EP0280907B1 - Montage pour la suppression d'oscillations - Google Patents

Montage pour la suppression d'oscillations Download PDF

Info

Publication number
EP0280907B1
EP0280907B1 EP88101630A EP88101630A EP0280907B1 EP 0280907 B1 EP0280907 B1 EP 0280907B1 EP 88101630 A EP88101630 A EP 88101630A EP 88101630 A EP88101630 A EP 88101630A EP 0280907 B1 EP0280907 B1 EP 0280907B1
Authority
EP
European Patent Office
Prior art keywords
circuit
frequency
oscillation
arrangement according
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP88101630A
Other languages
German (de)
English (en)
Other versions
EP0280907A1 (fr
Inventor
Jürgen Dipl.-Ing. Wagner (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens AG
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6321173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0280907(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG, Siemens Audioligische Technik GmbH filed Critical Siemens AG
Priority to AT88101630T priority Critical patent/ATE68310T1/de
Publication of EP0280907A1 publication Critical patent/EP0280907A1/fr
Application granted granted Critical
Publication of EP0280907B1 publication Critical patent/EP0280907B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the present invention relates to a circuit arrangement according to the preamble of patent claim 1.
  • Circuits have recently been developed (for example from RIM-Elektronik, Kunststoff, or the circuits of US Pat. No. 4,232,192 and US Pat. No. 4,079,199) which recognize vibrations as such and then suppress them.
  • Such circuits tap the useful signal between the input converter and a power amplifier connected upstream of the output converter and amplify it by means of an additional amplifier.
  • the amplified signal is compared in a comparator stage with a threshold voltage and fed into a phase locked loop (so-called phase locked loop or PLL for short).
  • the PLL recognizes one Vibration, if it occurs, and provides a suppression signal to a notch filter upstream of the power amplifier that suppresses the frequency range of the vibration (or, in the case of U.S. Patent No. 4,079,199, the gain is reduced).
  • a PLL becomes unstable when the input signal disappears. It drifts. The result of the drift is a periodic acoustic interference signal.
  • the object of the present invention is to construct a vibration suppression circuit which, when a vibration occurs in the useful signal, suppresses this vibration and remains stable (does not begin to drift) when the input signal disappears.
  • the PLL in the circuit arrangement is replaced by an oscillation frequency search circuit which comprises a frequency detection device for the frequency found, which continues to emit a signal even when the oscillation disappears, which keeps the influencing circuit (e.g. notch filter) in a fixed state.
  • the influencing circuit e.g. notch filter
  • a preferred embodiment of the invention results from the dependent claim 2.
  • the circuit between the power amplifier and output converter switched on, which makes it possible to dispense with the additional amplifier used in the prior art.
  • the circuit arrangement can be made cheaper and, particularly in the case of hearing aids, more space-saving.
  • Fig. 1 shows a circuit arrangement according to the invention, which can be installed, for example, in a hearing aid. It comprises a microphone 1 as an acoustic input converter, which converts acoustic input signals into electrical signals S0, an acoustic output converter 2 (which is designed either as a loudspeaker or, particularly in the case of hearing aids, as a so-called receiver), a power amplifier 3 connected upstream of the output converter 2 and one Vibration suppression circuit 4 designed according to the invention.
  • a microphone 1 as an acoustic input converter, which converts acoustic input signals into electrical signals S0
  • an acoustic output converter 2 which is designed either as a loudspeaker or, particularly in the case of hearing aids, as a so-called receiver
  • a power amplifier 3 connected upstream of the output converter 2
  • Vibration suppression circuit 4 designed according to the invention.
  • the vibration suppression circuit 4 is designed as an electrical feedback circuit. It suppresses electrical signals which are generated due to acoustic feedback effects and which generally lead to undamped vibrations in the circuit.
  • the feedback effect is indicated in FIG. 1 with a dashed arrow line between acoustic output transducer 2 and microphone 1.
  • An acoustic useful signal SE together with an acoustic feedback signal SR is converted in the microphone 1 into an electrical signal S0.
  • the output signal S5 of the vibration suppression circuit 4 is subtracted from this signal S0 in a subtractor 5 from the signal S0.
  • the remaining signal S1 is amplified in a non-inverting power amplifier 3 to a signal S2.
  • the signal S2 is converted back into an acoustic signal SA in the output converter 2.
  • the signal S2 is fed to the vibration suppression circuit 4 as an input signal.
  • the function of the vibration suppression circuit 4 consists of a vibration detection circuit 6, a vibration frequency search circuit 7 and an influencing circuit 8.
  • the input signal S2 is passed to the vibration detection circuit 6. It is also fed to the influencing circuit 8.
  • the vibration detection circuit 6 it is checked whether the signal S2 contains a vibration based on acoustic feedback effects. If an oscillation is present, an oscillation detection signal S3 is emitted.
  • the signal S3 sets the oscillation frequency search circuit 7 into operation, a sequence of signals S4 being emitted by the oscillation frequency search circuit 7 until the oscillation detection signal S3 at the output of the oscillation detection circuit 6 disappears.
  • the Vibration detection signal S3 at the output of the oscillation frequency search circuit 7 signal S4 is held by the search circuit 7 until a new oscillation occurs.
  • the signals S4 control the influencing circuit 8, in the sense that frequency ranges which can be assigned to a detected oscillation are largely suppressed in the entire captured frequency spectrum of the signal S0 by means of a filter.
  • the output signal S5 of the influencing circuit 8 is the output signal of the vibration suppression circuit 4.
  • the vibration detection circuit 6 checks the input signal S2 for these properties. In a first stage, the amplitude of the input signal S2 is compared with a first threshold voltage UT1 by means of a first comparator 9. If the amplitude of S2 exceeds the threshold UT1, a square wave voltage S21 is generated.
  • the subsequent stage comprises an RC element with an ohmic resistor 10, diode 10 ⁇ and capacitor 11 and a second comparator 12.
  • the capacitor 11 is quickly charged by the signal S21 via the diode 10 'and discharged again via the resistor 10 with a predetermined time constant .
  • the time constant together with the threshold voltage UT2 of the second comparator 12 determines the minimum frequency to which the vibration detection circuit 6 responds. If a small time constant is selected, then the vibration detection circuit 6 essentially only responds to high-frequency signals. In the case of low-frequency signals, the capacitor 11 has sufficient time to discharge below the threshold voltage UT2 of the second comparator 12. These low-frequency signals are therefore not detected. This ensures that the vibration detection circuit 6 only responds to signals that derive from acoustic feedback effects, while portions of the useful signal (eg voice signal) that occur periodically at a lower frequency are not taken into account.
  • output signals S23 are released to a third stage 13 to 16.
  • the output signals S23 are square-wave voltages which have the same duration as the threshold value violations of the signals S22.
  • the signals S23 thus reflect how long a large, high-frequency input signal lasts.
  • the third stage comprises a diode 13, an RC element 14, 15 and a third comparator 16. With the signal S23, the capacitor 15 is charged via the resistor 14. Resistor 14 and capacitor 15 are dimensioned so that the charging time constant is large, e.g. 0.5 to 2 seconds. If the output voltage S23 drops only briefly, the capacitor 15 is immediately completely discharged via the diode 13.
  • the capacitor 15 charges to such an extent that the voltage exceeds the threshold UT3 of the subsequent third comparator 16.
  • the input signal S2 fulfills all vibration detection criteria and the signal S3 output by the comparator 16 is considered to be a vibration detection signal.
  • the oscillation frequency search circuit 7 is arranged between the oscillation detection circuit 6 and the influencing circuit 8 and controls the influencing circuit 8 in such a way that detected oscillations are suppressed.
  • a first device 17 of the search circuit 7 generates digital frequency-determining signals S33 and is controlled by the vibration detection signals S3.
  • the main component of the first device 17 is a counting device 18 which a counter 19, a counting direction switch 20 and a reset element 21, also called "power-on reset".
  • the first device 17 includes an oscillator 22 and an associated AND gate 23.
  • the counter 19 also serves as a holding device for the frequencies of the detected vibration, as will be explained in more detail below.
  • the reset element 21 ensures that the output signals S32 on all four output lines of the counter 19 are in the zero state (also referred to as the “low” state).
  • This 0000 value is digitally incremented by one each time a pulse S31 ("high” state) is registered at the input of the counter 19. After all four output lines have been switched to "high”, the original zero state is restored at the next pulse S31 and the step-up sequence is repeated.
  • a pulse S31 is only generated if a vibration detection pulse S3 is present at the AND gate 23 connected upstream of the counter 19. If this is the case, then the pulses S31 ⁇ generated by the oscillator 22 are forwarded as step-up pulses S31.
  • the oscillator 22 therefore determines the speed at which the counter 19 is advanced.
  • the counter 19 continues to switch the output pulses S32 until the vibration detection signal S3 disappears. (Signal S3 disappears when the oscillation has been suppressed by the influencing circuit 8.) When the signal S3 disappears, the counter 19 receives no further pulses S31 and remains in the set state until a new oscillation detection signal S3 occurs.
  • the counter 19 thus stores the set state and therefore, together with the AND gate 23, serves as a holding device for holding the frequency of the detected vibration at the influencing circuit 8. It is advantageous in this respect to design the oscillation frequency search circuit 7 as a holding device, since the vibration suppression circuit 4 does not drift can and a return of the suppressed vibration is avoided.
  • the first device 17 also includes at the output of the counter 19 a counting direction switch 20.
  • This has the effect that a sudden change from 111 to 000 is avoided in the digital frequency-determining output signals S33, by counting down every second sequence by inversion of the input signals S32 from 111 to 000 becomes.
  • This is advantageous in that the filter arranged in the influencing circuit 8 for suppressing the oscillation frequency when the counting direction is reversed does not jump from one end to the other end of the frequency spectrum, but instead moves back and forth in the frequency spectrum.
  • a second device 24 of the oscillation frequency search circuit 7 samples the frequency-determining signals S33 of the first device 17 (output of the counting direction switch 20) and controls the influencing circuit 8 via the signals S4.
  • a decoder 25 transmits the eight signal possibilities arriving via three lines to eight different lines. These eight signals S4 control the influencing circuit 8 in the sense that they determine which frequency range in the controllable frequency spectrum is filtered by the influencing circuit 8.
  • the decoder 25 controls the influencing circuit 8 by means of a discretely variable resistor 26.
  • the influencing circuit 8 also comprises further ohmic resistors 30, capacitors 31 and an amplifier 32, which are arranged in the form of a bandpass filter.
  • a bandpass filter is e.g. known from the book "Semiconductor Circuit Technology” by Tietze and Schenk (Springer-Verlag Berlin, Heidelberg, 7th edition (1985), pages 419-421). Since the bandpass filter is designed as a negative feedback of the power amplifier 3, the circuit 8 simulates a notch filter, which forms a suction circuit at the resonance frequency. The bandwidth and gain of the filter are independent of the discretely variable resistor 26. The resonance frequency can thus be varied by changing the resistance values in the resistor 26 without influencing the bandwidth or amplification.
  • the output resistor 33 determines the weight of the feedback S5 on the subtractor 5 (see FIG. 1).
  • FIG. 5 Another possibility of influencing vibrations (modification of FIG. 4) is shown in FIG. 5.
  • a CR high-pass filter is used in the influencing circuit 8 'instead of a band-pass filter.
  • this filter simulates a variable capacitor that enables smoothing of the acoustic reproduction curve and has a high-pass effect.
  • the above-described vibration detection circuit 6 and vibration frequency search circuit 7 can be used unchanged in this embodiment.
  • the circuit 8 ⁇ could be designed as a phase shifter, phase switch or gain reducer.
  • Figure 6 shows e.g. a variant of the oscillation detection circuit 6 and the oscillation frequency search circuit 7.
  • the third comparator stage 13 to 16 of the oscillation detection circuit 6 ' is replaced by a counter stage which comprises an inverter 36, a digital counter 37 and an AND gate 38.
  • the input signal is checked in the same way as in the exemplary embodiment corresponding to FIG. 2 according to the vibration characteristics "large amplitude" and "high frequencies". However, an output signal S23 is digitally processed to determine whether the large, high-frequency input signal is long-lasting.
  • Counter 37 has two signal inputs: an input for the square wave voltage S21 and a reset input which, together with the inverter 36, constantly resets the counter 37 to the zero state, except when a signal S23 occurs. As long as a signal S23 is present, the counter 37 counts the square-wave signals S21. After a certain number of signals S21 has occurred, the input signal is regarded as a recognized vibration. The counter 37 then generates step pulses S3 together with the AND gate 38. These advance pulses can be given directly to the counter 19 of the search circuit 7 '. This circuit variant therefore does not require an oscillator.

Claims (16)

  1. Montage pour la suppression d'oscillations basées sur des effets de rétroaction acoustique, en particulier dans le cas d'un appareil de correction auditive, comportant au moins un transducteur acoustique d'entrée (1) pour convertir le son en signaux électriques (S0), un transducteur acoustique de sortie (2) pour les signaux électriques ainsi que, branché entre le transducteur acoustique d'entrée (1) et le transducteur acoustique de sortie (2), un circuit de repérage des oscillations (6) à circuit associé de recherche de la fréquence des oscillations (7), et un circuit d'influence (8) commandé par le circuit de recherche de la fréquence des oscillations, pour la suppression d'une oscillation constatée dans le signal électrique, caractérisé par le fait que le circuit de recherche de la fréquence des oscillations (7,7') comporte un dispositif (19 ; 23) pour retenir la fréquence de l'oscillation reconnue au niveau du circuit d'influence (8,8') même lors de la disparition du signal d'oscillation à l'entrée du circuit de recherche de la fréquence des oscillations (7,7').
  2. Montage selon la revendication 1, comportant un amplificateur d'extrémité, caractérisé par le fait que le circuit de reconnaissance des oscillations (6) est monté entre l'amplificateur d'extrémité (3) et le transducteur de sortie (2).
  3. Montage selon la revendication 1 ou 2, caractérisé par le fait que le circuit de recherche de la fréquence des oscillations (7) comporte un premier dispositif (17) pour produire et pour commander une pluralité de signaux (S33) qui déterminent la fréquence pour une modification de la réponse en fréquence au niveau du circuit d' influence (8), ainsi qu'un second dispositif (24) pour échantillonner les signaux produits et qui déterminent la fréquence et pour l'attaque du circuit d'influence dans le sens de la modification de la réponse en fréquence, étant noté que le premier dispositif (17) est activé par le circuit de reconnaissance des oscillations (6), lors d'une oscillation qui a été reconnue, jusqu'à ce qu'aucune oscillation ne soit plus reconnue, et que le premier dispositif (17) comporte un moyen (19) qui, en tant que dispositif de retenue, retient le signal qui détermine la fréquence, et qui est produit à l'instant où le circuit de reconnaissance des oscillations (6), ne reconnaît plus aucune oscillation.
  4. Montage selon la revendication 3, caractérisé par le fait que la modification de la réponse en fréquence, qui est provoquée par les signaux (S33) du premier dispositif (17) et qui déterminent la fréquence, est donnée à l'avance par la fréquence d'un oscillateur (22).
  5. Montage selon la revendication 4, caractérisé par le fait que le premier dispositif (17) servant à produire et à commander la pluralité de signaux (S33) qui déterminent la fréquence et qui servent à retenir le signal correspondant qui détermine la fréquence, lors d'une oscillation qui a été reconnue, comporte un dispositif de comptage (18) qui, en fonction d'un signal de sortie (S3) du circuit de reconnaissance des oscillations (6), compte des signaux de sortie de l'oscillateur (22).
  6. Montage selon la revendication 5, caractérisé par le fait que le circuit de reconnaissance des oscillations (6) et l'oscillateur (22), sont reliés électriquement, côté sorties, à l'aide d'une porte ET (23), à l'entrée du dispositif de comptage (18).
  7. Montage selon l'une des revendications 3 à 6, caractérisé par le fait que le premier dispositif (17), qui sert à produire et à commander une pluralité de signaux qui déterminent la fréquence, passe périodiquement par ces signaux et permet de retenir des fréquences supérieures à 1 kHz au niveau du circuit d'influence (8).
  8. Montage selon l'une des revendications 3 à 7, caractérisé par le fait que le premier dispositif (17), qui sert à produire et à commander une pluralité de signaux qui déterminent la fréquence, produit et passe par huit signaux numériques différents, grâce à quoi est rendue possible la retenue de huit plages différentes de fréquences au niveau du circuit d'influence (8).
  9. Montage selon l'une des revendications 3 à 8, caractérisé par le fait que le second dispositif (24), qui sert à échantillonner les signaux produits et qui déterminent la fréquence et à attaquer le circuit d' influence (8), attaque une résistance (26) qui est susceptible d'être modifiée de façon discrète.
  10. Montage selon l'une des revendications 3 à 9, caractérisé par le fait que le second dispositif (24) qui sert à échantillonner les signaux produits et qui déterminent la fréquence, et à attaquer le circuit d'influence (8), comporte un décodeur (25) qui commande le circuit d'influence.
  11. Montage selon l'une des revendications 3 à 10, caractérisé par le fait que le premier dispositif (17), qui sert à produire et à commander une pluralité de signaux qui déterminent la fréquence, comporte un inverseur de direction (20) en vue d'empêcher un saut de fréquence d'une extrémité à l'autre de la plage des fréquences du circuit d'influence (8).
  12. Montage suivant la revendication 5 et 11, caractérisé par le fait que le commutateur directionnel (20) commande, dans le dispositif de comptage (18), un compteur (19) qui compte les signaux de sortie (S31) de l'oscillateur, dans le sens de l'inversion du sens de comptage lorsque les états limites de comptage sont atteints.
  13. Montage selon l'une des revendications 2 à 12, caractérisé par le fait que le circuit d'influence (8) est réalisé, en vue de la suppression d'une première oscillation qui a été reconnue, sous la forme d'un circuit de rétroaction de l'amplificateur d'extrémité (3).
  14. Montage selon la revendication 12, caractérisé par le fait que le circuit d'influence comporte un filtre passe-bande (26 à 32), en vue de la suppression de la fréquence d'oscillation qui a été reconnue.
  15. Montage selon la revendication 1, caractérisé par le fait que le circuit d'influence comporte un filtre passe-haut CR (26,34,35).
  16. Montage selon la revendication 3, caractérisé par le fait que la modification de la réponse en fréquence, qui est provoquée par les signaux (S33) du premier dispositif (17), qui déterminent la fréquence, est donnée par les signaux de sortie (S3) d'un générateur d'avancement des impulsions (37) du circuit de reconnaissance des oscillations (6).
EP88101630A 1987-02-17 1988-02-04 Montage pour la suppression d'oscillations Revoked EP0280907B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88101630T ATE68310T1 (de) 1987-02-17 1988-02-04 Schaltungsanordnung zum unterdruecken von schwingungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3704999 1987-02-17
DE3704999 1987-02-17

