EP0285482B1 - Transducteur acoustique multifréquences, notamment pour imagerie médicale - Google Patents

Transducteur acoustique multifréquences, notamment pour imagerie médicale Download PDF

Info

Publication number
EP0285482B1
EP0285482B1 EP88400583A EP88400583A EP0285482B1 EP 0285482 B1 EP0285482 B1 EP 0285482B1 EP 88400583 A EP88400583 A EP 88400583A EP 88400583 A EP88400583 A EP 88400583A EP 0285482 B1 EP0285482 B1 EP 0285482B1
Authority
EP
European Patent Office
Prior art keywords
transducer
frequency
resonant
sheet
medical imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400583A
Other languages
German (de)
English (en)
Other versions
EP0285482A1 (fr
Inventor
Charles Maerfeld
Jean-François Gelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to AT88400583T priority Critical patent/ATE72609T1/de
Publication of EP0285482A1 publication Critical patent/EP0285482A1/fr
Application granted granted Critical
Publication of EP0285482B1 publication Critical patent/EP0285482B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the present invention relates to multifrequency acoustic transducers used in particular in medicine to form images of the human body by ultrasound.
  • FIG. 1 It is known to use in medical ultrasound probes, a cross section of which is shown in FIG. 1.
  • This probe is formed from aligned transducer elements such as 101 whose thickness is adapted to the operating frequency. The two faces of these elements are covered with electrodes 102 making it possible to apply the electrical voltages which make them vibrate.
  • the vibration frequency chosen is most often the resonance frequency f r which corresponds to the fundamental mode of vibration depending on the thickness of the transducer.
  • a thickness of 1 mm is commonly used for medical probes and the frequency used is therefore most often 2.85 MHz.
  • the overvoltage factor Q of the transducers is approximately equal to the ratio between the impedance of the piezoelectric material constituting this transducer and the impedance of the external medium where the vibration will propagate. If ⁇ and ⁇ o are respectively the specific masses of the piezoelectric material and the external medium, and c and c o the velocities of sound in this material and in this medium, Q is then equal to ⁇ c ⁇ o vs o . In the case of a piezoelectric ceramic such as PZT, this ratio is close to 17.
  • the vibrations are emitted in the form of short duration pulses in order to have sufficient distance resolution. This widens the frequency band of the transmitted signal and therefore requires having a relatively large probe bandwidth. To obtain this, it is known to place in front of the transducers a blade 103 whose thickness is a quarter of the wavelength at the frequency fundamental. The impedance of this quarter wave plate is chosen to be of the order of ⁇ c ⁇ o vs o .
  • JP-A-56-17598 recommends placing in addition on this first blade a second blade whose thickness is also a quarter wavelength at frequency fundamental, and to feed the probe by resonant circuits tuned on different frequencies and switched by switches.
  • the transducers are fixed to the body of the probe by means of a reflector 104, known by the Anglo-Saxon backing name, which is advantageously of the soft type, that is to say having a neighboring acoustic impedance from 0.
  • German patent application DE-A-3 008 553 describes an ultrasonic probe operating on two frequencies and comprising on a soft reflector two transducer plates and two resonant plates whose thicknesses must be determined by a high number of experiments.
  • US patent US Pat. No. 4,490,640 describes an ultrasonic transducer comprising three transducer blades of equal thickness located between four metal bars of varying lengths. The whole presents a relatively wide but very disturbed response curve.
  • the invention proposes to modify the traditional probes by adding additional adaptation blades in order to be able to operate these probes. simultaneously on several frequencies and therefore simultaneously perform mode B imaging and DFM imaging with a single probe.
  • the probe according to the invention comprises a transducer 201 provided with two electrodes 202 and a quarter-wave plate 203. According to the invention, this transducer is fixed to the soft reflector 204 by means of a half-wave plate 205.
  • this probe operates for two passbands centered one around a high frequency f o , and the other around a low frequency f1 equal to f o 2 .
  • These frequencies are for example equal to those mentioned above, ie 5 MHz and 2.5 MHz.
  • half-wave and quarter-wave used respectively for the transducer 201 and the blade 205 on the one hand and for the blade 203 on the other hand correspond to the high frequency.
  • the materials used not being dispersive, at the low frequency the transducer 201 and the blade 205 are quarter wave, while the blade 203 is at 1 / 8th of the wavelength.
  • the transducer would obviously not resonate at the frequency f1 and the acoustic signal possibly emitted would be extremely weak.
  • the presence of the blade 205 does not change anything at the frequency f o since, being half-wave at this frequency, it is transparent to the acoustic waves and it brings back to the level of the transducer the same impedance than that of reflector 204.
  • this blade being quarter wave at this frequency, everything happens as if the transducer were extended by a quarter wavelength and that the transducer assembly 201-blade 205 is equivalent to a half wave. Under these conditions, the excitation brought back by the electrodes 202 allows this assembly to vibrate at resonance on the frequency f1.
  • FIG. 3 represents the amplitude A of the vibrational speed along the transducer 201 and the blade 205.
  • Such a line would be short-circuited at the end on the side of the reflector where there would therefore always be a maximum vibrational speed, known as the belly, whatever the frequency, in particular at the frequencies f o and f1.
  • this blade 203 it is always quarter wave at the frequency f o and therefore plays its role of bandwidth expander.
  • this blade only has a length equivalent to 1 / 8th of a wavelength and the adaptation to this frequency is therefore very different from that obtained at the frequency f o , so that the frequency band obtained around f1 is narrower than that around f o .
  • this frequency f1 is used for DFM imaging, such a narrowing of the bandwidth is not a problem.
  • the longitudinal characteristic impedance to be chosen for the blade 205 As regards the longitudinal characteristic impedance to be chosen for the blade 205, as it is transparent for the frequency f0, it is necessary to choose this impedance essentially taking into account the characteristics desired for the passband around f1. It has been determined that the best range is between 3.106 and 20.106 kg / m2 dry.
  • the electronic equipment associated with the probe includes circuits which make it possible to use the two frequencies f o and f1 both on transmission and on reception.
  • FIG. 4 shows a longitudinal section of a probe according to the invention operating at 5 MHz and at 2.5 MHz. It can be seen that this probe comprises a set of transducers 201 coated with metallizations 202. These transducers are obtained by sections of a block of ceramic previously metallized on its two faces to form the electrodes. This set of transducers is bonded to the blade 205 which is itself bonded to the reflector 204. The blade 203 itself covers the transducers on which it is also bonded. Note that only the transducer block is formed of individual elements, while both the blades 203 and 205 as the reflector 204 are continuous. In this example shown the bar is linear, but the invention also applies to bars having another shape and in particular to curved bars.
  • the invention is not limited to the case of probes operating on two frequencies, one of which is half the other. It also extends to probes and in general to acoustic transducers operating on a set of distinct frequencies forming the center frequencies of separate frequency bands. For this, the number of additional adaptation blades is multiplied so as to create the number of degrees of freedom sufficient in the transfer function to determine these bandwidths.

