EP0269934A1 - Leitfähiger Fussbodenbelag - Google Patents

Leitfähiger Fussbodenbelag Download PDF

Info

Publication number
EP0269934A1
EP0269934A1 EP87116835A EP87116835A EP0269934A1 EP 0269934 A1 EP0269934 A1 EP 0269934A1 EP 87116835 A EP87116835 A EP 87116835A EP 87116835 A EP87116835 A EP 87116835A EP 0269934 A1 EP0269934 A1 EP 0269934A1
Authority
EP
European Patent Office
Prior art keywords
fibers
layer
conductive
metal
covering according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87116835A
Other languages
English (en)
French (fr)
Other versions
EP0269934B1 (de
Inventor
Joachim Zeh
Hans-Georg Fürdens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemotechnik Abstatt GmbH
Original Assignee
Chemotechnik Abstatt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemotechnik Abstatt GmbH filed Critical Chemotechnik Abstatt GmbH
Priority to AT87116835T priority Critical patent/ATE68022T1/de
Publication of EP0269934A1 publication Critical patent/EP0269934A1/de
Application granted granted Critical
Publication of EP0269934B1 publication Critical patent/EP0269934B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0005Floor covering on textile basis comprising a fibrous substrate being coated with at least one layer of a polymer on the top surface
    • D06N7/0039Floor covering on textile basis comprising a fibrous substrate being coated with at least one layer of a polymer on the top surface characterised by the physical or chemical aspects of the layers
    • D06N7/0042Conductive or insulating layers; Antistatic layers; Flame-proof layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/02Carrying-off electrostatic charges by means of earthing connections
    • H05F3/025Floors or floor coverings specially adapted for discharging static charges

