EP0285482A1 - Transducteur acoustique multifréquences, notamment pour imagerie médicale - Google Patents
Transducteur acoustique multifréquences, notamment pour imagerie médicale Download PDFInfo
- Publication number
- EP0285482A1 EP0285482A1 EP88400583A EP88400583A EP0285482A1 EP 0285482 A1 EP0285482 A1 EP 0285482A1 EP 88400583 A EP88400583 A EP 88400583A EP 88400583 A EP88400583 A EP 88400583A EP 0285482 A1 EP0285482 A1 EP 0285482A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequency
- transducer
- blade
- transducer according
- medical imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002059 diagnostic imaging Methods 0.000 title claims description 5
- 230000006978 adaptation Effects 0.000 claims description 6
- 239000000523 sample Substances 0.000 abstract description 24
- 238000003384 imaging method Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 description 5
- 238000002592 echocardiography Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
Definitions
- the present invention relates to multifrequency acoustic transducers used in particular in medicine to form images of the human body by ultrasound.
- FIG. 1 It is known to use in medical ultrasound probes, a cross section of which is shown in FIG. 1.
- This probe is formed from aligned transducer elements such as 101 whose thickness is adapted to the operating frequency. The two faces of these elements are covered with electrodes 102 making it possible to apply the electrical voltages which make them vibrate.
- the vibration frequency chosen is most often the resonance frequency f r which corresponds to the fundamental mode of vibration depending on the thickness of the transducer.
- a thickness of 1 mm is commonly used for medical probes and the frequency used is therefore most often 2.85 MHz.
- the overvoltage factor Q of the transducers is approximately equal to the ratio between the impedance of the piezoelectric material constituting this transducer and the impedance of the external medium where the vibration will propagate. If ⁇ and ⁇ o are respectively the specific masses of the piezoelectric material and the external medium, and c and c o the velocities of sound in this material and in this medium, Q is then equal to In the case of a piezoelectric ceramic such as PZT, this ratio is close to 17.
- the vibrations are emitted in the form of short duration pulses in order to have sufficient distance resolution. This widens the frequency band of the transmitted signal and therefore requires having a relatively large probe bandwidth. To obtain this, it is known to place in front of the transducers a blade 103 whose thickness is a quarter of the wavelength at the frequency fundamental. The impedance of this quarter wave plate is chosen to be of the order of ⁇ c ⁇ o c o .
- the transducers are fixed to the body of the probe by means of a reflector 104, known by the Anglo-Saxon backing name, which is advantageously of the soft type, that is to say having a neighboring acoustic impedance from 0.
- the invention proposes to modify the traditional probes by adding additional adaptation blades in order to be able to operate these probes. simultaneously on several frequencies and therefore simultaneously perform mode B imaging and DFM imaging with a single probe.
- the probe according to the invention comprises a transducer 201 provided with two electrodes 202 and a quarter-wave plate 203. According to the invention, this transducer is fixed to the soft reflector 204 by means of a half-wave plate 205.
- this probe operates for two passbands centered one around a high frequency f o , and the other around a low frequency f1 equal to These frequencies are for example equal to those mentioned above, ie 5 MHz and 2.5 MHz.
- half-wave and quarter-wave used respectively for the transducer 201 and the blade 205 on the one hand and for the blade 203 on the other hand correspond to the high frequency.
- the materials used not being dispersive, at the low frequency the transducer 201 and the blade 205 are quarter wave, while the blade 203 is at 1 / 8th of the wavelength.
- the transducer would obviously not resonate at the frequency f1 and the acoustic signal possibly emitted would be extremely weak.
- the presence of the blade 205 does not change anything at the frequency f o since, being half-wave at this frequency, it is transparent to the acoustic waves and it brings back to the level of the transducer the same impedance than that of reflector 204.
- this blade being quarter wave at this frequency, everything happens as if the transducer were extended by a quarter wavelength and that the transducer assembly 201-blade 205 is equivalent to a half wave. Under these conditions, the excitation brought back by the electrodes 202 allows this assembly to vibrate at resonance on the frequency f1.