Description

  • La présente invention se rapporte aux transducteurs acoustiques multifréquences utilisés notamment en médecine pour former des images du corps humain par échographie.
  • Il est connu d'utiliser en échographie médicale des sondes dont une coupe transversale est représentée sur la figure 1. Cette sonde est formée d'éléments transducteurs alignés tel que 101 dont l'épaisseur est adaptée à la fréquence de fonctionnement. Les deux faces de ces éléments sont recouverts d'électrodes 102 permettant d'appliquer les tensions électriques qui les font vibrer. La fréquence de vibration choisie est le plus souvent la fréquence de résonance fr qui correspond au mode fondamental de vibration selon l'épaisseur du transducteur. Pour les matériaux piézoélectriques généralement utilisés dans ces sondes la relation entre fr exprimée en kilohertz et l'épaisseur h exprimée en millimètres du transducteur est donnée par f r = 2850 h .
    Figure imgb0001
    On utilise couramment pour les sondes médicales une épaisseur de 1 mm et la fréquence utilisée est donc alors le plus souvent de 2,85 MHz.
  • Le facteur de surtension Q des transducteurs est approximativement égal au rapport entre l'impédance du matériau piézoélectrique constituant ce transducteur et l'impédance du milieu extérieur où va se propager la vibration. Si ρ et ρo sont respectivement les masses spécifiques du matériau piézoélectrique et du milieu extérieur, et c et co les vitesses du son dans ce matériau et dans ce milieu, Q est donc alors égal à ρc ρ o c o
    Figure imgb0002
    . Dans le cas d'une céramique piézoélectrique telle que le PZT, ce rapport est voisin de 17.
  • Les vibrations sont émises sous forme d'impulsions de faible durée afin d'avoir une résolution en distance suffisante. Ceci élargit la bande de fréquences du signal émis et nécessite donc d'avoir une largeur de bande de la sonde relativement importante. Pour obtenir cela, il est connu de placer devant les transducteurs une lame 103 dont l'épaisseur est le quart de la longueur d'onde à la fréquence fondamentale. L'impédance de cette lame quart d'onde est choisie pour être de l'ordre de ρc ρ o c o .
    Figure imgb0003
  • Pour augmenter encore la largeur de bande, la demande de brevet japonaise JP-A-56- 17598 préconise de placer en outre sur cette première lame une deuxième lame dont l'épaisseur est aussi d'un quart de longueur d'onde à la fréquence fondamentale, et d'alimenter la sonde par des circuits résonnants accordés sur des fréquences différentes et commutés par des interrupteurs.
  • La fixation des transducteurs sur le corps de la sonde se fait par l'intermédiaire d'un réflecteur 104, connu sous le nom anglo-saxon de backing, qui est avantageusement de type mou c'est-à-dire présentant une impédance acoustique voisine de 0.
  • En imagerie médicale on utilise couramment deux types de fonctionnement :
    • une imagerie classique, dite en mode B, dans laquelle on représente sectoriellement les échos en fonction de l'angle de tir et de la distance, l'amplitude de ces échos modulant la brillance de l'image ;
    • une imagerie codée en couleurs, dite DFM,abréviation de l'expression anglo-saxonne "Doppler Flow Mapping", dans laquelle le décalage Doppler dû à la circulation sanguine est représenté par des variations de couleurs en surcroît des variations de brillance dues à l'amplitude des échos.
  • Pour l'irnagerie en mode B, il faut une bonne résolution latérale et en distance. Ceci nécessite une fréquence centrale relativement élevée, par exemple de l'ordre de 5 MHz.