Definitions

  • the invention relates to a conductive floor covering made of synthetic resin.
  • Known conductive floor coverings contain carbon black or graphite or carbon fibers (carbon fibers), which, however, leads to restrictions with regard to the choice of color, or metal powder, metal granules or metal grit, for example made of aluminum, copper or another metal. From DE-B2 17 90 224 it has become known, for example, to add aluminum "spangles", that is to say extremely thin, roughly scale-like film particles. To make conductive coatings achieve, however, the last-mentioned components must be added to the coating material made of synthetic resin or the like in such large quantities that their processability and the mechanical and occasionally also chemical properties of the finished covering are adversely affected.
  • the invention is therefore based on the object of developing a coating material based on synthetic resin (epoxy resin or the like) in which the required conductivity values can be achieved with relatively small amounts of additives and in a highly reproducible manner.
  • the conductive floor layer contains metal fibers, the length of which is large compared to its thickness (diameter), for example its length is 100 times greater than its thickness. Their thickness can be less than 0.05 mm.
  • the cross section of the fibers can be approximately round or angular or also strip-shaped, the strips being much thinner than in the case of a round cross section, the electrical resistance of these strips then being of the order of magnitude of a fiber with a round cross section of the same length and weight.
  • the special one The advantage of the invention is that the amount of these metal fibers (metal wool) required to achieve a certain conductivity for electrostatic charges is so small that it does not impair the mechanical and chemical properties of the synthetic resin used.
  • the essence of the invention is that under the influence of the electrostatic charge present on the layer surface at the ends of the fibers, the thickness of which is small compared to their length, high field strengths are formed which, according to the known physical phenomenon, promote the escape of electrons from a tip and thus significantly increase the conductivity of the layer compared to a layer having a spherical metal body.
  • the fiber length can be smaller and / or larger than the thickness of the layer. If it is greater than the coating thickness, conductive bridges are formed within the layer between the upper and the lower surface of the layer, which, however, because of the small diameter of the fibers and because of the statistically small number of bridges, only have the relatively low conductivity that those for dissipative Resin floors is desired.
  • the conductivity of such electrostatic charges preventing layers according to the invention from about 10 ⁇ 4 to 10 ⁇ 6 Ohm ⁇ 1, which are common for such floors, are already achieved with relatively small additions of these metal fibers, which are about 1 / 10th to 1 / 100th Amount of weight required to achieve these conductivity values when adding spherical particles.
  • derar term fibers of metal is advantageous because metal fibers of this small thickness can be produced relatively easily, are commercially available and are much more stable than carbon fibers and thus practically do not change their length during incorporation and processing, and because the specific resistance of a particular metal or a metal alloy is a material property that is essentially independent of the manufacture.
  • the fibers can either be added to the coating composition at the same time as it is made, or the fibers can be subsequently incorporated into the already mixed coating compositions.
  • the mechanical and electrical properties of the conductive layer can be reproduced both by the amount of metal fibers added, for example up to 5% by weight of the layer material, but preferably up to 1% by weight of the synthetic resin used for coating, and by a suitable choice of the length of the fibers vary.
  • the metal fibers consist of such a metallic, for example, elastic material, for example of steel or of bronze or the like, that the fibers are not broken, but rather their length, when the layer is processed and the fiber material is mixed into the synthetic resin mixture and also, within certain limits, keep their shape so that the elec tric and mechanical properties of the conductive layer are reproducible, which are attributed to a certain fiber length.
  • the fiber material is made of stainless steel. This has the advantage that the fibers do not chemically react with the synthetic resin or with a moisture film that forms on the surface of the conductive layer.
  • the fibers of a layer have different lengths. In other embodiments of the invention, all of the fibers of the layer are of substantially the same length. In this case, the mechanical and electrical values of the conductive layer can be set particularly well.
  • the thickness of the fibers is up to 0.05 mm, preferably 0.01 mm and their length is between 1 mm and 1 cm, preferably 0.5 cm.
  • Fibers made of a chemically inactive material for example stainless steel or the like, have the additional advantage that the resistance value of the layer remains constant even over a long period of time because the fibers do not corrode and do not react chemically with their surroundings.
  • electrostatically conductive floor coatings based on epoxy, polyurethane, acrylate or unsaturated polyester resins are laid in the form of a multi-layer structure shown in the drawing as an example:
  • Solvent-free or low-solvent primer 1 in order to largely eliminate influences on the conductivity due to fluctuations in the moisture content of the substrate (concrete ceiling, floor, screed, etc.).
  • Horizontal conductive base layer 2 usually made electrically conductive using special carbon blacks and / or graphite.
  • This layer can be solvent-free or containing.
  • suitable devices e.g. the earth connection is made by embedding or gluing copper strips.
  • Top or wear layer 3 which is applied depending on the additive used up to layer thicknesses of several millimeters. It is primarily vertically conductive, but may also have a horizontal electrical conductivity.
  • composition of conductive layers are given below:
  • Resin component A highly pigmented, solvent-free epoxy resin based on bisphenol A and / or F.
  • Hardener Comp. B Polyamine or polyaminoamide preparation emulsified in water, mixed with fillers and quartz aggregates, with 0.5% by weight steel fiber with a length of 6 mm Mixing ratio: Comp. A to B 1: 2 parts by weight Layer thickness to be applied: 0.5 - 2 mm Earth conductor resistance according to DIN 51953: approx. 105 ohms
  • Resin component A see example 1 Hardener Comp.
  • B Polyamine or polyaminoamide preparation emulsified in water, mixed with fillers and quartz aggregates, with 1% by weight steel fiber with a length of 1 mm Mixing ratio: compo.
  • Resin comp. A Low pigmented, solvent free epoxy resin based on bisphenol A and / or F, modified with a viscosity of approx.1,000m Pa-s / 20 ° C with 1% by weight steel fiber with a length of 1 mm.
  • Hardener Comp. B Modified cycloaliphatic polyamine adduct Mixing ratio: Comp. A to B 2: 1 parts by weight Layer thickness to be applied: 0.5 - 1.5 mm, on a sufficiently horizontally conductive base layer (eg base layer according to Example 1). Earth conductor resistance according to DIN 51 953: approx. 106 ohms
  • the amounts of the metal fibers added can be up to 5% by weight of the amount of resin in embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Floor Finish (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

Ein leitfähiger Fußbodenbelag ist dadurch gekennzeichnet, daß er eine Metallfasern enthaltende Kunstharzschicht aufweist, wobei die Metallfasern bis zu 0,05 mm dick sind und ihre Länge groß gegen den Faserdurchmesser ist. Dadurch kann eine geforderte Leitfähigkeit mit geringen Mengen an Zusatzstoffen gut reproduzierbar erreicht werden.

Description

  • Die Erfindung bezieht sich auf einen leitfähigen Fußboden­belag aus Kunstharz.
  • Bekannte leitfähige Fußbodenbeläge enthalten Ruß oder Gra­phit oder Kohlefasern (Carbonfasern), was jedoch zu Ein­schränkungen hinsichtlich der Farbtonauswahl führt, oder Metallpulver, Metallgranulate oder Metallgriese z.B. aus Aluminium, Kupfer oder einem anderen Metall. Durch die DE-B2 17 90 224 ist es z.B. bekannt geworden, Aluminium- "flitter" beizumischen, also extrem dünne, etwa schuppen­förmige Folienteilchen. Um ableitfähige Beschichtungen zu erzielen, müssen jedoch gerade die zuletzt genannten Be­standteile in so großen Mengen dem Beschichtungsmaterial aus Kunstharz oder dgl. zugesetzt werden, daß dessen Verarbeit­barkeit und die mechanischen und gelegentlich auch chemischen Eigenschaften des fertigen Belages ungünstig beeinflußt werden. Bei Kohlefasern (Carbonfasern) schwankt der spezifische Widerstand des Werkstoffes infolge der bei ihrer Herstellung erfolgenden unvollständigen Verbrennung von Acryl-Verbindungen von Charge zu Charge sehr stark. Außerdem brechen diese Fasern infolge ihrer Sprödigkeit verhältnismäßig leicht, so daß die Leitfähigkeit der fertigen Schicht von der Dauer und Intensität des Rührens beim Einbringen der Kohlefasern in das Schichtmaterial und bei dessen Verarbeitung abhängt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Be­schichtungswerkstoff auf der Grundlage von Kunstharz (Epoxidharz oder dgl.) zu entwickeln, bei dem die erforder­lichen Leitfähigkeitswerte bereits mit verhältnismäßig geringen Mengen an Zusatzstoffen und in hohem Maße reprodu­zierbar erreicht werden.
  • Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die leitfähige Fußbodenschicht Metallfasern enthält, deren Länge groß gegen ihre Dicke (Durchmesser) ist, z.B. ihre Länge 100 mal größer als ihre Dicke ist. Ihre Dicke kann kleiner als 0,05 mm sein. Der Querschnitt der Fasern kann etwa rund oder eckig oder auch streifenförmig sein, wobei die Streifen wesentlich dünner sind als im Falle eines runden Querschnittes, der elektrische Widerstand dieser Streifen liegt dann in der Größenordnung einer Faser mit rundem Querschnitt gleicher Länge und Gewicht. Der besondere Vorteil der Erfindung liegt darin, daß die zum Erreichen einer bestimmten Ableitfähigkeit für elektrostatische Ladun­gen erforderliche Menge dieser Metallfasern (Metallwolle) so gering ist, daß sie die mechanischen und die chemischen Eigenschaften des verwendeten Kunstharzes nicht beeinträch­tigt.
  • Das Wesen der Erfindung liegt darin, daß unter Einfluß der an der Schichtoberfläche vorhandenen elektrostatischen Aufladung an den Enden der Fasern, deren Dicke klein gegen ihre Länge ist, sich hohe Feldstärken ausbilden, die nach dem bekannten physikalischen Phänomen den Austritt von Elektronen aus einer Spitze begünstigen und damit die Leit­fähigkeit der Schicht gegenüber einer kugelförmigen Metall­körper aufweisenden Schicht wesentlich erhöhen.
  • Bei Ausführungsformen der Erfindung kann die Faserlänge kleiner und/ oder größer sein als die Dicke der Schicht. Ist sie größer als die Beschichtungsdicke, so entstehen inner­halb der Schicht leitfähige Brücken zwischen der oberen und der unteren Fläche der Schicht, die jedoch wegen des gerin­gen Durchmessers der Fasern und wegen der statistisch gerin­gen Anzahl der Brücken nur die verhältnismäßig geringe Leitfähigkeit aufweisen, die für ableitfähige Kunstharzfuß­böden erwünscht ist. Die Leitfähigkeit derartiger elektro­statische Aufladungen verhindernder erfindungsgemäßen Schichten von ca. 10⁻⁴ bis 10⁻⁶ Ohm⁻¹, die für solche Böden üblich sind, werden bereits mit verhältnismäßig klei­nen Zusätzen von diesen Metallfasern erreicht, die etwa 1/10tel bis 1/100tel der Gewichtsmenge betragen, die zur Erreichung dieser Leitfähigkeitswerte bei Zusatz von sphäri­schen Partikeln erforderlich ist. Die Verwendung von derar­ tigen Fasern aus Metall ist deshalb vorteilhaft, weil Me­tallfasern dieser geringen Dicke verhältnismäßig einfach hergestellt werden können, im Handel erhältlich sind und wesentlich stabiler sind als Kohlefasern und damit beim Einarbeiten und Verarbeiten ihre Länge praktisch nicht verändern, und weil der spezifische Widerstand eines be­stimmten Metalls oder einer Metallegierung eine von der Herstellung im wesentlichen unabhängige Materialeigenschaft ist.
  • Die Fasern können entweder gleich bei der Herstellung der Beschichtungsmasse in diese beigemischt werden oder aber können die Fasern nachträglich in die schon fertig gemisch­ten Beschichtungsmassen eingearbeitet werden. Je größer die Länge der Fasern im Vergleich zu der Schichtdicke der ferti­gen leitfähigen Schicht ist, desto größer ist die Zahl der durch die Kunstharzschicht hindurch verlaufenden leitfähigen Brücken. Sowohl durch die Menge der zugesetzten Metallfa­sern, beispielsweise bis zu 5 Gewichts% des Schichtmate­rials, vorzugsweise jedoch bis zu 1 Gewichts% des zur Be­schichtung verwendeten Kunstharzes, als auch durch geeignete Wahl der Länge der Fasern lassen sich die mechanischen und elektrischen Eigenschaften der leitfähigen Schicht reprodu­zierbar variieren.
  • Bei Ausführungsformen der Erfindung bestehen die Metallfa­sern aus einem solchen metallischen z.B. elastischen Werk­stoff, beispielsweise aus Stahl oder auch aus Bronze oder dgl., daß bei der Verarbeitung der Schicht und bei dem Einmischen des Fasermaterials in die Kunstharzmischung die Fasern nicht zerbrochen werden, sondern ihre Länge und auch, in gewissen Grenzen, ihre Form behalten so daß die elek­ trischen und mechanischen Eigenschaften der leitfähigen Schicht reproduzierbar sind, die einer bestimmten Faserlänge zugeschrieben werden.
  • Bei Auführungsformen der Erfindung besteht der Werkstoff der Fasern aus Edelstahl. Dies hat den Vorteil, daß die Fasern weder mit dem Kunstharz noch mit einem auf der Oberfläche der leitfähigen Schicht sich ausbildenden Feuchtigkeitsfilm chemisch reagieren.
  • Bei Ausführungsformen der Erfindung weisen die Fasern einer Schicht unterschiedliche Länge auf. Bei anderen Ausführungs­formen der Erfindung weisen alle Fasern der Schicht im wesentlichen die gleiche Länge auf. In diesem Falle sind die mechanischen und elektrischen Werte der leitfähigen Schicht besonders gut einstellbar.
  • Bei Ausführungsformen der Erfindung beträgt die Dicke der Fasern bis zu 0,05 mm, vorzugsweise 0,01 mm und ihre Länge beträgt zwischen 1 mm und 1 cm, vorzugsweise 0,5 cm.
  • Fasern aus einem chemisch inaktiven Werstoff, beispielswei­se Edelstahl oder dgl., haben den zusätzlichen Vorteil, daß der Widerstandswert der Schicht auch über längere Zeit hinweg konstant bleibt, weil die Fasern nicht korrodieren und mit ihrer Umgebung nicht chemisch reagieren.
  • In der Regel werden elektrostatisch ableitfähige Fußbodenbe­schichtungen auf Basis von Epoxid-, Polyurethan-, Acrylat-, oder ungesättigten Polyesterharzen in Form eines mehrschich­tigen in der Zeichnung als Beispiel dargestellten Aufbaues verlegt:
  • 1. Schicht
  • Lösemittelfreie bzw. -arme Grundierung 1, um Einflüsse auf die Ableitfähigkeit durch Schwankungen des Feuchtegehalts des Substrates (Betondecke, - boden, Estrich usw.) weitge­hend zu eliminieren.
  • 2. Schicht
  • Horizontal ableitfähige Grundschicht 2; üblicherweise durch Spezial-Ruße und/oder Graphit elektrisch ableitfähig einge­stellt. Diese Schicht kann lösungsmittelfrei oder -haltig sein. Mit geeigneten Vorrichtungen, z.B. durch Einbetten oder Verkleben von Kupferbändern, wird der Erdanschluß hergestellt.
  • 3. Schicht
  • Deck- oder Nutzschicht 3, die je nach verwendetem Zusatz bis zu Schichtdicken von mehreren Millimetern aufgetragen wird. Sie ist vor allem vertikal ableitend, weist aber unter Umständen auch eine horizontale elektrische Ableitfähigkeit auf.
  • Im folgenden werden einige Beispiele der Zusammensetzung von leitfähigen Schichten angegeben:
  • 1. Beispiel
  • Für eine elektrosatische Ladungen horizontal ableitfähige Grundschicht in Form einer zweikomponenten Spachtelmasse zur Aufnahme von ebenfalls ableitfähigen Nutz- und Deckschichten gleicher Basis kann verwendet werden:
    Harz-Komponente A:hochpigmentiertes, lösemittelfreies Epoxidharz auf Basis von Bisphenol A und/oder F.
    Härter-Komp. B:in Wasser emulgierte, mit Füllstoffen und Quarzzuschlägen vermischte Polyamin- oder Polyaminoamid-Zubereitung mit 0,5 Gewichts% Stahlfaser mit 6 mm Länge
    Mischungsverhältnis: Komp. A zu B 1:2 Gew.Teile
    Aufzutragende Schichtdicke: 0,5 - 2 mm
    Erdableiterwiderstand nach DIN 51953 : ca 10⁵ Ohm
  • 2. Beispiel
  • Für eine elektrostatische Ladungen ableitfähige Nutz- und Deckschicht in Form einer zweikomponentigen Epoxidharz-­Spachtelmasse kann verwendet werden:
    Harz-Komponente A:siehe Beispiel 1
    Härter-Komp. B:in Wasser emulgierte, mit Füllstoffen und Quarzzuschlägen vermischte Polyamin- oder Polyaminoamid-Zubereitung mit 1 Gew.% Stahlfaser mit 1 mm Länge
    Mischungsverhältnis: Kompo. A zu B wie Beispiel 1
    Aufzutragende Schichtdicke: max. 0,5 mm
    Erdableiterwiderstand nach DIN 51953 : ca 10⁷ Ohm
  • 3. Beispiel
  • Für eine elektrostatische Ladungen ableitfähige Nutz- und Deckschicht in Form einer lösemittelfreien, selbstverlaufen­den zweikomponentigen Epoxidbeschichtung kann verwendet werden:
    Harz-Komp. A:niedrig pigmentiertes, lösemittelfreies Epoxidharz auf Basis Bisphenol A und/oder F, modifiziert mit einer Viskosität von ca. 1.000m Pa-s/20°C mit 1 Gew% Stahlfaser mit einer Länge von 1 mm.
    Härter-Komp. B:modifiziertes cycloaliphatisches Polyaminaddukt
    Mischungsverhältnis: Komp. A zu B 2:1 Gew. Teile
    Aufzutragende Schichtdicke: 0,5 - 1,5 mm, auf eine ausrei­chend horizontal ableitfähige Grundschicht (z.B. Grund­schicht gemäß Beispiel 1).
    Erdableiterwiderstand nach DIN 51 953 : ca 10⁶ Ohm
  • Die Mengen der beigemischten Metallfasern können bei Ausfüh­rungsformen der Erfindung bis zu 5 Gewichts% der Harzmenge betragen.

Claims (9)

1. Leitfähiger Fußbodenbelag mit einer Metallteilchen enthaltenden Kunstharzschicht, dadurch gekennzeichnet, daß die Metallteilchen als Metallfasern ausgebildet sind, deren Durchmesser bis zu 0,05 mm beträgt und deren Länge groß gegen den Durchmesser ist.
2. Belag nach Anspruch 1, dadurch gekennzeichnet, daß die Dicke der Fasern bis zu 0,01 mm beträgt.
3. Belag nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fasern länger sind als die Schicht dick ist.
4. Belag nach einem der Ansprüche 1 bis 3, dadurch ge­kennzeichnet, daß die Fasern zwischen 0,5 mm und 10 mm, vorzugsweise 1 mm lang sind.
5. Belag nach Anspruch 1, dadurch gekennzeichnet, daß die Metallfasern elastisch sind.
6. Belag nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fasern aus Edelstahl bestehen.
7. Belag nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fasern des Belages im wesent­lichen die gleiche Länge aufweisen.
8. Belag nach einem der Ansprüche 1 bis 6, dadurch ge­kennzeichnet, daß die Fasern unterschiedliche Länge aufweisen.
9. Belag nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schicht einen Anteil an Fasern enthält, der bis zu 5 Gew.%, vorzugsweise weniger als 1 Gew.% der Harz-und Härter Mischung enthält.
EP87116835A 1986-11-21 1987-11-14 Leitfähiger Fussbodenbelag Expired - Lifetime EP0269934B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87116835T ATE68022T1 (de) 1986-11-21 1987-11-14 Leitfaehiger fussbodenbelag.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863639816 DE3639816A1 (de) 1986-11-21 1986-11-21 Leitfaehiger fussbodenbelag
DE3639816 1986-11-21

Publications (2)

Publication Number Publication Date
EP0269934A1 true EP0269934A1 (de) 1988-06-08
EP0269934B1 EP0269934B1 (de) 1991-10-02

Family

ID=6314466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87116835A Expired - Lifetime EP0269934B1 (de) 1986-11-21 1987-11-14 Leitfähiger Fussbodenbelag

Country Status (4)

Country Link
EP (1) EP0269934B1 (de)
JP (1) JPS63145490A (de)
AT (1) ATE68022T1 (de)
DE (1) DE3639816A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812344A1 (de) * 1994-05-20 1997-12-17 LARKIN, William J. Vorrichtung zum beseitigen statischer ladung und verfahren dazu
WO2013120719A1 (en) * 2012-02-17 2013-08-22 Construction Research & Technology Gmbh Antistatic flooring composition
EP2755451A1 (de) * 2013-01-09 2014-07-16 Sika Technology AG Beschichtungssystem mit Schutz vor elektrostatischer Entladung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008810C2 (de) * 2000-02-25 2003-02-27 Murjahn Amphibolin Werke Ableitfähiges Bodenbeschichtungssystem
DE10232874B4 (de) * 2002-07-19 2010-01-28 Ghp Glunz Holzwerkstoffproduktions-Gmbh Platte und Verfahren zur Herstellung einer Platte
DE10259441B4 (de) * 2002-12-19 2011-03-17 Remmers Baustofftechnik Gmbh Bodenbeschichtungssystem, insbesondere für ESD-Anforderungen
DE10261515B4 (de) * 2002-12-23 2010-03-25 Remmers Baustofftechnik Gmbh Bodenbeschichtungssystem, insbesondere für ESD-Anforderungen
DE10300459A1 (de) * 2003-01-07 2004-07-22 Sgl Acotec Gmbh Elektrisch leitfähige Bodenbeschichtungen
DE10301770B4 (de) 2003-01-18 2006-03-16 Hornitex Werke Gebr. Künnemeyer GmbH & Co. KG Beschichtung für Platten und Verfahren zur Beschichtung einer Platte
CA2559869A1 (en) 2005-09-29 2007-03-29 Ineos Melamines Gmbh Modified aminoplast resin solutions
DE102007012651A1 (de) 2007-03-16 2008-09-18 Johns Manville Europe Gmbh Direkt-dekorierbare Verbundwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE102009023737A1 (de) 2009-06-03 2010-12-09 Johns Manville Europe Gmbh Digitales Bedrucken von Vliesstoffen und deren Verwendung in Verbundwerkstoffen
US20100310838A1 (en) 2009-06-03 2010-12-09 Michael Ketzer Printing of non-woven fabrics and their use in composite materials
EP2431173A1 (de) 2010-09-21 2012-03-21 FunderMax GmbH Feuerfestes Laminat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1172571A (fr) * 1956-01-18 1959-02-12 Armour Res Found Complexes métal-plastique et procédés de fabrication
DE2026727A1 (en) * 1970-06-01 1971-12-16 Gerro Holding Co Ltd, Vaduz Antistatic textile floor or wall coverings contg electrically - conductive particles in the impregnating or finishing compns

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1790224C3 (de) * 1965-05-12 1975-09-18 Kurt Gaiser Verfahren zum Erhöhen der elektrischen Leitfähigkeit von Kunststoff-Fußbodenbelägen und Vorrichtung zur Durchführung des Verfahrens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1172571A (fr) * 1956-01-18 1959-02-12 Armour Res Found Complexes métal-plastique et procédés de fabrication
DE2026727A1 (en) * 1970-06-01 1971-12-16 Gerro Holding Co Ltd, Vaduz Antistatic textile floor or wall coverings contg electrically - conductive particles in the impregnating or finishing compns

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812344A1 (de) * 1994-05-20 1997-12-17 LARKIN, William J. Vorrichtung zum beseitigen statischer ladung und verfahren dazu
EP0812344A4 (de) * 1994-05-20 1997-12-17
WO2013120719A1 (en) * 2012-02-17 2013-08-22 Construction Research & Technology Gmbh Antistatic flooring composition
EP2755451A1 (de) * 2013-01-09 2014-07-16 Sika Technology AG Beschichtungssystem mit Schutz vor elektrostatischer Entladung
WO2014108310A1 (de) * 2013-01-09 2014-07-17 Sika Technology Ag Beschichtungssystem mit schutz vor elektrostatischer entladung
US9420686B2 (en) 2013-01-09 2016-08-16 Sika Technology Ag Coating system with electrostatic discharge protection

Also Published As

Publication number Publication date
EP0269934B1 (de) 1991-10-02
DE3639816A1 (de) 1988-06-09
JPS63145490A (ja) 1988-06-17
DE3639816C2 (de) 1989-03-30
ATE68022T1 (de) 1991-10-15

Similar Documents

Publication Publication Date Title
EP0269934B1 (de) Leitfähiger Fussbodenbelag
DE69125281T2 (de) Elektrisch leitfähige polymerdickschicht mit verbesserten verschleisseigenschaften und erhöhter lebensdauer
EP2192229A2 (de) Ableitfähiges Overlay
DE102018009794A1 (de) Beschichtungszusammensetzung für Bodenbeläge
WO2014108310A1 (de) Beschichtungssystem mit schutz vor elektrostatischer entladung
DE60038049T2 (de) Antistatische pulverlack-zusammensetzung und ihre verwendung
DE9104181U1 (de) Festspannelement
DE2460482C3 (de) Verfahren zum Herstellen eines leitenden Überzugs
DE602004007293T2 (de) Elektrisch leitfähige bodenbeläge
DE60301463T2 (de) Halbleitendes Glasur-Produkt, Methode zur Herstellung des Glasurproduktes und damit überzogener Isolator
EP1365206A2 (de) Tarnnetz
DE10232874A1 (de) Platte und Verfahren zur Herstellung einer Platte
EP0776153B1 (de) Verfahren zur Abschirmung von Räumen gegen elektromagnetische Strahlung
DE2445737C3 (de) Elektrostatische Aufladungen ableitender Fußboden
DE3329264A1 (de) Mikrowellenabsorbierendes material
DE1790224A1 (de) Verfahren zur Erhoehung der elektrischen Leitfaehigkeit von Kunststoff-Fussbodenbelaegen
DE3420968A1 (de) Spritz-, giess-, streich- oder spachtelfaehige masse
AT221773B (de) Fußbodenbelag
EP0271794B1 (de) Werkstoff und Verfahren zum Verfugen von Kacheln
DE3030453C2 (de)
DE2612154C2 (de) Verfahren zur Korrosionsschutzbeschichtung von Rohren oder Leitungselementen aus Stahl
DE3239983A1 (de) Fluessigharz-fuellstoff-mischung zur herstellung von fussbodenbeschichtungen
DE10261515B4 (de) Bodenbeschichtungssystem, insbesondere für ESD-Anforderungen
DE2932880A1 (de) Flammwidrig und antistatisch eingestellte kunststoffolie
DE4316607A1 (de) Metallisierte Kunststoff-Faserabschnitte als Füllstoff in Kleb-, Dicht-, Beschichtungs- und Schmierstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881014

17Q First examination report despatched

Effective date: 19900620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19911002

Ref country code: NL

Effective date: 19911002

Ref country code: BE

Effective date: 19911002

Ref country code: SE

Effective date: 19911002

REF Corresponds to:

Ref document number: 68022

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911130

Ref country code: CH

Effective date: 19911130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

REG Reference to a national code

Ref country code: GB

Ref legal event code: 711H

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921027

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921103

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951023

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961114