- FIG. 3 represents the amplitude A of the vibrational speed along the transducer 201 and the blade 205.
- Such a line would be short-circuited at the end on the side of the reflector where there would therefore always be a maximum vibrational speed, known as the belly, whatever the frequency, in particular at the frequencies f o and f1.
- this blade 203 it is always quarter wave at the frequency f o and therefore plays its role of bandwidth expander.
- this blade only has a length equivalent to 1 / 8th of a wavelength and the adaptation to this frequency is therefore very different from that obtained at the frequency f1, so that the band of frequencies obtained around f o is narrower than that around f1.
- this frequency f o is used for DFM imaging, such a narrowing of the bandwidth is not a problem.
- the electronic equipment associated with the probe includes circuits which make it possible to use the two frequencies f o and f1 both on transmission and on reception.
- FIG. 4 shows a longitudinal section of a probe according to the invention operating at 5 MHz and at 2.5 MHz. It can be seen that this probe comprises a set of transducers 201 coated with metallizations 202. These transducers are obtained by sections of a block of ceramic previously metallized on its two faces to form the electrodes. This set of transducers is bonded to the blade 205 which is itself bonded to the reflector 204. The blade 203 itself covers the transducers on which it is also bonded. Note that only the transducer block is formed of individual elements, while both the blades 203 and 205 as the reflector 204 are continuous. In this example shown the bar is linear, but the invention also applies to bars having another shape and in particular to curved bars.
- the invention is not limited to the case of probes operating on two frequencies, one of which is half the other. It also extends to probes and in general to acoustic transducers operating on a set of distinct frequencies forming the center frequencies of separate frequency bands. For this, the number of additional adaptation blades is multiplied so as to create the number of degrees of freedom sufficient in the transfer function to determine these bandwidths.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Endoscopes (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
- La présente invention se rapporte aux transducteurs acoustiques multifréquences utilisés notamment en médecine pour former des images du corps humain par échographie.
- Il est connu d'utiliser en échographie médicale des sondes dont une coupe transversale est représentée sur la figure 1. Cette sonde est formée d'éléments transducteurs alignés tel que 101 dont l'épaisseur est adaptée à la fréquence de fonctionnement. Les deux faces de ces éléments sont recouverts d'électrodes 102 permettant d'appliquer les tensions électriques qui les font vibrer. La fréquence de vibration choisie est le plus souvent la fréquence de résonance fr qui correspond au mode fondamental de vibration selon l'épaisseur du transducteur. Pour les matériaux piézoélectriques généralement utilisés dans ces sondes la relation entre fr exprimée en kilohertz et l'épaisseur h exprimée en millimètres du transducteur est donnée par fr =. On utilise couramment pour les sondes médicales une épaisseur de 1 mm et la fréquence utilisée est donc alors le plus souvent de 2,85 MHz.
- Le facteur de surtension Q des transducteurs est approximativement égal au rapport entre l'impédance du matériau piézoélectrique constituant ce transducteur et l'impédance du milieu extérieur où va se propager la vibration. Si ρ et ρo sont respectivement les masses spécifiques du matériau piézoélectrique et du milieu extérieur, et c et co les vitesses du son dans ce matériau et dans ce milieu, Q est donc alors égal à
- Les vibrations sont émises sous forme d'impulsions de faible durée afin d'avoir une résolution en distance suffisante. Ceci élargit la bande de fréquences du signal émis et nécessite donc d'avoir une largeur de bande de la sonde relativement importante. Pour obtenir cela, il est connu de placer devant les transducteurs une lame 103 dont l'épaisseur est le quart de la longueur d'onde à la fréquence fondamentale. L'impédance de cette lame quart d'onde est choisie pour être de l'ordre de √ρcρoco.
- La fixation des transducteurs sur le corps de la sonde se fait par l'intermédiaire d'un réflecteur 104, connu sous le nom anglo-saxon de backing, qui est avantageusement de type mou c'est-à-dire présentant une impédance acoustique voisine de 0.
- En imagerie médicale on utilise couramment deux types de fonctionnement :
- une imagerie classique, dite en mode B, dans laquelle on représente sectoriellement les échos en fonction de l'angle de tir et de la distance, l'amplitude de ces échos modulant la brillance de l'image ;
- une imagerie codée en couleurs, dite DFM, abréviation de l'expression anglo-saxonne "Doppler Flow Mapping", dans laquelle le décalage Doppler dû à la circulation sanguine est représenté par des variations de couleurs en surcroît des variations de brillance dues à l'amplitude des échos. - Pour l'imagerie en mode B, il faut une bonne résolution latérale et en distance. Ceci nécessite une fréquence centrale relativement élevée, par exemple de l'ordre de 5 MHz.
- Pour l'imagerie DFM, il n'y a pas besoin d'une résolution aussi grande que pour l'imagerie en mode B, mais on a besoin d'un rapport signal à bruit aussi grand que possible pour pouvoir mesurer des écarts Doppler faibles, correspondant eux-mêmes à des vitesses sanguines faibles. Le rapport signal à bruit est d'autant plus grand que la fréquence de fonctionnement est plus basse. Une valeur typique de la fréquence utilisée sera par exemple de 2,5 MHz.
- Selon l'art antérieur on utilise deux sondes branchées sur un même appareil, mais ceci augmente bien entendu les coûts de l'appareillage et complique son utilisation. Une autre solution, beaucoup moins satisfaisante, consiste à utiliser une seule sonde fonctionnant sur une fréquence intermédiaire, par exemple 3,5 MHz.
- Pour pallier ces inconvénients l'invention propose de modifier les sondes traditionnelles en rajoutant des lames supplémentaires d'adaptation afin de pouvoir faire fonctionner ces sondes simultanément sur plusieurs fréquences et d'effectuer donc simultanément une imagerie en mode B et une imagerie DFM avec une sonde unique.
- D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante présentée à titre d'exemple non limitatif en regard des figures annexées qui représentent :
- - la figure 1, une coupe transversale d'une sonde connue ;
- - la figure 2, une coupe transversale d'une sonde selon l'invention ;
- - la figure 3, un diagramme de fonctionnement ; et
- - la figure 4, une coupe longitudinale d'une sonde selon l'invention.
- Dans le mode de réalisation bi-fréquence représenté sur la figure 2, selon la même coupe que sur la figure 1, la sonde selon l'invention comporte un transducteur 201 muni de deux électrodes 202 et d'une lame quart d'onde 203. Selon l'invention ce transducteur est fixé sur le réflecteur mou 204 par l'intermédiaire d'une lame demi-onde 205.
-
- Les termes de demi-onde et de quart d'onde utilisés respectivement pour le transducteur 201 et la lame 205 d'une part et pour la lame 203 d'autre part, correspondent à la fréquence haute. Dans ces conditions, les matériaux utilisés n'étant pas dispersifs, à la fréquence basse le transducteur 201 et la lame 205 sont quart d'onde, tandis que la lame 203 est au 1/8e de la longueur d'onde.
- Si le transducteur était tout seul, comme dans la figure 1, il ne résonerait bien évidemment pas à la fréquence f₁ et le signal acoustique éventuellement émis serait extrêmement faible.
- La présence de la lame 205 ne change rien à la fréquence fo puisque, étant demi-onde à cette fréquence, elle est transparente aux ondes acoustiques et elle ramène au niveau du transducteur la même impédance que celle du réflecteur 204.
- Par contre à la fréquence f₁ cette lame, étant quart d'onde à cette fréquence, tout se passe comme si le transducteur était prolongé d'un quart de longueur d'onde et que l'ensemble transducteur 201-lame 205 soit équivalent à une demi-onde. Dans ces conditions l'excitation ramenée par les électrodes 202 permet à cet ensemble de vibrer à la résonance sur la fréquence f₁ .
- Pour mieux expliquer les phénomènes, on peut faire en première approximation une comparaison avec l'électromagnétisme et considérer la lame 205 comme une ligne quart d'onde ou demi-onde selon le cas. Cette comparaison est explicitée par la figure 3 qui représente l'amplitude A de la vitesse vibratoire le long du transducteur 201 et de la lame 205.
- Une telle ligne serait court-circuitée en extrémité du côté du réflecteur où il y aurait donc toujours un maximum de vitesse vibratoire, connue sous le nom de ventre, quelle que soit la fréquence, en particulier aux fréquences fo et f₁.
- A la fréquence fo, comme la ligne est demi-onde elle ramène à son autre extrémité, c'est-à-dire au niveau du transducteur, une impédance égale à celle du réflecteur c'est-à-dire en l'occurrence 0. Il y a donc ainsi dans ce cas un ventre de vibrations à la jonction transducteur-ligne.
- A la fréquence f₁, comme la ligne est quart d'onde, elle ramène sur cette même interface une impédance infinie, qui correspond donc à un minimum de vitesse vibratoire, appelé noeud.
- En ce qui concerne la lame 203, celle-ci est toujours quart d'onde à la fréquence fo et joue donc son rôle d'élargisseur de bande passante. A la fréquence f₁ par contre cette lame n'a plus qu'une longueur équivalente à 1/8e de longueur d'onde et l'adaptation à cette fréquence est donc bien différente de celle obtenue à la fréquence f₁, de sorte que la bande de fréquences obtenues autour de fo est plus étroite que celle autour de f₁. Cependant comme cette fréquence fo est utilisée pour l'imagerie DFM, un tel rétrécissement de la bande passante n'est pas gênant.
- En ce qui concerne l'impédance à choisir pour la lame 205, comme celle-ci est transparente pour la fréquence fo, il y a lieu de choisir cette impédance essentiellement compte-tenu des caractéristiques souhaitées pour la bande passante autour de f₁. On a déterminé que la fourchette la meilleure était comprise entre 3.10⁶ et 20.10⁶ ohms acoustiques.
- Bien entendu l'appareillage électronique associé à la sonde comprend des circuits qui permettent d'exploiter les deux fréquences fo et f₁ aussi bien à l'émission qu'à la réception.
- On a représenté sur la figure 4 une coupe longitudinale d'une sonde selon l'invention fonctionnant à 5 MHz et à 2,5 MHz. On constate que cette sonde comporte un ensemble de transducteurs 201 revêtus de métallisations 202. Ces transducteurs sont obtenus par des coupes d'un bloc de céramique préalablement métallisé sur ses deux faces pour former les électrodes. Cet ensemble de transducteurs est collé sur la lame 205 qui est elle-même collée sur le réflecteur 204. La lame 203 vient elle-même recouvrir les transducteurs sur lesquels elle est également collée. On remarque que seul le bloc de transducteurs est formé d'éléments individuels, alors qu'aussi bien les lames 203 et 205 que le réflecteur 204 sont continus. Dans cet exemple représenté la barrette est linéaire, mais l'invention s'applique également aux barrettes présentant une autre forme et en particulier aux barrettes courbes.
- L'invention n'est pas limitée au cas des sondes fonctionnant sur deux fréquences dont l'une est la moitié de l'autre. Elle s'étend également aux sondes et de manière générale aux transducteurs acoustiques fonctionnant sur un ensemble de fréquences distinctes formant les fréquences centrales de bandes de fréquences séparées. Pour cela on multiplie le nombre de lames d'adaptation supplémentaires de façon à créer le nombre de degrés de liberté suffisant dans la fonction de transfert pour déterminer ces bandes passantes.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88400583T ATE72609T1 (de) | 1987-03-19 | 1988-03-11 | Akustischer multifrequenzwandler, insbesondere fuer medizinische abbildung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8703839 | 1987-03-19 | ||
FR8703839A FR2612722B1 (fr) | 1987-03-19 | 1987-03-19 | Transducteur acoustique multifrequences, notamment pour imagerie medicale |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0285482A1 true EP0285482A1 (fr) | 1988-10-05 |
EP0285482B1 EP0285482B1 (fr) | 1992-02-12 |
Family
ID=9349214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88400583A Expired - Lifetime EP0285482B1 (fr) | 1987-03-19 | 1988-03-11 | Transducteur acoustique multifréquences, notamment pour imagerie médicale |
Country Status (7)
Country | Link |
---|---|
US (1) | US4870972A (fr) |
EP (1) | EP0285482B1 (fr) |
JP (1) | JPS63255044A (fr) |
AT (1) | ATE72609T1 (fr) |
DE (1) | DE3868337D1 (fr) |
FR (1) | FR2612722B1 (fr) |
NO (1) | NO881125L (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0550193A1 (fr) * | 1991-12-30 | 1993-07-07 | Xerox Corporation | Méthode d'éjection de gouttelettes d'encre dans une imprimante acoustique à jet d'encre et un transducteur piezoéléctrique pour un imprimante à jet d'encre |
DE4313229A1 (de) * | 1993-04-22 | 1994-10-27 | Siemens Ag | Ultraschall-Wandleranordnung mit einem Dämpfungskörper |
EP0641606A2 (fr) * | 1993-09-07 | 1995-03-08 | Acuson Corporation | Conception d'un réseau d'antennes à commande de phase ayant des possibilités à deux dimensions contrôlé par fréquence et procédé pour sa production |
FR2722358A1 (fr) * | 1994-07-08 | 1996-01-12 | Thomson Csf | Transducteur acoustique multifrequences a larges bandes |
US5582177A (en) * | 1993-09-07 | 1996-12-10 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
US5743855A (en) * | 1995-03-03 | 1998-04-28 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5400788A (en) * | 1989-05-16 | 1995-03-28 | Hewlett-Packard | Apparatus that generates acoustic signals at discrete multiple frequencies and that couples acoustic signals into a cladded-core acoustic waveguide |
US5212671A (en) * | 1989-06-22 | 1993-05-18 | Terumo Kabushiki Kaisha | Ultrasonic probe having backing material layer of uneven thickness |
GB2301892B (en) * | 1992-07-14 | 1997-02-26 | Intravascular Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
US5351546A (en) * | 1992-10-22 | 1994-10-04 | General Electric Company | Monochromatic ultrasonic transducer |
GB2293240B (en) * | 1994-09-15 | 1998-05-20 | Intravascular Res Ltd | Ultrasonic visualisation method and apparatus |
WO1996016600A1 (fr) * | 1994-11-30 | 1996-06-06 | Boston Scientific Corporation | Catheters et fils-guides pour imagerie acoustique et effet doppler |
US5558623A (en) * | 1995-03-29 | 1996-09-24 | Rich-Mar Corporation | Therapeutic ultrasonic device |
US6254542B1 (en) | 1995-07-17 | 2001-07-03 | Intravascular Research Limited | Ultrasonic visualization method and apparatus |
US5825117A (en) * | 1996-03-26 | 1998-10-20 | Hewlett-Packard Company | Second harmonic imaging transducers |
JP3573567B2 (ja) * | 1996-04-12 | 2004-10-06 | 株式会社日立メディコ | 超音波探触子及びそれを用いた超音波検査装置 |
DE29708338U1 (de) * | 1997-05-12 | 1998-09-17 | DWL Elektronische Systeme GmbH, 78354 Sipplingen | Multifrequenz-Ultraschallsonde |
US6589174B1 (en) * | 2000-10-20 | 2003-07-08 | Sunnybrook & Women's College Health Sciences Centre | Technique and apparatus for ultrasound therapy |
FR2815723B1 (fr) * | 2000-10-24 | 2004-04-30 | Thomson Csf | Procede systeme et sonde pour l'obtention d'images par l'intermediaire d'ondes emises par une antenne apres reflexion de ces ondes au niveau d'un ensemble servant de cible |
WO2003009758A1 (fr) * | 2001-07-24 | 2003-02-06 | Sunlight Medical, Ltd. | Determination de l'age osseux au moyen d'ultrasons |
WO2003009738A2 (fr) * | 2001-07-24 | 2003-02-06 | Sunlight Medical, Ltd. | Methode et appareil pour diagnostic osseux |
US7396332B2 (en) | 2002-06-10 | 2008-07-08 | Scimed Life Systems, Inc. | Transducer with multiple resonant frequencies for an imaging catheter |
JP2010273097A (ja) * | 2009-05-21 | 2010-12-02 | Iwaki Akiyama | 超音波プローブ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3008553A1 (de) * | 1979-03-12 | 1980-09-25 | Kretztechnik Gmbh | Schallkopf fuer untersuchungen mit ultraschall nach dem impuls-echoverfahren und mit diesem schallkopf ausgestattetes ultraschallgeraet |
US4490640A (en) * | 1983-09-22 | 1984-12-25 | Keisuke Honda | Multi-frequency ultrasonic transducer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599859B2 (ja) * | 1979-07-21 | 1984-03-05 | アロカ株式会社 | 可変周波数超音波探触子 |
US4276491A (en) * | 1979-10-02 | 1981-06-30 | Ausonics Pty. Limited | Focusing piezoelectric ultrasonic medical diagnostic system |
US4503861A (en) * | 1983-04-11 | 1985-03-12 | Biomedics, Inc. | Fetal heartbeat doppler transducer |
-
1987
- 1987-03-19 FR FR8703839A patent/FR2612722B1/fr not_active Expired
-
1988
- 1988-03-11 DE DE8888400583T patent/DE3868337D1/de not_active Expired - Fee Related
- 1988-03-11 AT AT88400583T patent/ATE72609T1/de not_active IP Right Cessation
- 1988-03-11 EP EP88400583A patent/EP0285482B1/fr not_active Expired - Lifetime
- 1988-03-14 NO NO881125A patent/NO881125L/no unknown
- 1988-03-17 US US07/169,272 patent/US4870972A/en not_active Expired - Fee Related
- 1988-03-19 JP JP63067063A patent/JPS63255044A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3008553A1 (de) * | 1979-03-12 | 1980-09-25 | Kretztechnik Gmbh | Schallkopf fuer untersuchungen mit ultraschall nach dem impuls-echoverfahren und mit diesem schallkopf ausgestattetes ultraschallgeraet |
US4490640A (en) * | 1983-09-22 | 1984-12-25 | Keisuke Honda | Multi-frequency ultrasonic transducer |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 5, no. 66 (E-55)[738], 2 mai 1981, page 163 E 55; & JP-A-56 017 598 (AROKA K.K.) 19-02-1981 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0550193A1 (fr) * | 1991-12-30 | 1993-07-07 | Xerox Corporation | Méthode d'éjection de gouttelettes d'encre dans une imprimante acoustique à jet d'encre et un transducteur piezoéléctrique pour un imprimante à jet d'encre |
DE4313229A1 (de) * | 1993-04-22 | 1994-10-27 | Siemens Ag | Ultraschall-Wandleranordnung mit einem Dämpfungskörper |
EP0641606A2 (fr) * | 1993-09-07 | 1995-03-08 | Acuson Corporation | Conception d'un réseau d'antennes à commande de phase ayant des possibilités à deux dimensions contrôlé par fréquence et procédé pour sa production |
EP0641606A3 (fr) * | 1993-09-07 | 1996-06-12 | Acuson | Conception d'un réseau d'antennes à commande de phase ayant des possibilités à deux dimensions contrÔlé par fréquence et procédé pour sa production. |
US5582177A (en) * | 1993-09-07 | 1996-12-10 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
US5976090A (en) * | 1993-09-07 | 1999-11-02 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
FR2722358A1 (fr) * | 1994-07-08 | 1996-01-12 | Thomson Csf | Transducteur acoustique multifrequences a larges bandes |
WO1996001702A1 (fr) * | 1994-07-08 | 1996-01-25 | Thomson-Csf | Transducteur acoustique multifrequences a bandes larges |
US5743855A (en) * | 1995-03-03 | 1998-04-28 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
FR2612722B1 (fr) | 1989-05-26 |
NO881125L (no) | 1988-09-20 |
NO881125D0 (no) | 1988-03-14 |
JPS63255044A (ja) | 1988-10-21 |
US4870972A (en) | 1989-10-03 |
FR2612722A1 (fr) | 1988-09-23 |
ATE72609T1 (de) | 1992-02-15 |
DE3868337D1 (de) | 1992-03-26 |
EP0285482B1 (fr) | 1992-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0285482B1 (fr) | Transducteur acoustique multifréquences, notamment pour imagerie médicale | |
EP0219919B1 (fr) | Appareil d'exploration de milieux par échographie ultrasonore comprenant un réseau d'éléments transducteurs piézoélectriques | |
EP0142178B2 (fr) | Transducteur ultrasonore | |
KR860000380B1 (ko) | 초음파 진단장치 | |
EP0769988B1 (fr) | Transducteur acoustique multifrequences a bandes larges | |
EP0190805B1 (fr) | Appareil d'exploration de milieux par échographie ultrasonore | |
US20020027400A1 (en) | Ultrasonic transducer having impedance matching layer | |
EP0084466B1 (fr) | Système d'antenne à pouvoir séparateur élevé | |
EP0409732B1 (fr) | Détecteur de la présence d'un liquide à guide composite d'ondes élastiques | |
EP0810132B1 (fr) | Dispositif de détection ultrasonore destiné à la détection de corps étrangers présents à la surface d'une vitre | |
EP0660981B1 (fr) | Transducteur d'ondes unidirectionnel | |
EP0225900B1 (fr) | Sonde d'echographie et echographe muni d'une telle sonde | |
JP2006334074A (ja) | 超音波探触子、及び超音波診断装置 | |
EP2486656B1 (fr) | Transpondeur à modes résonants couplés intégrant une charge variable | |
FR2466164A1 (fr) | Transducteur ultrasonore a sensibilite variable et dispositif d'emission-reception ultrasonore equipe de ce transducteur | |
WO1999035969A1 (fr) | Sonde d'echographie et accessoires | |
EP0424240B1 (fr) | Transducteur d'ondes de surface unidirectionnel | |
FR2661992A1 (fr) | Deflecteur acousto-optique. | |
EP3670004A1 (fr) | Transducteur ultrasonore à membrane vibrante à effet capacitif à large bande passante | |
JP2008142356A (ja) | 超音波探触子および超音波撮像装置 | |
EP0040566B1 (fr) | Dispositif d'échographie à focalisation dynamique et à balayage sectoriel | |
FR2546703A1 (fr) | Nouvelle structure de transducteur ultrasonore | |
FR2503517A1 (fr) | Transducteur piezo-electrique | |
FR2522452A1 (fr) | Ligne a retard electro-acoustique operant en transmission | |
JPS5871455A (ja) | 超音波顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890320 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF |
|
17Q | First examination report despatched |
Effective date: 19910222 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19920212 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19920212 Ref country code: SE Effective date: 19920212 Ref country code: GB Effective date: 19920212 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19920212 |
|
REF | Corresponds to: |
Ref document number: 72609 Country of ref document: AT Date of ref document: 19920215 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920220 Year of fee payment: 5 |
|
REF | Corresponds to: |
Ref document number: 3868337 Country of ref document: DE Date of ref document: 19920326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19920331 Ref country code: CH Effective date: 19920331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19920331 Ref country code: LI Effective date: 19920331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920331 Year of fee payment: 5 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
BERE | Be: lapsed |
Owner name: THOMSON-CSF Effective date: 19920331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930129 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19931001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19931201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920331 |