  • Pour l'imagerie DFM, il n'y a pas besoin d'une résolution aussi grande que pour l'imagerie en mode B, mais on a besoin d'un rapport signal à bruit aussi grand que possible pour pouvoir mesurer des écarts Doppler faibles, correspondant eux-mêmes à des vitesses sanguines faibles. Le rapport signal à bruit est d'autant plus grand que la fréquence de fonctionnement est plus basse. Une valeur typique de la fréquence utilisée sera par exemple de 2,5 MHz.
  • Selon l'art antérieur on utilise deux sondes branchées sur un même appareil, mais ceci augmente bien entendu les coûts de l'appareillage et complique son utilisation. Une autre solution, beaucoup moins satisfaisante, consiste à utiliser une seule sonde fonctionnant sur une fréquence intermédiaire, par exemple 3,5 MHz.
  • En outre la demande de brevet allemande DE-A-3 008 553 décrit une sonde ultrasonore fonctionnant sur deux fréquences et conportant sur un réflecteur mou deux lames transductrices et deux lames résonnantes dont les épaisseurs doivent être déterminées par un nombre élevé d'expérimentations.
  • Enfin le brevet américain US-A-4 490 640 décrit un transducteur ultrasonore comportant trois lames transductrices d'épaisseurs égales situées entre quatre barreaux métalliques de longueurs variées. L'ensemble présente une courbe de réponse relativement large mais très perturbée.
  • Pour pallier ces inconvénients l'invention propose de modifier les sondes traditionnelles en rajoutant des lames supplémentaires d'adaptation afin de pouvoir faire fonctionner ces sondes simultanément sur plusieurs fréquences et d'effectuer donc simultanément une imagerie en mode B et une imagerie DFM avec une sonde unique.
  • D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante présentée à titre d'exemple non limitatif en regard des figures annexées qui représentent :
    • la figure 1, une coupe transversale d'une sonde connue ;
    • la figure 2, une coupe transversale d'une sonde selon l'invention ;
    • la figure 3, un diagramme de fonctionnement ; et
    • la figure 4, une coupe longitudinale d'une sonde selon l'invention.
  • Dans le mode de réalisation bi-fréquence représenté sur la figure 2, selon la même coupe que sur la figure 1, la sonde selon l'invention comporte un transducteur 201 muni de deux électrodes 202 et d'une lame quart d'onde 203. Selon l'invention ce transducteur est fixé sur le réflecteur mou 204 par l'intermédiaire d'une lame demi-onde 205.
  • Selon l'invention cette sonde fonctionne pour deux bandes passantes centrées l'une autour d'une fréquence haute fo, et l'autre autour d'une fréquence basse f₁ égale à f o 2 .
    Figure imgb0004
    Ces fréquences sont par exemple égales à celles mentionnées plus haut, soit 5 MHz et 2,5 MHz.
  • Les termes de demi-onde et de quart d'onde utilisés respectivement pour le transducteur 201 et la lame 205 d'une part et pour la lame 203 d'autre part, correspondent à la fréquence haute. Dans ces conditions, les matériaux utilisés n'étant pas dispersifs, à la fréquence basse le transducteur 201 et la lame 205 sont quart d'onde, tandis que la lame 203 est au 1/8e de la longueur d'onde.
  • Si le transducteur était tout seul, comme dans la figure 1, il ne résonerait bien évidemment pas à la fréquence f₁ et le signal acoustique éventuellement émis serait extrêmement faible.
  • La présence de la lame 205 ne change rien à la fréquence fo puisque, étant demi-onde à cette fréquence, elle est transparente aux ondes acoustiques et elle ramène au niveau du transducteur la même impédance que celle du réflecteur 204.
  • Par contre à la fréquence f₁ cette lame, étant quart d'onde à cette fréquence, tout se passe comme si le transducteur était prolongé d'un quart de longueur d'onde et que l'ensemble transducteur 201-lame 205 soit équivalent à une demi-onde. Dans ces conditions l'excitation ramenée par les électrodes 202 permet à cet ensemble de vibrer à la résonance sur la fréquence f₁.
