EP0283518A1 - Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon - Google Patents

Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon Download PDF

Info

Publication number
EP0283518A1
EP0283518A1 EP86907018A EP86907018A EP0283518A1 EP 0283518 A1 EP0283518 A1 EP 0283518A1 EP 86907018 A EP86907018 A EP 86907018A EP 86907018 A EP86907018 A EP 86907018A EP 0283518 A1 EP0283518 A1 EP 0283518A1
Authority
EP
European Patent Office
Prior art keywords
melt
silicon
aluminum
temperature
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86907018A
Other languages
German (de)
French (fr)
Other versions
EP0283518B1 (en
EP0283518A4 (en
Inventor
Vadim Petrovich Ivchenkov
Nikolai Andreevich Kaluzhsky
Eduard Alexeevich Isidorov
Viktor Georgievich Sirotenko
Viktor Semenovich Shusterov
Gennady Alexandrovich Pakhomov
Fedor Konstantinovich Teplyakov
Oleg Sergeevich Khromovskikh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I PROEKTNY INSTITUT ALJUMINIEVOI MAGNIEVOI I ELEKTRODNOI PROMYSHLENNOSTI
SPETSIALNOE KONSTRUKTORSKOE BJURO MAGNITNOI GIDRODINAMIKI INSTITUTA FIZIKI AKADEMII NAUK LATVIISKOI SSR
Original Assignee
VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I PROEKTNY INSTITUT ALJUMINIEVOI MAGNIEVOI I ELEKTRODNOI PROMYSHLENNOSTI
SPETSIALNOE KONSTRUKTORSKOE BJURO MAGNITNOI GIDRODINAMIKI INSTITUTA FIZIKI AKADEMII NAUK LATVIISKOI SSR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21617038&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0283518(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I PROEKTNY INSTITUT ALJUMINIEVOI MAGNIEVOI I ELEKTRODNOI PROMYSHLENNOSTI, SPETSIALNOE KONSTRUKTORSKOE BJURO MAGNITNOI GIDRODINAMIKI INSTITUTA FIZIKI AKADEMII NAUK LATVIISKOI SSR filed Critical VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I PROEKTNY INSTITUT ALJUMINIEVOI MAGNIEVOI I ELEKTRODNOI PROMYSHLENNOSTI
Publication of EP0283518A1 publication Critical patent/EP0283518A1/en
Publication of EP0283518A4 publication Critical patent/EP0283518A4/en
Application granted granted Critical
Publication of EP0283518B1 publication Critical patent/EP0283518B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium

Definitions

  • the invention relates to the field of non-ferrous metallurgy and the production of alloys and relates in particular to methods for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass%.
  • a method for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass% which consists in that crystalline silicon is placed on the hearth surface of a flame furnace, the deposited crystalline silicon having the shape of a cone which is molten Pour aluminum into the tub of the aforementioned flame furnace at a temperature of 780 to 820 ° C and periodically mix the resulting aluminum-silicon melt by hand;
  • a disadvantage of the known methods is that the process for producing the aluminum-silicon alloy runs at higher temperatures (780 to 820 ° C.) should lead, which leads to an increase in the hydrogen and aluminum oxide content of the finished alloy. This in turn reduces the quality of the alloy to be produced and increases irretrievable losses in feed material.
  • the temperature of the process control (temperature in the furnace trough) is reduced to 670 to 750 ° C., because this ensures better conditions for heat and mass transfer in the melt volume, which allows the hydrogen and aluminum oxide content of the melt reduce and thus improve the alloy quality and significantly reduce the irretrievable losses of feed material.
  • energy consumption is significantly reduced when the process is carried out under the lower temperature conditions.
  • the molten aluminum is poured into the trough of the flame furnace at a temperature of 780 to 820 ° C.
  • the casting temperature mentioned is due to the special features of the operation of a flame furnace and the conditions of the process in the manufacture of the alloy in the furnace.
  • the melt jet is directed onto the base of the cone of the applied crystalline silicon at a speed of 0.5 to 0.8 m / s in the axial direction of the jet.
  • the supply of the melt stream in the axial direction of the same at a speed of less than 0.5 m / s is unsuitable because the movement of the melt in the tub changes into the area of a calm laminar flow, as a result of which the effectiveness of the mixing is reduced (ie the effectiveness of the heat and material exchange in the melting volume of the furnace pan is reduced).
  • the supply of the melt jet in the axial direction of the same at a speed above 0.8 m / s is not economically justifiable because no further increase in the indicators of the effectiveness of the process control can be achieved.
  • the temperature of the melt in the furnace trough is lowered to 670 to 750 ° C. at the same time as the mixing of the melt begins, and the mixing of the melt is carried out at the temperature mentioned. It is not recommended to run the process at temperatures below 670 ° C because this increases the viscosity of the melt, which leads to a reduction in the mixing efficiency and consequently to an increase in the dissolution time of the silicon.
  • the process control at temperatures above 250 o C causes an undesirable increase in the melt solubility of the hydrogen and an increase in the loss of aluminum due to its oxidation.
  • the method according to the invention for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass% is carried out as follows.
  • the required amount of crystalline silicon is placed on the hearth surface of a flame furnace through a loading opening in the furnace ceiling, the added crystalline silicon having the shape of a cone.
  • the required amount of molten aluminum is then poured into the furnace pan at a temperature of 780 to 820 ° C.
  • the resulting aluminum-silicon melt is then mixed through a shaped jet of the same melt.
  • the melt stream can for example with the help of centrifugal pumps from the company "Carborundum” (USA), gas dynamic pumps, electromagnetic mixers (ADAndreev, VVGogin, GSMakarov “high-performance melting of aluminum alloys", published in 1980, publisher “Metallurgiya”, Moscow, pages 89 to 95) shaped melt jet is directed onto the base of the cone of the applied crystalline silicon, the speed of the melt jet in the axial direction thereof being in a range from 0.5 to 0.8 m / s
  • the furnace pan is reduced to 670 to 750 ° C., and the melt is mixed at this temperature.
  • the temperature can be reduced to the stated values by switching off the heat source or by inevitably removing the heat for its further use for other technological purposes Processes.
  • the maturity of the melt is determined by a quick analysis to determine the content of the main components and additives in the alloy, after which the finished alloy is poured into molds.
  • 2950 kg of crystalline silicon are placed on the stove surface of a flame furnace with a furnace content of 25000 kg of molten metal through a loading opening in the furnace roof, which takes on a strange shape on the stove surface.
  • 22050 g of molten aluminum are poured into the furnace pan at a temperature of 820 ° C.
  • the calculated silicon content of the laying is 11.7% by mass.
  • the resulting aluminum-silicon melt is mixed by a shaped jet of the same melt.
  • the beam is shaped using an electromagnetic mixer and the beam is directed onto the base of the cone of the applied crystalline silicon at a speed of 0.8 m / s in the axial direction thereof. Simultaneously with the beginning of the di
  • the melting temperature in the furnace trough is reduced to 700 ° C. by switching off the heat source, and the mixing of the melt is carried out at this temperature.
  • the ripeness of the alloy is determined by a rapid analysis to determine the content of the main components and additives in the alloy, after which the finished alloy with a silicon content of 11.4% by mass is poured into a casting mold.
  • the effectiveness of the method according to the invention was assessed on the basis of the results of an analysis of the alloy for determining the hydrogen and aluminum oxide content and of the slag composition. For comparison, the effectiveness of the known methods was assessed using the same indicators.
  • the hydrogen and alumina content of the alloy was determined using the methodology described in the book by M.B. Altmann, A.A. Lebedev, M.V. Chukhrov, "Melting and casting of light metal alloys", published in 1969, publisher “Metallurgiya”, Moscow, pages 663 to 674.
  • the analysis of the slag compositions was carried out according to known analysis methods.
  • Table 2 below gives indicators of the effectiveness of the method according to the invention and of the known methods, which were determined using the above-mentioned methodologies.
  • a comparative analysis of the information given in Table 2 shows that the use of the method according to the invention makes it possible to reduce the hydrogen content of the finished alloy on average by 22%, the aluminum oxide content in the form of disperse inclusions - on average by 50%, and the aluminum oxide content Form of larger inclusions and cast skins - to reduce on average by 70%.
  • the total slag content of aluminum and silicon is reduced by an average of 25%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Die Erfindung bezieht sich auf das Gebiet der Nichteisenmetallurgie und der Herstellung von Legierungen und betrifft insbesondere ein Verfahren zur Herstellung einer Aiuminium-Silizium-legierung mit einem Siliziumgehalt von 2 bis 22 Masse-%.The invention relates to the field of non-ferrous metallurgy and the production of alloys and relates in particular to a method for producing an aluminum-silicon alloy with a silicon content of 2 to 22% by mass.

Das Verfahren besteht darin, daß man kristallines Silizium auf die Herdfläche eines Flammofens aufgibt, wobei das aufgegebene kristalline Silizium die Form eines Kegels hat, das schmelzflüssige Aluminium in die Wanne des Ofens bei einer Temperatur von 780 bis 820 °C eingießt und die dabei entstehende Aluminium-Silizium-Schmelze mittels eines geformten Strahis derselben Schmelze durchmischt; der Schmelzestrahl wird auf die Grundfläche des Kegels des aufgegebenen Siliziums bei einer Geschwindigkeit von 0,5 bis 0,8 m/s in der Achsrichtung des Strahls geleitet; gleichzeitig mit dem Beginn der Durchmischung wird die Temperatur der Schmelze in der Ofenwanne auf 670 bis 750 °C vermindert und die Durchmischung der Schmelze bei der genannten Temperatur durchgeführt. Die Legierung kann in der Automobilindustrie, im Kraftwagen- und Traktorenbau sowie in der Produktion von Massenbedarfserzeugnissen eingesetzt werden.The process consists in placing crystalline silicon on the hearth surface of a flame furnace, the deposited crystalline silicon being in the form of a cone, which pours molten aluminum into the furnace pan at a temperature of 780 to 820 ° C. and the resulting aluminum -Mixing silicon melt by means of a shaped beam of the same melt; the melt jet is directed onto the base of the cone of the applied silicon at a speed of 0.5 to 0.8 m / s in the axial direction of the jet; Simultaneously with the beginning of the mixing, the temperature of the melt in the furnace trough is reduced to 670 to 750 ° C. and the mixing of the melt is carried out at the temperature mentioned. The alloy can be used in the automotive industry, in motor vehicle and tractor construction as well as in the production of mass-produced products.

Description

Gebiet der TechnikTechnical field

Die Erfindung bezieht sich auf das Gebiet der Nichteisenmetallurgie und der Herstellung von Legierungen und betrifft insbesondere Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse%.The invention relates to the field of non-ferrous metallurgy and the production of alloys and relates in particular to methods for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass%.

