in overlapping streams ending an overlapping stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/003—Delivering or advancing articles from machines; Advancing articles to or into piles by grippers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/30—Orientation, displacement, position of the handled material
- B65H2301/32—Orientation of handled material
- B65H2301/323—Hanging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/30—Orientation, displacement, position of the handled material
- B65H2301/33—Modifying, selecting, changing orientation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/40—Type of handling process
- B65H2301/44—Moving, forwarding, guiding material
- B65H2301/447—Moving, forwarding, guiding material transferring material between transport devices
- B65H2301/4471—Grippers, e.g. moved in paths enclosing an area
- B65H2301/44712—Grippers, e.g. moved in paths enclosing an area carried by chains or bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2405/00—Parts for holding the handled material
- B65H2405/50—Gripping means
- B65H2405/55—Rail guided gripping means running in closed loop, e.g. without permanent interconnecting means
- B65H2405/551—Rail guided gripping means running in closed loop, e.g. without permanent interconnecting means with permanent interconnection allowing variable spacing between the grippers
Definitions
- a device for the individual delivery of printed products resulting in a scale formation to a processing station is known.
- the scale formation in which each printed product rests on the preceding one, is fed in an obliquely upward direction by means of a belt conveyor to a conveyor device which has a guide rail running past the end of the belt conveyor in the vertical direction with individually controllable grippers which are freely movable therein.
- a pawl arrangement holds a gripper in place until the foremost printed product of the fed scale formation is inserted with its leading area between the open jaws of the gripper.
- the pawl arrangement releases the gripper, after which its jaws close and the printed product thereby captured, due to gravity, is carried away towards the bottom. This exposes the leading area of the next printed product to be fed, which is now introduced into the open jaws of the subsequent gripper, which is held back by the pawl arrangement.
- the object of the present invention is to propose a method and an apparatus in which the rest. who is in control of the mutual situation of the products at all times.
- the products in their leading area are gripped individually by grippers and then the distance between two grippers arranged one behind the other is increased, the products are forced to assume the position specified by the grippers, they are always under control. Since the distance between the grippers is continuously increased, the accelerations on the products are low. Since the products are held by grippers, they can be transported away in any direction. This also means that the resulting scale formation can be processed at high speed.
- the products can be transferred to conveyors with a reduced product distance without problems. Will the products are placed in a hanging position, so they can be gripped from above with the gripper fingers of a conveyor.
- the traction member is preferably a circumferential buffer chain with hinged links. If the hinge pins of the plates are mounted alternately on first and second guides, the distance of the grippers attached to the buffer chain can be changed by changing the distance of these guides in a direction perpendicular to the hinge pins and to a conveying direction. If the distance between the guides increases, the distance between the grippers decreases. If, on the other hand, the distance between the guides is reduced, the gripper distance increases.
- a drag drive acts on the tabs in a separating area in which successive grippers are at the greatest distance. This makes it very easy to enlarge and then reduce the distance between grippers.
- the grippers are preferably mounted on the bearing blocks so as to be pivotable about an axis parallel to the hinge pins.
- the grippers can be pivoted by means of scenes, so that the products can be placed in the correct position for transfer to a conveyor. If the grippers are not guided in the backdrop, they are held in their rest position by springs.
- two traction elements which rotate synchronously, are arranged in parallel and at a distance from one another.
- the products can thus be gripped and further processed at their leading area at both lateral ends, which prevents the products from buckling.
- a feed device 10 is only indicated. It promotes folded printed products 12, ie magazines, newspapers or parts thereof, which are arranged one above the other in a shingled formation S in a roof tile manner to form a conveying device 14. Only two of two conveying devices 14 arranged in parallel are shown, see FIG. 5.
- a conveying device 16 is connected downstream of the conveying device 14 , which takes the printed products 12, which are separated from one another and placed in a hanging position, from the conveying device 14 and conveys them away.
- Fig. 2 shows an enlarged scale in side view of the takeover area A, the conveyor 14 shown in Fig. 1.
- the first and second guides 24, 26 are attached to support members 36, 36 'by means of screws 38.
- a bearing flange 40 is welded, in which a bolt 42 arranged on the support member 36 'is mounted.
- a damping element 44 is arranged between the bearing flange 40 and the bolt 42.