  • Pour mieux expliquer les phénomènes, on peut faire en première approximation une comparaison avec l'électromagnétisme et considérer la lame 205 comme une ligne quart d'onde ou demi-onde selon le cas. Cette comparaison est explicitée par la figure 3 qui représente l'amplitude A de la vitesse vibratoire le long du transducteur 201 et de la lame 205.
  • Une telle ligne serait court-circuitée en extrémité du côté du réflecteur où il y aurait donc toujours un maximum de vitesse vibratoire, connue sous le nom de ventre, quelle que soit la fréquence, en particulier aux fréquences fo et f₁.
  • A la fréquence fo, comme la ligne est demi-onde elle ramène à son autre extrémité, c'est-à-dire au niveau du transducteur, une impédance égale à celle du réflecteur c'est-à-dire en l'occurrence 0. Il y a donc ainsi dans ce cas un ventre de vibrations à la jonction transducteur-ligne.
  • A la fréquence f₁, comme la ligne est quart d'onde, elle ramène sur cette même interface une impédance infinie, qui correspond donc à un minimum de vitesse vibratoire, appelé noeud.
  • En ce qui concerne la lame 203, celle-ci est toujours quart d'onde à la fréquence fo et joue donc son rôle d'élargisseur de bande passante. A la fréquence f₁ par contre cette lame n'a plus qu'une longueur équivalente à 1/8e de longueur d'onde et l'adaptation à cette fréquence est donc bien différente de celle obtenue à la fréquence fo, de sorte que la bande de fréquences obtenues autour de f₁ est plus étroite que celle autour de fo. Cependant comme cette fréquence f₁ est utilisée pour l'imagerie DFM, un tel rétrécissement de la bande passante n'est pas gênant.
  • En ce qui concerne l'impédance caractéristique longitudinale à choisir pour la lame 205, comme celle-ci est transparente pour la fréquence f₀, il y a lieu de choisir cette impédance essentiellement compte tenu des caractéristiques souhaitées pour la bande passante autour de f₁. On a déterminé que la fourchette la meilleure était comprise entre 3.10⁶ et 20.10⁶ kg/m² sec.
  • Bien entendu l'appareillage électronique associé à la sonde comprend des circuits qui permettent d'exploiter les deux fréquences fo et f₁ aussi bien à l'émission qu'à la réception.
  • On a représenté sur la figure 4 une coupe longitudinale d'une sonde selon l'invention fonctionnant à 5 MHz et à 2,5 MHz. On constate que cette sonde comporte un ensemble de transducteurs 201 revêtus de métallisations 202. Ces transducteurs sont obtenus par des coupes d'un bloc de céramique préalablement métallisé sur ses deux faces pour former les électrodes. Cet ensemble de transducteurs est collé sur la lame 205 qui est elle-même collée sur le réflecteur 204. La lame 203 vient elle-même recouvrir les transducteurs sur lesquels elle est également collée. On remarque que seul le bloc de transducteurs est formé d'éléments individuels, alors qu'aussi bien les lames 203 et 205 que le réflecteur 204 sont continus. Dans cet exemple représenté la barrette est linéaire, mais l'invention s'applique également aux barrettes présentant une autre forme et en particulier aux barrettes courbes.
  • L'invention n'est pas limitée au cas des sondes fonctionnant sur deux fréquences dont l'une est la moitié de l'autre. Elle s'étend également aux sondes et de manière générale aux transducteurs acoustiques fonctionnant sur un ensemble de fréquences distinctes formant les fréquences centrales de bandes de fréquences séparées. Pour cela on multiplie le nombre de lames d'adaptation supplémentaires de façon à créer le nombre de degrés de liberté suffisant dans la fonction de transfert pour déterminer ces bandes passantes.

Claims (4)

1. Transducteur acoustique multifréquence pour imagerie médicale comportant :
- au moins un transducteur piézoélectrique (201) destiné à être excité pour émettre des vibrations acoustiques ;
- un matériau mou (204), dénommé réflecteur, servant de support au transducteur piézoélectrique (201) ;
- au moins une lame résonante (205) placée sur au moins l'une des faces du transducteurs piézoélectrique, entre le transducteur et le réflecteur, pour permettre à l'ensemble de résonner sur au moins deux fréquences distinctes f₀ et f₁ du fait des épaisseurs choisies pour la lame résonante et le transducteur, qui sont égales à une demi-onde à la première fréquence de résonance f₀ et un quart d'onde à la fréquence f₁.
et caractérisé en ce que :
- Une lame d'adaptation d'impédance (203) dont l'épaisseur est quart d'onde à la première fréquence de résonance f₀ utilisée pour l'imagerie médicale en mode B, est disposée sur l'autre face du transducteur piézoélectrique (201) par rapport à la lame résonante (205), son impédance caractéristique ρa Ca étant choisie pour être de l'ordre de la moyenne géométrique ρ Cρ 0 C 0
Figure imgb0005
impédances caractéristiques du matériau piézoélectrique ρC et du milieu extérieur ρ₀C₀ à examiner, ce qui permet d'obtenir une large bande passante à cette fréquence f₀ ;
- ladite lame d'adaptation d'impédance (203) a donc une épaisseur équivalente à 1/8e d'onde à la deuxième fréquence de résonance f₁ utilisée pour l'imagerie médicale DFM, et de ce fait la bande passante autour de f₁ est plus étroite qu'autour de f₀, ce qui n'est pas gênant en imagerie DFM.
2. Transducteur selon la revendication 1, caractérisé en ce que les première et deuxième fréquences (f₀, f₁) sont sensiblement égales à 5 et 2, 5 MHz.
3. Transducteur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'impédance caractéristique longitudinale de la lame résonante (205) est située entre 3.10⁶ et 20.10⁶ kg/m² sec.
4. Transducteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend un ensemble de lames résonantes (205) permettant de le faire fonctionner sur un ensemble de fréquences distinctes.
EP88400583A 1987-03-19 1988-03-11 Transducteur acoustique multifréquences, notamment pour imagerie médicale Expired - Lifetime EP0285482B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88400583T ATE72609T1 (de) 1987-03-19 1988-03-11 Akustischer multifrequenzwandler, insbesondere fuer medizinische abbildung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8703839A FR2612722B1 (fr) 1987-03-19 1987-03-19 Transducteur acoustique multifrequences, notamment pour imagerie medicale
FR8703839 1987-03-19

Publications (2)

Publication Number Publication Date
EP0285482A1 EP0285482A1 (fr) 1988-10-05
EP0285482B1 true EP0285482B1 (fr) 1992-02-12

Family

ID=9349214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400583A Expired - Lifetime EP0285482B1 (fr) 1987-03-19 1988-03-11 Transducteur acoustique multifréquences, notamment pour imagerie médicale

Country Status (7)

Country Link
US (1) US4870972A (fr)
EP (1) EP0285482B1 (fr)
JP (1) JPS63255044A (fr)
AT (1) ATE72609T1 (fr)
DE (1) DE3868337D1 (fr)
FR (1) FR2612722B1 (fr)
NO (1) NO881125L (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400788A (en) * 1989-05-16 1995-03-28 Hewlett-Packard Apparatus that generates acoustic signals at discrete multiple frequencies and that couples acoustic signals into a cladded-core acoustic waveguide
US5212671A (en) * 1989-06-22 1993-05-18 Terumo Kabushiki Kaisha Ultrasonic probe having backing material layer of uneven thickness
US5268610A (en) * 1991-12-30 1993-12-07 Xerox Corporation Acoustic ink printer
GB2301892B (en) * 1992-07-14 1997-02-26 Intravascular Res Ltd Methods and apparatus for the examination and treatment of internal organs
US5351546A (en) * 1992-10-22 1994-10-04 General Electric Company Monochromatic ultrasonic transducer
DE4313229A1 (de) * 1993-04-22 1994-10-27 Siemens Ag Ultraschall-Wandleranordnung mit einem Dämpfungskörper
US5743855A (en) * 1995-03-03 1998-04-28 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
AU688334B2 (en) * 1993-09-07 1998-03-12 Siemens Medical Solutions Usa, Inc. Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5415175A (en) * 1993-09-07 1995-05-16 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
FR2722358B1 (fr) * 1994-07-08 1996-08-14 Thomson Csf Transducteur acoustique multifrequences a larges bandes
GB2293240B (en) * 1994-09-15 1998-05-20 Intravascular Res Ltd Ultrasonic visualisation method and apparatus
EP0794732A4 (fr) * 1994-11-30 1999-11-24 Boston Scient Corp Catheters et fils-guides pour imagerie acoustique et effet doppler
US5558623A (en) * 1995-03-29 1996-09-24 Rich-Mar Corporation Therapeutic ultrasonic device
US6254542B1 (en) 1995-07-17 2001-07-03 Intravascular Research Limited Ultrasonic visualization method and apparatus
US5825117A (en) * 1996-03-26 1998-10-20 Hewlett-Packard Company Second harmonic imaging transducers
JP3573567B2 (ja) * 1996-04-12 2004-10-06 株式会社日立メディコ 超音波探触子及びそれを用いた超音波検査装置
DE29708338U1 (de) * 1997-05-12 1998-09-17 Dwl Elektron Systeme Gmbh Multifrequenz-Ultraschallsonde
US6589174B1 (en) * 2000-10-20 2003-07-08 Sunnybrook & Women's College Health Sciences Centre Technique and apparatus for ultrasound therapy
FR2815723B1 (fr) * 2000-10-24 2004-04-30 Thomson Csf Procede systeme et sonde pour l'obtention d'images par l'intermediaire d'ondes emises par une antenne apres reflexion de ces ondes au niveau d'un ensemble servant de cible
AU2002321792A1 (en) * 2001-07-24 2003-02-17 Sunlight Medical, Ltd. Method and apparatus for bone diagnosis
JP2004535882A (ja) * 2001-07-24 2004-12-02 サンライト メディカル リミテッド 超音波を用いた骨年齢評価方法
US7396332B2 (en) * 2002-06-10 2008-07-08 Scimed Life Systems, Inc. Transducer with multiple resonant frequencies for an imaging catheter
JP2010273097A (ja) * 2009-05-21 2010-12-02 Iwaki Akiyama 超音波プローブ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT364438B (de) * 1979-03-12 1981-10-27 Kretztechnik Gmbh Schallkopf fuer untersuchungen mit ultraschall nach dem impuls-echoverfahren
JPS599859B2 (ja) * 1979-07-21 1984-03-05 アロカ株式会社 可変周波数超音波探触子
US4276491A (en) * 1979-10-02 1981-06-30 Ausonics Pty. Limited Focusing piezoelectric ultrasonic medical diagnostic system
US4503861A (en) * 1983-04-11 1985-03-12 Biomedics, Inc. Fetal heartbeat doppler transducer
US4490640A (en) * 1983-09-22 1984-12-25 Keisuke Honda Multi-frequency ultrasonic transducer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Acoustical measurements" by Leo L. Beranek, D. Sc. Publ. par American Institute of Physics pour Acoustical Society of America, 1988 *

Also Published As

Publication number Publication date
FR2612722B1 (fr) 1989-05-26
JPS63255044A (ja) 1988-10-21
EP0285482A1 (fr) 1988-10-05
FR2612722A1 (fr) 1988-09-23
US4870972A (en) 1989-10-03
DE3868337D1 (de) 1992-03-26
NO881125D0 (no) 1988-03-14
NO881125L (no) 1988-09-20
ATE72609T1 (de) 1992-02-15

Similar Documents

Publication Publication Date Title
EP0285482B1 (fr) Transducteur acoustique multifréquences, notamment pour imagerie médicale
EP0142178B2 (fr) Transducteur ultrasonore
KR860000380B1 (ko) 초음파 진단장치
US20020027400A1 (en) Ultrasonic transducer having impedance matching layer
EP0219919A1 (fr) Appareil d'exploration de milieux par échographie ultrasonore comprenant un réseau d'éléments transducteurs piézoélectriques
EP0190805A1 (fr) Appareil d'exploration de milieux par échographie ultrasonore
JP2006334074A (ja) 超音波探触子、及び超音波診断装置
EP0225900B1 (fr) Sonde d'echographie et echographe muni d'une telle sonde
FR2466164A1 (fr) Transducteur ultrasonore a sensibilite variable et dispositif d'emission-reception ultrasonore equipe de ce transducteur
US6640636B1 (en) Ultrasound radiating and receiving device
JP5226205B2 (ja) 超音波探触子および超音波撮像装置
US4821004A (en) Method for the elimination of spurious echos in electro-acoustic delay lines using bulk waves and delay line applying this method
EP0424240B1 (fr) Transducteur d'ondes de surface unidirectionnel
FR2661992A1 (fr) Deflecteur acousto-optique.
JPH0349389B2 (fr)
US4146852A (en) Phase weighted acoustic reflective array compressor
FR2546703A1 (fr) Nouvelle structure de transducteur ultrasonore
FR2546306A1 (fr) Appareil d'examen echographique de milieux aux ultrasons equipe d'un nouveau type de dispositif de transduction ultrasonore
JPH02271845A (ja) 超音波診断装置
JP2804561B2 (ja) 超音波探触子
JP3341824B2 (ja) 電子走査式超音波探傷装置
FR2503517A1 (fr) Transducteur piezo-electrique
JP2003230194A (ja) 超音波探触子
EP3670004A1 (fr) Transducteur ultrasonore à membrane vibrante à effet capacitif à large bande passante
JPH03131242A (ja) 超音波探触子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890320

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19910222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920212

Ref country code: SE

Effective date: 19920212

Ref country code: GB

Effective date: 19920212

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920212

REF Corresponds to:

Ref document number: 72609

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920220

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3868337

Country of ref document: DE

Date of ref document: 19920326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920331

Ref country code: LI

Effective date: 19920331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 5

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331