Zugrundeliegender Stand der TechnikUnderlying state of the art

Bekannt ist ein Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse%, welches darin besteht, daß man kristallines Silizium auf die Herdfläche eines Flammofens aufgibt, wobei das aufgegebene kristalline Silizium die Form eines Kegels hat, das schmelzflüssige Aluminium in die Wanne des genannten Flammofens bei einer Temperatur von 780 bis 820°C eingießt und die dabei entstehende Aluminium-Silizium--Schmelze periodisch von Hand durchmischt; (siehe I.A.Troitsky, W.A.Zheleznov "Aluminiummetallurgie", herausgegeben 1977, Verlag "Metallurgiya", Moskau, S.367; G.B.Stroganov, W.A.Ro- tenberg, G.B.Gershmann "Aluminium-Silizium-Legierungen", herausgegeben 1977, Verlag "Metallurgiya", Moskau, S. 208 bis 211, insbesondere S.210).A method for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass% is known, which consists in that crystalline silicon is placed on the hearth surface of a flame furnace, the deposited crystalline silicon having the shape of a cone which is molten Pour aluminum into the tub of the aforementioned flame furnace at a temperature of 780 to 820 ° C and periodically mix the resulting aluminum-silicon melt by hand; (see IATroitsky, WAZheleznov "aluminum metallurgy", published 1977, publisher "Metallurgiya", Moscow, p.367; GBStroganov, WARotenberg, GBGershmann "aluminum-silicon alloys", published 1977, publisher "Metallurgiya" , Moscow, pp. 208 to 211, in particular p. 210).

Außerdem ist ein Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse% bekannt, das ahnlich wie oben beschrieben durchgeführt wird, wobei aber die Durchmischung der entstehenden Aluminium-Silizium-Schmelze durch einen geformten Strahl derselben Schmelze verwirklicht wird, der über den geometrischen Mittelpunkt der Ofenwanne in den Oberteil des Kegels des aufgegebenen kristallinen Siliziums geleitet wird (SU-Urheberschein Nr. 629429, IPK2 F 27 B 17/00. Patentblatt "Entdeckungen, Erfindungen, Gebrauchsmuster, Warenzeichen", H.39, bekanntgemacht am 25.10.78).In addition, a method for producing an aluminum-silicon alloy with a silicon content of 2 to 22% by mass is known, which is carried out similarly as described above, but the mixing of the resulting aluminum-silicon melt is achieved by a shaped jet of the same melt , which is guided over the geometric center of the furnace trough into the upper part of the cone of the abandoned crystalline silicon (SU copyright certificate No. 629429, IPK 2 F 27 B 17/00. Patent sheet "Discoveries, inventions, utility models, trademarks", H.39 , published on 10/25/78).

Ein Nachteil der bekannten Verfahren besteht darin, daß der Prozeß zur Herstellung der Aluminium-Silizium-Legierung bei höheren Temperaturen (780 bis 820°C) durchgeführt werden soll, was zu einer Erhöhung des Wasserstoff-und Aluminiumoxidgehaltes der Fertiglegierung führt. Dadurch werden wiederum die Qualität der herzustellenden Legierung vermindert und unwiederbringliche Verluste an Aufgabegut vergrößert.A disadvantage of the known methods is that the process for producing the aluminum-silicon alloy runs at higher temperatures (780 to 820 ° C.) should lead, which leads to an increase in the hydrogen and aluminum oxide content of the finished alloy. This in turn reduces the quality of the alloy to be produced and increases irretrievable losses in feed material.

Die Verwendung der genannten Arbeitsgänge zum Durchmischen der Aluminium-Silizium-Schmelze bei der DurchfÜhrung der bekannten Verfahren führt zu einem Aufschwimmen des stückigen kristallinen Siliziums an die Oberfläche der Schmelze, und als Folge wird es oxydiert und geht mit der Schlacke verloren.The use of the above-mentioned operations for mixing the aluminum-silicon melt when carrying out the known processes leads to the floating of the lumpy crystalline silicon on the surface of the melt, and as a result it is oxidized and is lost with the slag.

Offenbarung der ErfindungDisclosure of the invention

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse% die Verhältnisse der Durchmischung der Schmelze und die Temperaturverhältnisse in der Ofenwanne derart zu ändern, das es dadurch möglich wird, eine Legierung mit einem niedrigeren Wasserstoff- und Aluminiumoxidgehalt zu erhalten und damit die Legierungsqualität zu verbessern, die unwiederbringlichen Verluste an Aufgabegut bedeutend zu vermindern sowie ein Aufschwimmen des stückigen kristallinen Siliziums an die Oberfläche der Schmelze und folglich dessen Oxydierung und Verschlackung zu verhindern.It is the object of the present invention to change the mixing conditions of the melt and the temperature conditions in the furnace pan in a method for producing an aluminum-silicon alloy with a silicon content of 2 to 22% by mass in such a way that to obtain an alloy with a lower hydrogen and aluminum oxide content and thus to improve the alloy quality, to significantly reduce the irretrievable losses of feed material and to prevent the lumpy crystalline silicon from floating onto the surface of the melt and consequently preventing its oxidation and slagging.

Diese Aufgabe wird dadurch gelöst, daß ein Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse% vorgeschlagen wird, das die Aufgabe des kristallinen Siliziums auf die Herdfläche eines Flammofens vorsieht, wobei das aufgegebene kristalline Silizium die Form eines Kegels hat, das Eingießen des schmelzflüssigen Aluminiums in die Wanne des genannten Flammofens bei einer Temperatur von 780 bis 820°C und die Durchmischung der entstehenden Aluminium-Silizium--Schmelze mittels eines geformten Strahls derselben Schmelze einschließt, bei dem erfindungsgemäß der Schmelzestrahl auf die Grundfläche des Kegels des aufgegebenen kristallinen Siliziums geleitet wird, wobei die Geschwindigkeit des Schmelzestrahls in der Ächsrichtung desselben in einem Bereich von 0,5 bis 0,8 m/s gehalten wird, gleichzeitig mit dem Beginn der Durchmischung die Temperatur der Schmelze in der Ofenwanne auf 670 bis 750° vermindert und die Durchmischung der Schmelze bei der genannten Temperatur durchgeführt wird.This object is achieved in that a method for producing an aluminum-silicon alloy with a silicon content of 2 to 22% by mass is proposed, which provides the task of crystalline silicon on the hearth surface of a flame furnace, the given crystalline silicon being in the form of a Kegels has, the pouring of the molten aluminum in the trough of the flame furnace at a temperature of 780 to 820 ° C and the mixing of the resulting aluminum-silicon melt by means of a shaped jet of the same melt, in which, according to the invention, the melt jet onto the base surface of the cone of the applied crystalline silicon is passed, the speed of the Melt jet in the axial direction of the same is kept in a range from 0.5 to 0.8 m / s, simultaneously with the beginning of the mixing, the temperature of the melt in the furnace trough is reduced to 670 to 750 ° and the mixing of the melt at the temperature mentioned is carried out.

Durch das Leiten des Schmelzstrahls auf die Grundfläche des Kegels aus dem aufgegebenen kristallinen Silizium mit der genannten Geschwindigkeit (von 0,5 bis 0,8 m/s in der Achsrichtung des Schmelzestrahls) werden Bedingungen für eine allmähliche Auflösung des Siliziums, angefangen von der Kegelgrundfläche geschaffen. Das trägt dazu bei, daß der Kegel allmählich sinkt und folglich ein Aufschwimmen des stückigen kristallinen Siliziums an die Oberfläche der Schmelze, dessen Oxidierung und Verschlackung verhindert werden.By guiding the melt jet onto the base of the cone made of the applied crystalline silicon at the stated speed (from 0.5 to 0.8 m / s in the axial direction of the melt jet), conditions for a gradual dissolution of the silicon, starting from the base of the cone, are created created. This contributes to the gradual sinking of the cone and consequently the lumpy crystalline silicon floating to the surface of the melt, its oxidation and slagging being prevented.

Durch Schaffung der genannten Durchmischungsverhältnisse wird die Temperatur der Prozeßführung (Temperatur in der Ofenwanne) auf 670 bis 750°C vermindert, weil dabei verbesserte Bedingungen für den Wärme- und Stoffaustausch im Schmelzevolumen gesichert werden, was es gestattet, den Wasserstoff- und Aluminiumoxidgehalt der Schmelze herabzusetzen und damit die Legierungsqualität zu verbessern sowie die unwiederbringlichen Verluste an Aufgabegut bedeutend zu reduzieren. Außerdem wird bei der Prozeßführung unter den niedrigeren Temperaturverhältnissen der Energieaufwand bedeutend gesenkt.By creating the above-mentioned mixing ratios, the temperature of the process control (temperature in the furnace trough) is reduced to 670 to 750 ° C., because this ensures better conditions for heat and mass transfer in the melt volume, which allows the hydrogen and aluminum oxide content of the melt reduce and thus improve the alloy quality and significantly reduce the irretrievable losses of feed material. In addition, energy consumption is significantly reduced when the process is carried out under the lower temperature conditions.

Gemäß der vorliegenden Erfindung wird das schmelzflüssige Aluminium in die Wanne des Flammofens bei einer Temperatur von 780 bis 820°C eingegossen. Die genannte Eingießtemperatur ist durch die Besonderheiten des Betriebes eines Flammofens und die Bedingungen der ProzeBführung bei der Herstellung der Legierung im Ofen bedingt.According to the present invention, the molten aluminum is poured into the trough of the flame furnace at a temperature of 780 to 820 ° C. The casting temperature mentioned is due to the special features of the operation of a flame furnace and the conditions of the process in the manufacture of the alloy in the furnace.

Wie bereits oben erwähnt, wird bei dem erfindungsgemäßen Verfahren der Schmelzestrahl auf die Grundfläche des Kegels des aufgegebenen kristallinen Siliziums mit einer Geschwindigkeit von 0,5 bis 0,8 m/s in der Achsrichtung des Strahls geleitet. Die Zuführung des Schmelzestrahls in der Achsrichtung desselben mit einer Geschwindigkeit unter 0,5 m/s ist unzweckmäßig, weil dabei die Bewegung der Schmelze in der Wanne in den Bereich einer ruhigen Laminarströmung übergeht, wodurch die Wirksamkeit der Durchmischung vermindert wird (d.h. die Wirksamkeit des Warme-und Stoffaustausches im Schmelzvolumen der Ofenwanne wird vermindert). Die Zuführung des Schmelzestrahls in der Achsrichtung desselben mit einer Geschwindigkeit über 0,8 m/s ist ökonomisch nicht vertretbar, weil dabei keine weitere Erhöhung der Kennziffern der Wirksamkeit der Prozeßführung erzielt werden kann.As already mentioned above, in the method according to the invention the melt jet is directed onto the base of the cone of the applied crystalline silicon at a speed of 0.5 to 0.8 m / s in the axial direction of the jet. The supply of the melt stream in the axial direction of the same at a speed of less than 0.5 m / s is unsuitable because the movement of the melt in the tub changes into the area of a calm laminar flow, as a result of which the effectiveness of the mixing is reduced (ie the effectiveness of the heat and material exchange in the melting volume of the furnace pan is reduced). The supply of the melt jet in the axial direction of the same at a speed above 0.8 m / s is not economically justifiable because no further increase in the indicators of the effectiveness of the process control can be achieved.

Bei dem erfindungsgemäßen Verfahren wird gleichzeitig mit dem Beginn der Durchmischung der Schmelze die Temperatur der Schmelze in der Ofenwanne auf 670 bis 750°C abgesenkt und die Durchmischung der Schmelze bei der genannten Temperatur durchgeführt. Es ist nicht empfehlenswert, den Prozeß bei Temperaturen von unter 670°C zu führen, weil dabei die Zähflüssigkeit der Schmelze zunimmt, was zu einer Senkung der Durchmischungswirksamkeit und folglich zu einer Verlängerung der Auflösungszeit des Siliziums führt. Die ProzeßfÜhrung bei Temperaturen über 250oC ruft eine unerwünschte Erhöhung der Schmelzlöslichkeit des Wasserstoffes und eine Vergrößerung der Verluste an Aluminium durch dessen Oxydierung hervor.In the process according to the invention, the temperature of the melt in the furnace trough is lowered to 670 to 750 ° C. at the same time as the mixing of the melt begins, and the mixing of the melt is carried out at the temperature mentioned. It is not recommended to run the process at temperatures below 670 ° C because this increases the viscosity of the melt, which leads to a reduction in the mixing efficiency and consequently to an increase in the dissolution time of the silicon. The process control at temperatures above 250 o C causes an undesirable increase in the melt solubility of the hydrogen and an increase in the loss of aluminum due to its oxidation.

Beste Ausführungsform der ErfindungBest embodiment of the invention

Das erfindungsgemäße Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse% wird wie folgt durchgeführt.The method according to the invention for producing an aluminum-silicon alloy with a silicon content of 2 to 22 mass% is carried out as follows.

Auf die Herdfläche eines Flammofens wird durch eine Beschickungsöffnung in der Ofendecke die erforderliche Menge an kristallinem Silizium aufgegeben, wobei das aufgegebene kristalline Silizium die Form eines Kegels hat. Dann wird in die Ofenwanne die erforderliche Menge an schmelzflüssigem Aluminium bei einer Temperatur von 780 bis 820°C eingegossen. Anschließend wird die entstehende Aluminium-Silizium-Schmelze durch einen geformten Strahl derselben Schmelze durchgemischt. Der Schmelzestrahl kann beispielsweise mit Hilfe von Zentrifugalpumpen der Firma "Carborundum" (USA), gasdynamischen Pumpen, Elektromagnetmischern (A.D.Andreev, V.V.Gogin, G.S.Makarov "Hochleistungserschmelzung von Aluminiumlegierungen", herausgegeben im Jahre 1980, Verlag "Metallurgiya", Moskau, Seiten 89 bis 95 geformt werden. Der geformte Schmelzestrahl wird auf die Grundfläche des Kegels des aufgegebenen kristallinen Siliziums geleitet, wobei die Geschwindigkeit des Schmelzestrahls in der Achsrichtung desselben in einem Bereich von 0,5 bis 0,8 m/s liegt. Gleichzeitig mit dem Beginn der Durchmischung wird die Temperatur in der Ofenwanne auf 670 bis 750°C vermindert, und die Durchmischung der Schmelze wird bei dieser Temperatur durchgeführt. Die Senkung der Temperatur auf die genannten Werte kann man erzielen, indem man die wärmequelle abschaltet oder eine zwangsläufige AbfÜhrung der Warme zu deren weiteren Wiederverwendung für andere technologische Prozesse vornimmt.The required amount of crystalline silicon is placed on the hearth surface of a flame furnace through a loading opening in the furnace ceiling, the added crystalline silicon having the shape of a cone. The required amount of molten aluminum is then poured into the furnace pan at a temperature of 780 to 820 ° C. The resulting aluminum-silicon melt is then mixed through a shaped jet of the same melt. The melt stream can for example with the help of centrifugal pumps from the company "Carborundum" (USA), gas dynamic pumps, electromagnetic mixers (ADAndreev, VVGogin, GSMakarov "high-performance melting of aluminum alloys", published in 1980, publisher "Metallurgiya", Moscow, pages 89 to 95) shaped melt jet is directed onto the base of the cone of the applied crystalline silicon, the speed of the melt jet in the axial direction thereof being in a range from 0.5 to 0.8 m / s The furnace pan is reduced to 670 to 750 ° C., and the melt is mixed at this temperature. The temperature can be reduced to the stated values by switching off the heat source or by inevitably removing the heat for its further use for other technological purposes Processes.

Die Reife der Schmelze wird durch eine Schnellanalyse zur Bestimmung des Gehaltes der Legierung an Hauptkomponenten und Beimengungen ermittelt, wonach die fertige Legierung in Kokillen vergossen wird.The maturity of the melt is determined by a quick analysis to determine the content of the main components and additives in the alloy, after which the finished alloy is poured into molds.

Zu einem besseren Verständnis der vorliegenden Erfindung werden nachstehend folgende konkrete Durchführungsbeispiele der Erfindung angeführt.For a better understanding of the present invention, the following concrete examples of implementation of the invention are given below.

Beispiel 1example 1

Auf die Herdfläche eines Flammofens mit einem Ofeninhalt von 25000 kg schmelzflüssiges Metall werden durch eine Beschickungsöffnung in der Ofendecke 2950 kg kristallines Silizium aufgegeben, das auf der Herdfläche eine komische Form annimmt. Dann werden in die Ofenwanne 22050 g schmelzflüssiges Aluminium bei einer Temperatur von 820°C eingegossen. Der berechnete Siliziumgehalt der Legiegung beträgt 11,7 Masse%. Dann wird die entstandene Aluminium--Silizium-Schmelze durch einen geformten Strahl derselben Schmelze durchgemischt. Man formt den Strahl mit Hilfe eines Elektromagnetmischers und leitet den Strahl auf die Grundfläche des Kegels des aufgegebenen kristallinen Siliziums mit einer Geschwindigkeit von0,8 m/s in der Achsrichtung desselben. Gleichzeitig mit dem Beginn der Durchmischung wird die Schmelztemperatur in der Ofenwanne auf 700°C durch das Abschalten der Wärmequelle vermindert, und die Durchmischung der Schmelze wird bei dieser Temperatur durchgeführt.2950 kg of crystalline silicon are placed on the stove surface of a flame furnace with a furnace content of 25000 kg of molten metal through a loading opening in the furnace roof, which takes on a strange shape on the stove surface. Then 22050 g of molten aluminum are poured into the furnace pan at a temperature of 820 ° C. The calculated silicon content of the laying is 11.7% by mass. Then the resulting aluminum-silicon melt is mixed by a shaped jet of the same melt. The beam is shaped using an electromagnetic mixer and the beam is directed onto the base of the cone of the applied crystalline silicon at a speed of 0.8 m / s in the axial direction thereof. Simultaneously with the beginning of the di The melting temperature in the furnace trough is reduced to 700 ° C. by switching off the heat source, and the mixing of the melt is carried out at this temperature.

Die Reife der Legierung wird durch eine Schnellanalyse zur Bestimmung des Gehaltes der Legierung an Hauptkomponenten und Beimengungen ermittelt, wonach die fertige Legierung mit einem Siliziumgehalt von 11,4 Masse% in eine Gießkokille vergossen wird.The ripeness of the alloy is determined by a rapid analysis to determine the content of the main components and additives in the alloy, after which the finished alloy with a silicon content of 11.4% by mass is poured into a casting mold.

Die folgenden Durchführungsbeispiele des erfindungsgemäßen Verfahrens in dem oben erwähnten Flammofen werden in der Tabelle 1 zusammengefaßt.

Figure imgb0001
Figure imgb0002
The following implementation examples of the process according to the invention in the above-mentioned flame furnace are summarized in Table 1.
Figure imgb0001
Figure imgb0002

Die Wirksamkeit des erfindungsgemäßen Verfahrens wurde nach den Ergebnissen einer Analyse der Legierung zur Bestimmung des Wasserstoff- und Aluminiumoxidgehaltes sowie der Schlackezusammensetzung bewertet. Zum Vergleich wurde nach denselben Kennziffern die Wirksamkeit der bekannten Verfahren bewertet.The effectiveness of the method according to the invention was assessed on the basis of the results of an analysis of the alloy for determining the hydrogen and aluminum oxide content and of the slag composition. For comparison, the effectiveness of the known methods was assessed using the same indicators.

Der Wasserstoff- und Aluminiumoxidgehalt der Legierung wurde nach der Methodik bestimmt, die im Buch von M.B. Altmann, A.A. Lebedev, M.V. Chukhrov, "Schmelzen und Gießen von Leichtmetallegierungen", herausgegeben 1969, Verlag "Metallurgiya", Moskau, Seiten 663 bis 674 beschrieben ist. Die Analyse der Schlackezusammensetzungen wurde nach bekannten Analysenmethoden durchgeführt.The hydrogen and alumina content of the alloy was determined using the methodology described in the book by M.B. Altmann, A.A. Lebedev, M.V. Chukhrov, "Melting and casting of light metal alloys", published in 1969, publisher "Metallurgiya", Moscow, pages 663 to 674. The analysis of the slag compositions was carried out according to known analysis methods.

Nachstehend sind in der Tabelle 2 Kennziffern der Wirksamkeit des erfindungsgemäßen und der bekannten Verfahren angeführt, die nach den obengenannten Methodiken ermittelt worden sind.

Figure imgb0003
Figure imgb0004
Table 2 below gives indicators of the effectiveness of the method according to the invention and of the known methods, which were determined using the above-mentioned methodologies.
Figure imgb0003
Figure imgb0004

Eine Vergleichsanalyse der in der Tabelle 2 angeführten Angaben zeigt, daß die Verwendung des erfindungsgemässen Verfahrens es gestattet, den Wasserstoffgehalt der fertigen Legierung im Durchschnitt um 22%, den Aluminiumoxidgehalt in Form von dispersen Einschlüssen - im Durchschnitt um 50%, den Gehalt an Aluminiumoxid in Form von größeren Einschlüssen und Gußhäuten - im Durchschnitt um 70% zu vermindern. Außerdem wird der Gesamtgehalt der Schlacken an Aluminium und Silizium im Durchschnitt um 25% reduziert.A comparative analysis of the information given in Table 2 shows that the use of the method according to the invention makes it possible to reduce the hydrogen content of the finished alloy on average by 22%, the aluminum oxide content in the form of disperse inclusions - on average by 50%, and the aluminum oxide content Form of larger inclusions and cast skins - to reduce on average by 70%. In addition, the total slag content of aluminum and silicon is reduced by an average of 25%.

Gewerbliche VerwertbarkeitCommercial usability

Die vorliegende Erfindung kann auf dem Gebiet der Metallurgie von Nichteisenmetallen und Legierungen zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse% angewendet werden. Diese Legierung kann zur Erzeugung von Formguß für die Belange der Automobilindustrie, des Kraftwagen- und Traktorenbaus sowie in der Produktion von Massenbedarfserzeugnissen eingesetzt werden.The present invention can be used in the field of metallurgy of non-ferrous metals and alloys for producing an aluminum-silicon alloy with a Si silicon content of 2 to 22 mass% can be used. This alloy can be used to produce castings for the needs of the automotive industry, motor vehicle and tractor construction as well as in the production of mass-produced products.

Claims (1)

Verfahren zur Herstellung einer Aluminium-Silizium-Legierung mit einem Siliziumgehalt von 2 bis 22 Masse%, das die Aufgabe des kristallinen Siliziums auf die Herdfläche eines Flammofens vorsieht, wobei das aufgegebene kristalline Silizium die Form eines Kegels hat, das Eingießen des schmelzflüssigen Aluminiums in die Wanne des genannten Flammofens bei einer Temperatur von 780 bis 820°C und die Durchmischung der entstehenden Aluminium-Silizium-Schmelze mittels eines geformten Strahls derselben Schmelze einschließt, dadurch gekennzeichnet, daß der Schmelzestrahl auf die Grundfläche des Kegels des aufgegebenen kristallinen Silizium geleitet wird, wobei die Geschwindigkeit des Schmelzestrahls in der Achsrichtung desselben in einem Bereich von 0,5 bis 0,8 m/s gehalten wird, gleichzeitig mit dem Beginn der Durchmischung die Temperatur der Schmelze in der Ofenwanne auf 670 bis 750°C vermindert und die Durchmischung der Schmelze bei der genannten Temperatur durchgeführt wird.Process for the production of an aluminum-silicon alloy with a silicon content of 2 to 22% by mass, which provides the task of the crystalline silicon on the hearth surface of a flame furnace, the charged crystalline silicon having the shape of a cone, the pouring of the molten aluminum into the Trough of said flame furnace at a temperature of 780 to 820 ° C and the mixing of the resulting aluminum-silicon melt by means of a shaped jet of the same melt, characterized in that the melt jet is directed onto the base of the cone of the applied crystalline silicon, wherein the speed of the melt jet in the axial direction of the same is kept in a range from 0.5 to 0.8 m / s, simultaneously with the beginning of the mixing, the temperature of the melt in the furnace trough is reduced to 670 to 750 ° C. and the mixing of the melt is carried out at the temperature mentioned.
EP86907018A 1986-09-29 1986-09-29 Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon Expired - Lifetime EP0283518B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1986/000095 WO1988002410A1 (en) 1986-09-29 1986-09-29 Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon

Publications (3)

Publication Number Publication Date
EP0283518A1 true EP0283518A1 (en) 1988-09-28
EP0283518A4 EP0283518A4 (en) 1989-01-19
EP0283518B1 EP0283518B1 (en) 1990-05-23

Family

ID=21617038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86907018A Expired - Lifetime EP0283518B1 (en) 1986-09-29 1986-09-29 Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon

Country Status (9)

Country Link
US (1) US4808375A (en)
EP (1) EP0283518B1 (en)
JP (1) JPH01501320A (en)
AU (1) AU597926B2 (en)
DE (1) DE3671473D1 (en)
IN (1) IN169435B (en)
NO (1) NO882212D0 (en)
RO (1) RO101828B1 (en)
WO (1) WO1988002410A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611891B2 (en) * 1989-10-16 1994-02-16 日本金属化学株式会社 Method of adding silicon to aluminum
US5366691A (en) * 1990-10-31 1994-11-22 Sumitomo Electric Industries, Ltd. Hyper-eutectic aluminum-silicon alloy powder and method of preparing the same
CN107214309A (en) * 2017-05-17 2017-09-29 东北大学秦皇岛分校 It is a kind of to improve the method for silumin structure property

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053303A (en) * 1976-12-06 1977-10-11 Aluminum Company Of America Method of carbothermically producing aluminum-silicon alloys
DE2727193A1 (en) * 1976-06-17 1977-12-22 Alcan Res & Dev METHOD AND APPARATUS FOR STIRRING MOLTEN METAL
SU629429A1 (en) * 1977-05-16 1978-10-25 Специальное конструкторское бюро магнитной гидродинамики института физики АН Латвийской ССР Mixer
DE2837510A1 (en) * 1977-08-30 1979-03-15 Dolschenkov Pulsed-gas stirring of molten metal esp. aluminium - by allowing withdrawn portion of bath to commence return under gravity before pulse is applied
US4235626A (en) * 1978-12-19 1980-11-25 Dolzhenkov Boris S Method and apparatus for stirring molten metal
GB2128635A (en) * 1982-10-22 1984-05-02 Skf Steel Eng Ab Manufacture of aluminium-silicon alloys
SU1180396A1 (en) * 1984-04-02 1985-09-23 Предприятие П/Я А-7504 Method of producing aluminium-silicon alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB404463A (en) * 1932-06-02 1934-01-18 Aluminium Ltd Improvements in or relating to aluminium silicon alloys and methods of manufacturingthe same
US4046558A (en) * 1976-11-22 1977-09-06 Aluminum Company Of America Method for the production of aluminum-silicon alloys
DE2735544A1 (en) * 1977-08-06 1979-02-15 Hansa Metallwerke Ag Control disc for shower mixing valve - has apertured mixing slide turning with control disc and sliding radially

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2727193A1 (en) * 1976-06-17 1977-12-22 Alcan Res & Dev METHOD AND APPARATUS FOR STIRRING MOLTEN METAL
US4053303A (en) * 1976-12-06 1977-10-11 Aluminum Company Of America Method of carbothermically producing aluminum-silicon alloys
SU629429A1 (en) * 1977-05-16 1978-10-25 Специальное конструкторское бюро магнитной гидродинамики института физики АН Латвийской ССР Mixer
DE2837510A1 (en) * 1977-08-30 1979-03-15 Dolschenkov Pulsed-gas stirring of molten metal esp. aluminium - by allowing withdrawn portion of bath to commence return under gravity before pulse is applied
US4235626A (en) * 1978-12-19 1980-11-25 Dolzhenkov Boris S Method and apparatus for stirring molten metal
GB2128635A (en) * 1982-10-22 1984-05-02 Skf Steel Eng Ab Manufacture of aluminium-silicon alloys
SU1180396A1 (en) * 1984-04-02 1985-09-23 Предприятие П/Я А-7504 Method of producing aluminium-silicon alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8802410A1 *

Also Published As

Publication number Publication date
EP0283518B1 (en) 1990-05-23
JPH01501320A (en) 1989-05-11
IN169435B (en) 1991-10-19
NO882212L (en) 1988-05-20
NO882212D0 (en) 1988-05-20
AU597926B2 (en) 1990-06-14
WO1988002410A1 (en) 1988-04-07
EP0283518A4 (en) 1989-01-19
RO101828B1 (en) 1992-07-15
DE3671473D1 (en) 1990-06-28
US4808375A (en) 1989-02-28
AU6726387A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
DE69700436T2 (en) THIXOTROPE ALUMINUM-SILICON COPPER ALLOY FOR SHAPING IN SEMI-SOLID CONDITION
CN106834795A (en) A kind of high resiliency, corrosion-resistant, wear-resisting Cu Ni Sn alloy preparation methods
CN105331856A (en) Microalloyed Al-Si alloy and preparation method of aluminium alloy rod adopting microalloyed Al-Si alloy
EP0554808B1 (en) Method to produce metal parts
DE60036646T2 (en) CASTING SYSTEMS AND METHOD WITH AUXILIARY COOLING OF THE LIQUID SURFACE OF THE CASTORS
DE69702045T2 (en) VACCINE for low-sulfur gray cast iron
DE2137996A1 (en) Method for introducing a solid metal into a molten metal
CN113621847B (en) Alterant, preparation method thereof and raw material composition for preparing alterant
EP0283518B1 (en) Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon
DE60123019T2 (en) IRON-BASED HIGH TEMPERATURE ALLOY
DE2339747B2 (en) PROCESS FOR PRODUCING A SOLID LIQUID ALLOY PHASE OUTSIDE THE CASTING FORM FOR CASTING PROCESSES
DE69806553T2 (en) Carbon steel or low alloy steel with improved machinability and process for producing this steel
CN1168840C (en) Multicomponent heat-resistant magnesium alloy for car and its founding process
DE60224578T2 (en) METHOD FOR PRODUCING A MAGNESIUM BASED ALLOY
EP0035055A1 (en) Use of a mixture of capital scrap, originating from aluminium cast alloys and aluminium wrought alloys in the manufacture of semi-finished rolled products and semi-finished rolled products produced from scrap
EP0283517B1 (en) Method of obtaining aluminosilicon alloy containing 2-22 per cent by weight of silicon
CN112662919A (en) Al-Si-Cu-Mg-Ni alloy material and preparation method thereof
AT403482B (en) METHOD AND DEVICE FOR PRODUCING LIQUID LIGHT ALLOY FROM A DISPERSE MIXTURE
LU83361A1 (en) METHOD FOR INCREASING YIELDS IN METALLOTHERMAL PROCESSES
DD260090A1 (en) METHOD FOR PRODUCING AN ALUMINUM SILICON ALLOY WITH A SILICON CONTENT OF 2 TO 22 MASS
DE69203926T2 (en) Thin sheets of iron-chromium coated with aluminum, with additions of rare earth metals or yttrium.
DE581079C (en) Process for the production of practically silicon- and aluminum-free iron by means of a silicothermal reaction
DE2300073A1 (en) PROCESS FOR PRODUCING ABRASIVE GRIT
DE2638082C2 (en) Process for processing tin-containing materials with an iron content of more than 3 wt.%
DE241351C (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

A4 Supplementary search report drawn up and despatched

Effective date: 19890119

17Q First examination report despatched

Effective date: 19890802

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3671473

Country of ref document: DE

Date of ref document: 19900628

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VEREINIGTE ALUMINIUM-WERKE AG, BERLIN UND BONN

Effective date: 19910225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920818

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920903

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930