- a drive shaft 46 of the drive wheel 28 is rotatably mounted on the support member 36.
- the drive shaft 46 is operatively connected to an output shaft 50 of a drive motor (not shown) by means of a chain drive 48 shown in broken lines.
- the output shaft 50 is rotatably mounted on a further bearing flange 52 of the frame 19.
- the tabs 22 of the buffer chain 20 are pivotally connected to one another by means of pivot pins 54.
- the hinge pins 54 are alternately slidably mounted in the first and second guides 24, 26.
- N denotes the distance between the guides 24, 26 in a direction perpendicular to the hinge pins 54 and the conveying direction F.
- the guides 24, 26 concentrically enclose the drive wheel 28 by approximately 180 ° and on the circumference of the drive wheel 28 radial driver cuts 56 are arranged at equal intervals. Since an average radius G of the drive wheel 28 is the same as the center distance between the drive shaft 46 and the articulated bolts 54 guided in the second guide 26 in the area of the drive wheel 28, the driver cuts 56 come into engagement with the articulated bolts 54.
- the buffer chain 20 is designed such that the shortest distance between two adjacent hinge pins 54, which are mounted in the second guide 26, is the same size as the distance between two driver cuts 56.
- the grippers 34 are operatively connected to the buffer chain 20. In order not to overload FIG. 2, only three grippers 34 are shown. At the upper end of the support member 36, a link carrier 58 is arranged, to which a closing link 60 is attached. On the support members 36, 36 'is also a rotating link 62 is attached. On a cam runner, not shown, two bearing shafts 64, 64 'of a cam run 66 are rotatably mounted. The bearing shaft 64 is operatively connected to the output shaft 50 by means of a further chain drive 68 shown in broken lines. On the bearing shafts 64, 64 'guide wheels 70, 70' are arranged, around which a conveyor link, an endless chain 72, is guided, this is indicated by dash-dotted lines.
- the endless chain 72 has cams 74 arranged one behind the other in the circumferential direction.
- the distance between two successive cams 74 is exactly the same as the distance between two grippers 34 in the overall name area A.
- Free end 76 of each cam 74 is bent backwards as seen in the direction of rotation of the endless chain 72.
- a driver roller 78 is rotatably mounted.
- the driving roller 78 is preferably made of plastic.
- the endless chain 72 is guided in a chain guide 82 in the region of its conveyor 80.
- the cam concentricity 66 is arranged below the shingled stream S in the takeover area A, so that the cams 74 come to rest on the printed products 12 from below when they rotate around the guide wheel 70, first with the driving roller 78 and then also with the free end 76.
- the printed products 12 are raised in their central region by the cams 74, while a leading edge 84 of each product comes to rest against the rear end of the preceding cam.
- the cam concentricity 66 acts as a straightening device on the printed products 12, as will be described below.
- the separation area C is shown enlarged in FIG. 3.
- a trailing drive 32 is arranged on support members 36 ⁇ and 36 ''', which are also attached to the strut 18 in a known and not shown manner.
- a drag drive support plate 88 is connected by screws 90 to the support members 36 ⁇ , 36 '''.
- pivot pins 92, 92 ' are rotatably mounted on each pivot pin 92, 92 'is a deflection wheel 94, respectively. 94 'arranged. An endless revolving drag belt 96 is guided around this.
- the drag belt 96 is profiled on both sides, so that it can not slip on the one hand on the deflection wheels 94, 94 'and on the other hand can be brought into engagement with driving cams 98 arranged on the tabs 22.
- the pivot pin 92 ' is operatively connected to the output shaft 50 shown in Fig. 2 by means of a chain drive 100, a deflection 102 and a further chain drive 104 shown in dash-dotted lines.
- the guides 24, 26 and the rotating link 62 are attached on the support members 36 ⁇ , 36 '' '.
- the tabs 22 of the buffer chain 20 are stretched and the distance between them Successive grippers 34 have increased to the greatest possible extent, so that the printed products 12 held by the grippers 34 are isolated and hang obliquely downward in this area due to their own weight.
- Another deflection 102 ' is rotatably mounted on the support member 36' ''. This is operatively connected to the deflection 102 mounted on the support member 36 ⁇ by means of a further chain drive 106 and is operatively connected by means of a chain drive 108 to the drive wheel 30 in the transfer area E, which is shown enlarged in FIG. 4.
- the guides 24 and 26 are also guided concentrically to the drive wheel 30 in a region of approximately 180 °, and driver cuts 56 also come into engagement here with the articulated bolts 54 mounted in the second guide 26.
- the distance between the rotating link 62 and the guides 24, 26 decreases in the conveying direction F, so that, as described further below, the grippers 34 are rotated relative to the guide 24.
- the grippers 34 are rotated until the products of gripping fingers 110 of a conveyor 16, which moves in the direction of arrow M, can be taken over in a hanging position.
- On the support member 36 '''''an opening link 114 is arranged, on which clamping members 116 of the gripper 34 emerge.
- the opening link 114 is arranged in such a way that it acts on the clamping members 116 as soon as the gripping fingers 110 of the conveyor 16 have grasped the printed products 12 that have been suspended.
- the rotating link 62 extends into the area of the opening link 114. In the return of the buffer chain 20 and the gripper 34 from the transfer area E back to the transfer area A, no rotating link 62 is necessary.
- FIG. 5 shows two identical conveying devices 14 with grippers 34 arranged in mirror image.
- the conveyor devices 14 are shown partially in section, in particular the buffer chains 20 and the guides 24, 26 in the area of the drive wheels 28 have been omitted.
- the first and second guides 24, 26 fastened to the support member 36 by means of the screws 38 are arranged in pairs symmetrically to the buffer chain 20.
- the guides 24, 26 consist of an opposing C-shaped profile in which the Articulated bolts 54 are guided by means of guide rollers 118.
- the drive wheel 28 consists of two circumferential disks 122 spaced apart from one another by means of spacers 120.
- the driver incisions 56 arranged on the disks 122 act on the articulated bolts 54 guided in the second guides 26.
- the disks 122 are spaced so far apart that the tabs 22 find space between them.
- the first guides 24 are spaced further apart from one another than the second guides 26 in the direction of the hinge pin 54. The same applies to the guide wheels 118 which are mounted on the corresponding hinge pins 54.
- Bearing blocks 124 are guided in the first guides 24.
- the bearing blocks 124 are operatively connected to the buffer chain 20 by means of joint bolts 54, see also FIGS. 6 and 7.
- the grippers 34 are pivotably mounted on the bearing blocks 124 about an axis 126 which runs parallel to the joint bolts 54.
- the grippers 34 are described in more detail below.
- the rotating link 62 which likewise consists of a C-shaped profile, is fastened to the link carrier 58.
- this guide rollers 128, which act on the gripper 34, are mounted.
- the closing link 60 and the opening link 114 are arranged on the link carrier 58.
- the cam concentricity 66 is supported on the support member 36 by means of supports 130.
- the chain guides 82 are also fastened to the carrier 130 by means of the chain guide carriers 132.
- the chain guide 82 consists of two parts, which are held together by means of a screw bolt 134 and are attached to the chain guide bracket 132. In the area of the separation of these two parts, a guide groove 136 is arranged, in which the conveying strand 80 is guided in a slightly concave movement path (see also FIGS. 1 and 2).
- the cams 74 are arranged laterally offset on the endless chain 72.
- the cam 74 shown in the left half of the figure is shown in section, the driver roller 78 coming into contact with the preceding printed product 12 from below. While the right cam 74 is not shown in section and the free end 76 also abuts the same printed product 12.
- the front edge 84 of the lower printed product 12 lies against the rear ends of the two cams 74.
- a part of the buffer chain 20 is shown enlarged in FIG. 6.
- a hinge pin 54 penetrates the side walls of the cross-sectionally C-shaped profile of the bearing block 124 and in the central region two tabs 22 are pivotally mounted.
- each tab 22 there is a tab groove 140 on one end and an extension 142 on the other.
- the tab groove 140 of a tab 22 is so wide that the tab extension 142 of the adjacent tab can be accommodated therein.
- a hinge pin 54 is arranged in each case of an extension 142 and a tab groove 140.
- the tabs 22 are guided at one end in the second guides 26 and at the other end in the first guides 24 with or without a bearing block 124.