Publications (2)

Publication Number Publication Date
EP0280907A1 EP0280907A1 (fr) 1988-09-07
EP0280907B1 true EP0280907B1 (fr) 1991-10-09

Family

ID=6321173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88101630A Revoked EP0280907B1 (fr) 1987-02-17 1988-02-04 Montage pour la suppression d'oscillations

Country Status (5)

Country Link
US (1) US4815140A (fr)
EP (1) EP0280907B1 (fr)
AT (1) ATE68310T1 (fr)
DE (1) DE3865319D1 (fr)
DK (1) DK77888A (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985925A (en) * 1988-06-24 1991-01-15 Sensor Electronics, Inc. Active noise reduction system
US5091952A (en) * 1988-11-10 1992-02-25 Wisconsin Alumni Research Foundation Feedback suppression in digital signal processing hearing aids
US6563931B1 (en) 1992-07-29 2003-05-13 K/S Himpp Auditory prosthesis for adaptively filtering selected auditory component by user activation and method for doing same
DE4229912A1 (de) * 1992-09-08 1994-03-10 Sel Alcatel Ag Verfahren zum Verbessern der Übertragungseigenschaften einer elektroakustischen Anlage
US5412734A (en) * 1993-09-13 1995-05-02 Thomasson; Samuel L. Apparatus and method for reducing acoustic feedback
US6137888A (en) * 1997-06-02 2000-10-24 Nortel Networks Corporation EM interference canceller in an audio amplifier
AU2003236382B2 (en) * 2003-08-20 2011-02-24 Phonak Ag Feedback suppression in sound signal processing using frequency transposition
AU2004201374B2 (en) * 2004-04-01 2010-12-23 Phonak Ag Audio amplification apparatus
US7756276B2 (en) * 2003-08-20 2010-07-13 Phonak Ag Audio amplification apparatus
EP2053876B1 (fr) * 2007-10-18 2010-05-26 Siemens Medical Instruments Pte. Ltd. Dispositif auditif doté d'un raccordement commun pour le blindage et l'identification d'un récepteur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091236A (en) * 1976-09-07 1978-05-23 The University Of Akron Automatically tunable notch filter and method for suppression of acoustical feedback
NL7612358A (nl) * 1976-11-08 1978-05-10 Philips Nv Versterkerinrichting voor akoestische signalen voorzien van middelen voor het onderdrukken van ongewenste stoorsignalen.
US4079199A (en) * 1977-05-25 1978-03-14 Patronis Jr Eugene T Acoustic feedback detector and automatic gain control
US4232192A (en) * 1978-05-01 1980-11-04 Starkey Labs, Inc. Moving-average notch filter

Also Published As

Publication number Publication date
DK77888A (da) 1988-08-18
DE3865319D1 (de) 1991-11-14
DK77888D0 (da) 1988-02-16
EP0280907A1 (fr) 1988-09-07
ATE68310T1 (de) 1991-10-15
US4815140A (en) 1989-03-21

Similar Documents

Publication Publication Date Title
EP0280909B1 (fr) Montage pour la détection d'oscillations
DE69933627T2 (de) Vorrichtung und Verfahren zur Anpassung des Phasen- und Amplitudenfrequenzgangs eines Mikrofons
DE2713023C2 (fr)
DE4318529C2 (de) Adaptiver Rauschunterdrücker
DE69814142T2 (de) Vorrichtung und verfahren zur rückkopplungsunterdrückung
DE60030736T2 (de) Rückkopplungsunterdrückung unter verwendung von bandbreite-detektion
DE3734946C2 (fr)
DE2658301C2 (de) Hörgerät
DE69721628T2 (de) Schaltung, Vorrichtung und Verfahren zur Verminderung des Rauschens
DE2747821C2 (de) Verstärkeranordnung für akustische Signale mit Mitteln zum Unterdrücken unerwünschter Störsignale
DE3904505C2 (de) Rausch-Unterdrückungssystem für MW-Radioempfänger
EP0280907B1 (fr) Montage pour la suppression d'oscillations
DE3512999A1 (de) Differentialhoerhilfe mit programmierbarem frequenzgang
DE2355700C3 (de) Frequenzumschaltbarer Tonfrequenzdetektor
DE10129850B4 (de) Verstärkereinrichtung mit frequenzgangkompensierender Verstärkerreaktanz sowie Verwendung der Verstärkereinrichtung
DE4132957A1 (de) Stummschaltung
DE10244184B3 (de) Feedbackkompensation für Hörgeräte mit Systemabstandsschätzung
DE4001747C2 (de) Digitales Audiofrequenz-Signalverarbeitungssystem
EP1052881B1 (fr) Prothèse acoustique avec détecteur d'oscillations et méthode de détection d'oscillations dans une prothèse acoustique
EP0586831B1 (fr) Procédé d'absorption du son pour véhicules automobiles
DE3227087C2 (de) Bandfilterverstärkerschaltung
DE3927765C2 (fr)
DE3606973A1 (de) Schaltungsanordnung fuer ein freisprechtelefon
DE2758476C2 (fr)
AT403978B (de) Einkanal-schaltung für ein hörgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880923

17Q First examination report despatched

Effective date: 19900808

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 68310

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3865319

Country of ref document: DE

Date of ref document: 19911114

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: PHILIPS ELECTRONICS N.V.

Effective date: 19920629

NLR1 Nl: opposition has been filed with the epo

Opponent name: PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930127

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH TE ERLANGEN, BO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940204

Ref country code: AT

Effective date: 19940204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940228

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990514

Year of fee payment: 12

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20000423

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO