EP0283012A2 - Kabeleinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem - Google Patents

Kabeleinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem Download PDF

Info

Publication number
EP0283012A2
EP0283012A2 EP88104258A EP88104258A EP0283012A2 EP 0283012 A2 EP0283012 A2 EP 0283012A2 EP 88104258 A EP88104258 A EP 88104258A EP 88104258 A EP88104258 A EP 88104258A EP 0283012 A2 EP0283012 A2 EP 0283012A2
Authority
EP
European Patent Office
Prior art keywords
conductors
power
multiplex transmission
pair
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88104258A
Other languages
English (en)
French (fr)
Other versions
EP0283012B1 (de
EP0283012A3 (en
Inventor
Yoshinobu C/O Osaka Works Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of EP0283012A2 publication Critical patent/EP0283012A2/de
Publication of EP0283012A3 publication Critical patent/EP0283012A3/en
Application granted granted Critical
Publication of EP0283012B1 publication Critical patent/EP0283012B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/003Power cables including electrical control or communication wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands
    • H01R4/2404Connections using contact members penetrating or cutting insulation or cable strands the contact members having teeth, prongs, pins or needles penetrating the insulation

Definitions

  • the present invention relates to a cable arrangement in which a pair of power conductors for transmitting power and a pair of signal conductors for transmitting various signals are integrally formed in one cable structure.
  • Fig. 1 shows an example of a multiplex transmission system.
  • 101 and 102 denote power transmission lines for supplying power to terminals 105 and 106.
  • 103 and 104 denote data transmission lines for transmitting data information to the terminals 105 and 106.
  • the respective terminals 105 and 106 are provided with actuators 107 and 108 such as an electric motor or display lamp which are activated by the data information in addition to various switches 109 and 110 for inputting the data information.
  • the power lines 101 and 102 and data transmission lines 103 and 104 are connected to the respective terminals 105 and 106 by means of one or more separate conventional connecting wires or twisted pair wires through external connectors 121 and 122 as shown in Fig. 2.
  • the connecting lines generally shown by an arrow mark A show the lines to be connected with a front stage terminal and the lines generally shown by an arrow mark B show the lines to be connected to a back stage terminal.
  • An essential object of the present invention is to provide a multiplex transmission cable arrangement which is capable of eliminating the problems as mentioned above.
  • Another object of the present invention is to provide a multiplex transmission cable arrangement which is easy to connect to one or more multiplex transmission terminals.
  • a further object of the present invention is to provide a multiple transmission cable arrangement which can prevent noise from power lines.
  • a cable arrangement comprising: a pair of power conductors which are electrically separated but closely opposed each other; a pair of signal conductors disposed at one side of said power conductors with the center of the respective signal conductors positioned corresponding to substantially a center between said pair of power conductors and to extend parallelly with the power conductors; and insulation layers for insulating said power conductors and signal conductors respectively.
  • the cable unit 10 comprises a pair of power supply conductors 1 and 2 of an elongated strip shape extending parallelly, being opposed each other.
  • the two conductors 1 and 2 are separated as close as possible with a possible distance for assuring a desired withstand voltage.
  • a pair of signal conductors 3 and 4 are disposed one side of the power conductors 1 and 2, at positions corresponding to the center between the two power supply supply conductors 1 and 2 and extending parallelly along the power supply conductors 1 and 2.
  • the respective distances between the signal conductor 3 and both of the power supply conductors 1 and 2 are made equal so as to prevent electrostatic induction from the power supply conductors 1 and 2.
  • the respective distances between the signal conductor 4 and both of the power supply conductors 1 and 2 are also equal.
  • the respective conductors 1 to 4 are covered with insulation material 11 (referred to as insulation layer hereinafter) as shown in Fig. 3. Although the conductors 1 to 4 are covered with insulation layer 11 over the whole length of the conductors, a multiplex transmission terminal can be connected to the respective conductors 1 to 4 anywhere desired on the multiplex cable unit as mentioned below. There are formed grooves 12 and 13 on the surface of the insulation layer 11 corresponding to interface portions between the power conductors 1 or 2 and the signal conductor 3 and between the two signal conductors 3 and 4.
  • a terminal case 30 of a multiplex transmission terminal is composed of a top case half 30a and bottom case half 30b made of resin material. Both of the case halves 30a and 30b are rotatably coupled by one or more hinges 19 so that both of the case halves 30a and 30b can be opened and closed around the hinge 19.
  • a lock mechanism 20 is provided at the right hand portion of the outside of the terminal case 30.
  • a printed circuit board 25 is accommodated in the top case half 30a and possible circuit arrangement including such as integrated circuit chip 23 or other necessary components for use in the multiplex transmission terminal is provided on the printed circuit board 25. Such circuit arrangement including the integrated circuit 23 and other components are respectively connected to the conductor patterns 24 formed on the printed circuit board 25 so as to provide a desired terminal circuit.
  • Three pressing connector pins 15, 17 and 18 are downwardly projected from the printed circuit board 25 toward a recess 26f and one pressing type connector pin 16 is upwardly projected from the bottom case half 30b toward the recess 26f.
  • the connector pin 15 is connected to the printed circuit patterns 24 and the connector pin 15 is also connected to other printed circuit pattern 24 through a flexible wire 27.
  • the connector pins 15 and 16 are so projected that when the top case half 30a and bottom case half 30b are closed, the respective connector ends of the connector pins 15 and 16 are opposed in the recesses 26 and the connector pin 15 is coupled to the power supply conductor 1 and the connector pin 16 is coupled to the power supply conductor 2.
  • the connector pins 17 and 18 are connected to the other printed circuit patterns.
  • the terminal 30 is mounted to the cable unit 10 in such a manner that the power conductor portion 10f is laid in the generally flat shaped recess 26f and signal conductor portions 10r are laid in the round recesses 26r. Then the terminal 30 is closed as shown in Fig. 4 and Fig. 6 with the top case half 30a and bottom case half 30b locked in a closed manner by locking member 20, the ends of the connector pins 15, 16, 17 and 18 penetrate the insulation layer 11 and the connector pins 15 and 16 contact to the power supply conductors 1 and 2 respectively and the connector pins 17 and 18 clamp and contact the signal conductors 3 and 4 by their fork shaped ends as shown in Fig. 6.
  • the respective projections 14 are fitted in the grooves 12 and 13. In other words, the grooves 12 and 13 can serve to position the connector pins 17 and 18 with respect to the conductors 3 and 4.
  • an advantage of the present invention is in that the multiplex transmission terminal 30 can be mounted at anywhere desired on the cable unit 10 without any works to the cable such as cable cutting and end treatment.
  • Another advantage of the present invention is in that since the power conductors are closely opposed, it is possible to decrease the power source impedance independent of length of the cable unit.
  • a still further advantage of the present invention is in that the cable unit has such structure that cross talk between the power conductors and signal conductors is small, whereby noise on the signal conductors caused by the power conductors can be effectively avoided.

Landscapes

  • Multi-Conductor Connections (AREA)
  • Connections By Means Of Piercing Elements, Nuts, Or Screws (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)
EP88104258A 1987-03-18 1988-03-17 Kabeleinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem Expired - Lifetime EP0283012B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62063559A JPH0721971B2 (ja) 1987-03-18 1987-03-18 多重伝送用ケ−ブル
JP63559/87 1987-03-18

Publications (3)

Publication Number Publication Date
EP0283012A2 true EP0283012A2 (de) 1988-09-21
EP0283012A3 EP0283012A3 (en) 1990-02-21
EP0283012B1 EP0283012B1 (de) 1994-06-15

Family

ID=13232698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88104258A Expired - Lifetime EP0283012B1 (de) 1987-03-18 1988-03-17 Kabeleinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem

Country Status (4)

Country Link
EP (1) EP0283012B1 (de)
JP (1) JPH0721971B2 (de)
CA (1) CA1295703C (de)
DE (1) DE3850155T2 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471630A1 (de) * 1990-08-16 1992-02-19 Bernard Greillier Elektrische Stromversorgungsanlage für Kraftfahrzeugbordvorrichtungen
EP0644056A2 (de) * 1993-09-20 1995-03-22 Seiko Epson Corporation Einrichtung für den Antrieb eines Schlittens
EP0663106A1 (de) * 1993-07-09 1995-07-19 Intermatic, Inc. Elektrischer kabelverbinder
DE19526806A1 (de) * 1995-07-13 1997-01-16 Siemens Ag Bordnetz mit Multiplexsteuerung für Kraftfahrzeuge
DE19526809A1 (de) * 1995-07-13 1997-01-16 Siemens Ag Bordnetz mit Multiplexsteuerung für Kraftfahrzeuge
EP0807999A1 (de) * 1996-05-17 1997-11-19 Siemens Aktiengesellschaft Energieverteilungssystem
EP0891008A1 (de) * 1997-07-09 1999-01-13 Siemens Aktiengesellschaft Energieverteilungssystem
WO2000060701A1 (en) * 1999-04-01 2000-10-12 Nor.Web Dpl Limited Coupling apparatus and method
EP1134841A2 (de) * 2000-03-13 2001-09-19 WIELAND ELECTRIC GmbH Anschlussvorrichtung
EP1174310A1 (de) * 2000-07-18 2002-01-23 Delphi Technologies, Inc. Elektrischer Strom-und Signalleiter
FR2938123A1 (fr) * 2008-10-30 2010-05-07 Ard Ind Dispositif de connexion electrique comprenant au moins un cable plat souple et deformable

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433210A (ja) * 1990-05-28 1992-02-04 Takenaka Komuten Co Ltd 建物内配線シート
JP3706972B2 (ja) * 2002-09-09 2005-10-19 ユニメックス株式会社 電源コードに着脱自在な導通コネクター

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218830A (en) * 1939-05-13 1940-10-22 Climax Radio & Television Co I Combined antenna and power cord
EP0066910A1 (de) * 1981-05-19 1982-12-15 Vittorio Baldoni Flaches elektrisches Kabel
EP0207649A2 (de) * 1985-06-27 1987-01-07 Cooper Industries, Inc. Massenanschliessbare flache Kabeleinheit mit leicht trennbarer Erdungsfläche
EP0208138A1 (de) * 1985-07-09 1987-01-14 W.L. Gore & Associates GmbH Bandkabel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218830A (en) * 1939-05-13 1940-10-22 Climax Radio & Television Co I Combined antenna and power cord
EP0066910A1 (de) * 1981-05-19 1982-12-15 Vittorio Baldoni Flaches elektrisches Kabel
EP0207649A2 (de) * 1985-06-27 1987-01-07 Cooper Industries, Inc. Massenanschliessbare flache Kabeleinheit mit leicht trennbarer Erdungsfläche
EP0208138A1 (de) * 1985-07-09 1987-01-14 W.L. Gore & Associates GmbH Bandkabel

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471630A1 (de) * 1990-08-16 1992-02-19 Bernard Greillier Elektrische Stromversorgungsanlage für Kraftfahrzeugbordvorrichtungen
FR2665868A1 (fr) * 1990-08-16 1992-02-21 Menguy Didier Equipement pour l'alimentation electrique d'organes disposes a bord d'un vehicule.
EP0663106A4 (de) * 1993-07-09 1998-05-27 Intermatic Inc Elektrischer kabelverbinder.
EP0663106A1 (de) * 1993-07-09 1995-07-19 Intermatic, Inc. Elektrischer kabelverbinder
EP0644056A3 (de) * 1993-09-20 1996-03-06 Seiko Epson Corp Einrichtung für den Antrieb eines Schlittens.
EP0644056A2 (de) * 1993-09-20 1995-03-22 Seiko Epson Corporation Einrichtung für den Antrieb eines Schlittens
DE19526806A1 (de) * 1995-07-13 1997-01-16 Siemens Ag Bordnetz mit Multiplexsteuerung für Kraftfahrzeuge
DE19526809A1 (de) * 1995-07-13 1997-01-16 Siemens Ag Bordnetz mit Multiplexsteuerung für Kraftfahrzeuge
EP0807999A1 (de) * 1996-05-17 1997-11-19 Siemens Aktiengesellschaft Energieverteilungssystem
EP0891008A1 (de) * 1997-07-09 1999-01-13 Siemens Aktiengesellschaft Energieverteilungssystem
DE19729411A1 (de) * 1997-07-09 1999-02-11 Siemens Ag Energieverteilungssystem
WO2000060701A1 (en) * 1999-04-01 2000-10-12 Nor.Web Dpl Limited Coupling apparatus and method
GB2363529A (en) * 1999-04-01 2001-12-19 Nor Web Dpl Ltd Coupling apparatus and method
EP1134841A2 (de) * 2000-03-13 2001-09-19 WIELAND ELECTRIC GmbH Anschlussvorrichtung
EP1134841A3 (de) * 2000-03-13 2002-11-20 WIELAND ELECTRIC GmbH Anschlussvorrichtung
EP1174310A1 (de) * 2000-07-18 2002-01-23 Delphi Technologies, Inc. Elektrischer Strom-und Signalleiter
FR2938123A1 (fr) * 2008-10-30 2010-05-07 Ard Ind Dispositif de connexion electrique comprenant au moins un cable plat souple et deformable

Also Published As

Publication number Publication date
EP0283012B1 (de) 1994-06-15
JPS63231804A (ja) 1988-09-27
DE3850155D1 (de) 1994-07-21
CA1295703C (en) 1992-02-11
DE3850155T2 (de) 1994-11-17
EP0283012A3 (en) 1990-02-21
JPH0721971B2 (ja) 1995-03-08

Similar Documents

Publication Publication Date Title
EP0901201B1 (de) Elektrischer Steckverbinder mit verschobener Signalkompensation
EP1435679B1 (de) Elektronischer Verbinder und Methode zur Herstellung einer elektronischen Verbindung
EP0283012B1 (de) Kabeleinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem
US7166803B2 (en) Parallel-transmission flat cable equipped with connector unit
US5431584A (en) Electrical connector with reduced crosstalk
US6270358B1 (en) Low-voltage male connector
EP0426348A1 (de) Kabelverbinder mit niedriger Induktanzbahn
EP0269232B1 (de) Übertragungskabelverbinder mit einer profilierten Hülse
EP0283013B1 (de) Verbindungseinrichtung zum Gebrauch in einem Multiplex-Übertragungssystem
US4725698A (en) Electric connector device
GB2273397A (en) Electrical connectors
JPH0828245B2 (ja) 電気コネクタ
US5735709A (en) Zero insertion force connector for flexible circuit boards
US6764348B2 (en) Modular jack
US5047895A (en) Flexible printed circuit board
JP2000505601A (ja) クロストーク減少のための非抵抗エネルギ結合
US11462851B2 (en) Machine case and cable connector assembly
EP0358404A2 (de) Verbinder
EP0855777B1 (de) Verschlusskappe für Verbinder mit integtriertem Anpassstück
CA1287893C (en) Multiple junction device
KR100293788B1 (ko) 조인트 커넥터
KR920002635Y1 (ko) 접속기 장치
JPH0454418U (de)
JPH11204964A (ja) 屈曲配線板
JPH08236217A (ja) モジュラプラグ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900326

17Q First examination report despatched

Effective date: 19920507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3850155

Country of ref document: DE

Date of ref document: 19940721

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030312

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030327

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050317