- part of the buffer chain 20 is shown stretched, as is the case in the separating area C.
- the buffer chain 20 is shown folded, as is the case, for example, in the takeover area A, in the transfer area E and in the return from the transfer area E to the takeover area A (cf. FIG. 1).
- the parts already described in the description of FIG. 6 are no longer discussed here.
- Each tab groove 140 and the extension 142 engaging in it are designed such that the distance between two hinge pins 54, which are guided in the same guide 24 or 26, can take a precisely defined smallest distance, the guide wheels 118 never coming into contact with one another, as is the case that can be seen from Fig. 7.
- the guides 24, 26 are only indicated by dashed lines.
- a driving cam 98 is fastened to each tab 22 by means of screws indicated by dot-dash lines.
- a bearing block attachment 144 on which a stop 146 is arranged, is fastened to the bearing block 124.
- a pivot shaft 148 is pivotally mounted in the bearing block attachment 144 and defines the pivot axis 126 (FIG. 5). As already mentioned, this pivot axis 126 runs parallel to the bearing bolts 54.
- a gripper 34 is shown enlarged.
- the bearing block attachment 144 is fastened to the bearing block 124 by means of two screws 150, 150 '.
- a swivel lever 152 is arranged at one end and a support plate 154 at the other end and connected to it in a rotationally fixed manner.
- the guide roller 128 is rotatably mounted by means of a bolt stub 156.
- a torsion spring 158 is arranged around the pivot shaft 148 between the bearing block attachment 144 and the pivot lever 152.
- the carrier plate 154 consists of an equilateral hexagonal sheet whose downward-facing side edges, which converge at an acute angle, are delimited by a lower edge which runs approximately parallel to the elongated buffer chain 20; it lies in a plane perpendicular to the swivel shaft 148.
- a clamping jaw 162 is welded to the carrier plate 154. It consists of a C-shaped sheet which is open at the bottom and on which, seen in the conveying direction F, a clamping jaw projection 164 is formed at the trailing end. 5 that the clamping jaw projection 164 extends into the area of the printed products 12 of the scale formation S and there it is provided with a jaw support 166.
- a guide plate 168 is arranged, to which a pivot pin 170 is fastened, about the axis of which a clamping finger 172 is pivotally mounted.
- a plunger 174 is slidably guided in the clamping jaw 162 and in the guide plate 168 approximately transversely to the conveying direction F, a compression spring 176 is arranged around the plunger 174, which is supported on one side on the clamping jaw 162 and on the other on a plunger collar 178 fastened to the plunger 174.
- a follower roller 180 is rotatably mounted thereon.
- a stop disc 182 is attached to the lower end of the plunger 174. The stop disc 182 bears against the guide plate 168 and prevents movement of the plunger 174 in the direction of the arrow J.
- a slide plane 184 is milled on the plunger 174 and is supported on a slide shoe 186.
- the slide shoe 186 is made of a plastic and is fastened to the carrier plate 154 by means of screws. It prevents the plunger 174 from rotating about its longitudinal axis.
- a toothing 188 is arranged on the plunger 174 opposite the sliding plane 184. This interacts with a pinion 190.
- a crank 192 in the form of a disk is connected in a rotationally fixed manner to the pinion 190.
- the pinion 190 and the crank 192 are rotatably mounted on a shaft 194 which is arranged on the carrier plate 154.
- the end region of the clamping finger 172 removed from the pivot pin 170 is bent and forms a clamping finger jaw 196.
- the clamping finger 172 is rotatably mounted on the crank 192 by means of a shaft 198.
- the clamping finger 172 consequently forms a coupling 200 of a crank mechanism, the crank loop 202 of which is designed as an elongated hole is mounted on the pivot pin 170.
- the clamping member 116 is pivotably mounted on the part of the clamping jaw 162 which is bent downward and which is seen in the conveying direction F.
- a sliding arch 206 is formed on the clamping member 114, and on the other hand, the clamping member 116 is slidably mounted on a guide pin 208 arranged on the clamping jaw 162.
- the clamping member 116 is cut at this end 210 provided, the side edges of which slide on guide pins 208.
- a further compression spring 212 supported on the clamping jaw 162 and arranged around the guide pin 208 acts on the clamping member 116 in the region of the incision 210.
- the plunger 174 penetrates the clamping member 116 in a clamping opening 214.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Discharge By Other Means (AREA)
- Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
- Forming Counted Batches (AREA)
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2754/87 | 1987-07-21 | ||
CH275487 | 1987-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0300170A1 EP0300170A1 (fr) | 1989-01-25 |
EP0300170B1 true EP0300170B1 (fr) | 1991-04-24 |
Family
ID=4240860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88108586A Expired - Lifetime EP0300170B1 (fr) | 1987-07-21 | 1988-05-28 | Procédé et dispositif de séparation de produits se chevauchant, en particulier de produits imprimés |
Country Status (5)
Country | Link |
---|---|
US (1) | US4895360A (fr) |
EP (1) | EP0300170B1 (fr) |
JP (1) | JP2622724B2 (fr) |
DE (1) | DE3862535D1 (fr) |
FI (1) | FI883443A (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59604360D1 (de) * | 1995-04-11 | 2000-03-09 | Grapha Holding Ag | Verfahren und vorrichtung zum fördern eines stroms von druckereierzeugnissen |
DE59606007D1 (de) * | 1995-07-20 | 2000-11-23 | Heidelberger Druckmasch Ag | Verfahren und Vorrichtung zur Auslage bögenförmiger Produkte |
US5819663A (en) * | 1995-09-06 | 1998-10-13 | Quad/Tech, Inc. | Gripper conveyor with preliminary ink jet |
CA2308510C (fr) | 1997-12-23 | 2007-02-06 | Ferag Ag | Dispositif pour recevoir et/ou distribuer des produits plats |
CH692617A5 (de) | 1998-02-27 | 2002-08-30 | Ferag Ag | Vorrichtung zum Verarbeiten von flexiblen, flächigen Erzeugnissen. |
AU755468B2 (en) | 1998-06-15 | 2002-12-12 | Ferag Ag | Apparatus for processing flexible, sheet-like products |
DE50001948D1 (de) * | 2000-01-18 | 2003-06-05 | Ferag Ag | Fördervorrichtung |
CH699597A1 (de) | 2008-09-29 | 2010-03-31 | Ferag Ag | Fördervorrichtung zum Fördern und Ausrichten von flachen und optional flexiblen Produkten oder von Stapeln von flachen Produkten. |
EP2243734B1 (fr) * | 2009-04-23 | 2011-10-26 | Müller Martini Holding AG | Procédé de retournement de produits d'impression transportés sur une trajectoire de transport dans un flux de transport |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0136498A1 (fr) * | 1983-09-05 | 1985-04-10 | Ferag AG | Procédé et dispositif pour convertir des produits plans se déroulant de bobines d'accumulation, notamment produits imprimés |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2610850A (en) * | 1948-02-24 | 1952-09-16 | Huck Co | Sheet delivery mechanism for printing machines |
US2769634A (en) * | 1952-02-06 | 1956-11-06 | Roland Offsetmaschf | Sheet transporting and stacking device for printing machines |
NL112491C (fr) * | 1959-12-23 | |||
CH618398A5 (fr) * | 1977-06-06 | 1980-07-31 | Ferag Ag | |
US4132403A (en) * | 1977-07-07 | 1979-01-02 | Veb Polygraph Leipzig Kombinat Fuer Polygraphische Maschinen Und Ausruestungen | Sheet transfer apparatus for printing machine |
CH630583A5 (de) * | 1978-06-30 | 1982-06-30 | Ferag Ag | Vorrichtung zum wegfoerdern von in einem schuppenstrom anfallenden flaechigen erzeugnissen, insbesondere druckprodukten. |
CH655488B (fr) * | 1982-03-11 | 1986-04-30 | ||
AT404835B (de) * | 1996-03-05 | 1999-03-25 | Danubia Petrochem Polymere | Zur herstellung lackierbarer teile geeignete glasmattenverstärkte thermoplasten und daraus hergestellte teile |
-
1988
- 1988-05-28 DE DE8888108586T patent/DE3862535D1/de not_active Expired - Fee Related
- 1988-05-28 EP EP88108586A patent/EP0300170B1/fr not_active Expired - Lifetime
- 1988-07-06 JP JP63168646A patent/JP2622724B2/ja not_active Expired - Lifetime
- 1988-07-15 US US07/219,202 patent/US4895360A/en not_active Expired - Fee Related
- 1988-07-20 FI FI883443A patent/FI883443A/fi not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0136498A1 (fr) * | 1983-09-05 | 1985-04-10 | Ferag AG | Procédé et dispositif pour convertir des produits plans se déroulant de bobines d'accumulation, notamment produits imprimés |
Also Published As
Publication number | Publication date |
---|---|
EP0300170A1 (fr) | 1989-01-25 |
FI883443A (fi) | 1989-01-22 |
US4895360A (en) | 1990-01-23 |
FI883443A0 (fi) | 1988-07-20 |
JPS6438366A (en) | 1989-02-08 |
JP2622724B2 (ja) | 1997-06-18 |
DE3862535D1 (de) | 1991-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0218872B1 (fr) | Dispositif pour assembler différents produits imprimés | |
DE19955819A1 (de) | Vorrichtung zum Verlangsamen und Führen eines Bogens, und Verfahren hierfür | |
CH630583A5 (de) | Vorrichtung zum wegfoerdern von in einem schuppenstrom anfallenden flaechigen erzeugnissen, insbesondere druckprodukten. | |
DE69200686T2 (de) | Blattzufuhreinrichtung. | |
CH667621A5 (de) | Sammelhefter. | |
EP0330868A1 (fr) | Procédé et dispositif d'évacuation de produits imprimés, qui sont amenés en formation en écailles | |
EP0208081A1 (fr) | Procédé et dispositif d'ouverture pour imprimés pliés de manière excentrée | |
EP0522319B1 (fr) | Procédé et dispositif pour ouvrir des articles flexible pliés hors du centre | |
CH649972A5 (de) | Vorrichtung zum uebereinanderlegen von einzelnen flaechigen erzeugnissen, insbesondere druckprodukten. | |
EP0564812B1 (fr) | Procédé et dispositif pour ouvrir des produits d'imprimerie pliés | |
EP0600216B1 (fr) | Procédé et dispositif pour ouvrir des produits d'imprimerie pliés | |
EP0300170B1 (fr) | Procédé et dispositif de séparation de produits se chevauchant, en particulier de produits imprimés | |
DE3306815A1 (de) | Vorrichtung zum transportieren von in einer schuppenformation anfallenden flaechigen erzeugnissen, insbesondere druckprodukten | |
EP0407763B1 (fr) | Dispositif pour enlever des produits imprimés d'une roue à aubes entraînée en rotation faisant partie d'une machine d'impression | |
EP0300171B1 (fr) | Dispositif de transport pour produits plats, en particulier des produits imprimés | |
EP0897890B1 (fr) | Procédé et dispositif pour produire un courant de produits tournés avec une pince de préhension de coin | |
EP0242702B1 (fr) | Procédé et dispositif pour tourner des objets plats | |
EP0754642A2 (fr) | Dispositif de sortie de produits en forme de feuille | |
EP0323557A1 (fr) | Dispositif de transport de produits plats, en particulier de produits imprimés | |
EP0551055B1 (fr) | Procédé et dispositif pour assembler des imprimés | |
EP0312755B1 (fr) | Convoyeur pour des produits plans amenés en continu, notamment d'imprimés | |
DE2917250A1 (de) | Vorrichtung zur taktung der ueberlappungslaenge von in einem im wesentlichen gleichmaessigen schuppenstrom gefoerderten, flaechenhaften produkten | |
EP0218804B1 (fr) | Dispositif pour reprendre et transférer des feuilles pliées d'un dispositif de transport | |
EP0771675A1 (fr) | Dispositif pour enlever des produits imprimés d'un transporteur en forme de selle | |
EP0518064B1 (fr) | Procédé et appareil pour la manutention de produits imprimés |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI SE |
|
17P | Request for examination filed |
Effective date: 19881224 |
|
17Q | First examination report despatched |
Effective date: 19900326 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI SE |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3862535 Country of ref document: DE Date of ref document: 19910529 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920413 Year of fee payment: 5 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88108586.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950424 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960529 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88108586.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980414 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990528 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020511 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020527 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |