EP0263056B1 - Dispositif de régulation de la température de vapeur d'un générateur de vapeur - Google Patents

Dispositif de régulation de la température de vapeur d'un générateur de vapeur Download PDF

Info

Publication number
EP0263056B1
EP0263056B1 EP87710014A EP87710014A EP0263056B1 EP 0263056 B1 EP0263056 B1 EP 0263056B1 EP 87710014 A EP87710014 A EP 87710014A EP 87710014 A EP87710014 A EP 87710014A EP 0263056 B1 EP0263056 B1 EP 0263056B1
Authority
EP
European Patent Office
Prior art keywords
cooler
temperature
superheater
regulator
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87710014A
Other languages
German (de)
English (en)
Other versions
EP0263056A1 (fr
Inventor
Heinrich Renze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87710014T priority Critical patent/ATE50853T1/de
Publication of EP0263056A1 publication Critical patent/EP0263056A1/fr
Application granted granted Critical
Publication of EP0263056B1 publication Critical patent/EP0263056B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Definitions

  • the invention relates to an arrangement for regulating the steam temperature of a steam generator according to the preamble of claim 1.
  • the present invention has for its object to provide an arrangement of the type specified in the preamble of claim 1, in which the steam temperature control is stable.
  • this object is achieved with the measures specified in the characterizing part of claim 1. This ensures that the steam temperature difference on the second cooler is controlled with the first controller and the first cooler as the control element and the steam outlet temperature of the steam generator is controlled with the second controller and the second cooler as the control element.
  • the temperature at the inlet of the second cooler is advantageously limited. If this limit temperature is reached, the temperature at the inlet of the second cooler is controlled instead of the temperature difference.
  • KL1 denotes a first cooler that lies in the steam path of a steam generator. It is followed by a first superheater UH1, a second cooler KL2 and a second superheater UH2.
  • the steam outlet temperature of the steam generator is converted into an electrical value by a temperature transmitter MT4, which is compared in an adder AD11 with a setpoint set in a setpoint generator SG3.
  • the outlet temperature of the steam generator is regulated to this setpoint.
  • the control difference is fed via a divider DV2, the meaning of which is explained below, and adders AD8, AD7 to the input of a PI controller PIR2, which controls a servomotor SM2 which adjusts an injection valve EV2.
  • the control loop thus closed includes the second superheater UH2, the outlet temperature of which changes only slowly when the injection water flow in the cooler KL2 changes, in accordance with a delay element with delay and compensation time.
  • the temperature at the outlet of the second cooler KL2 is therefore measured, converted into an electrical value by a converter MT3 and used as an auxiliary control variable with a short delay time.
  • a heating fault e.g. a falling steam temperature at the output of the second superheater UH2
  • the output signal of the adder AD11 becomes positive and the output signal of the adder AD7 becomes negative.
  • the injection water flow is reduced via the controller PIR2, so that the output signal of the adder AD7 becomes zero again as the temperature behind the second cooler KL2 increases.
  • the delay and compensation time of the superheater UH2 is simulated in a delay element VZ2.
  • the order of the delay element and the time constants can be determined by known methods from the delay time and the equalization time of the second superheater UH2, which can be determined after a step function has been applied.
  • Its output signal is subtracted from the undelayed signal of the converter MT3 in an adder AD9, so that its output signal, which was caused by the reduction in the quantity of injection water, decays in the opposite direction to the temperature increase at the outlet of the superheater UH2. The difference between these two signals at the adder AD7 becomes zero, so that the quantity of injection water is no longer adjusted via the controller PIR2.
  • the superheaters UH1, UH2 behave like a higher-order delay element with a delay time and an equalization time.
  • the ratio of delay to compensation time can be assumed to be independent of the steam throughput.
  • the times themselves are approximately inversely proportional to the steam flow or the load, so that they are z. B. double at half load compared to full load. This is taken into account in the delay element VZ2 in that the steam flow is detected by a flow transmitter MV and in a unit KW2 a signal proportional to the reciprocal of the flow is formed, with which the time constants of the delay element VZ2 are influenced such that they are inversely proportional to the steam flow.
  • the setpoint for the temperature difference at the cooler KL2 set in a setpoint generator SG1 is added in an adder AD6.
  • the output signal of the adder AD6 arrives at an adder AD5, which compares it with the output signal of a temperature converter MT2.
  • the control difference which corresponds to the deviation of the temperature difference at the second cooler KL2 from the setpoint set in the setpoint generator SG1, passes via a divider DV1 and adder AD3, AD2 to the input of a PI controller PIR1, which controls a servomotor SM1 with an injection valve EV1.
  • the injection quantity of the feed water into the first cooler KL1 is set in such a way that the temperature difference at the second cooler KL2 is equal to the setpoint value set with the setpoint generator SG1. Since the output signal of the delay element VZ2 is used as the signal for the temperature behind the second cooler KL2, the temperature controls are dynamically decoupled. This decoupling prevents that when the injection in the second cooler KL2 is adjusted, the controller PIR1 is immediately excited with the change in the injection into the cooler KL1, which could trigger an oscillation.
  • the minimum value selection MIN switches the limit value from the setpoint generator SG2 to the adder AD5 instead of the output signal of the adder AD6, so that the temperature upstream of the second cooler KL2 is at the limit value is held.
  • the control works with the controller PIR1 in accordance with that with the controller PIR2.
  • the enthalpy is used as the auxiliary control variable.
  • the temperature and pressure downstream of the cooler KL1 are recorded with the transmitters MT1, MP1 and fed to an enthalpy computer ER known per se.
  • Its output signal is fed directly to an adder AD1 via a delay element VZ1, in which the delay is simulated by the superheater UH1.
  • This delay element is generally of a higher order, possibly even with different time constants with a delay time and an equalization time.
  • the difference between the two signals formed in the adder AD1 is applied to the PI controller P) R1.
  • the delay of the steam generator UH1 is inversely proportional to the steam throughput
  • a signal is generated in a unit KW1, which is inversely proportional to the steam throughput, and with this signal influences the time constants of the delay element VZ1.
  • the use of the enthalpy instead of the temperature as an auxiliary control variable is advantageous because at the outlet of the first cooler KL1 the steam near the saturation area and thus the relationship between the temperature at the outlet of the first superheater UH1 and the temperature behind the first cooler KL1 can be strongly non-linear.
  • the control is adapted to the variable gain of the controlled system depending on the vapor pressure. Even if the superheater's heating output remains the same, the outlet temperature does not change by the same amount as the inlet temperature. In order to take this change in the gain of the controlled system into account, the pressure at the output of the superheater UH2 is detected with the pressure converter MP3 and fed to a function generator FG2.
  • FIG. 2 shows which values the divisor DIV2 should have for correct compensation of the controlled system gain in the superheater UH2 as a function of the pressure P at the outlet of the superheater UH2 and the temperature at its entry.
  • FIG. 3 shows as a functional block diagram how the divisor for the divider DV2 can easily be generated.
  • the temperature is ignored and only a middle straight line is generated. In practice, this is completely sufficient, since the deviation from the correct value is a maximum of 10%.
  • the function transmitter FG2 according to FIG. 3 contains a constant transmitter KG7, which is set to a value corresponding to a pressure of 70 bar. This value is compared with the output signal of the pressure transducer MP3 in an adder AD16 and the difference is fed to one input of a maximum value selection MAX. At the other input there is a value of zero. If the pressure detected by the pressure transducer MP3 is less than 70 bar, the value zero is switched through to a multiplier M7, the output value of which is therefore also zero.
  • the output signal of an adder AD17, which represents the divisor for the divider DV2, is therefore the value set in a constant encoder KG9, which is set to 1.02 in accordance with FIG.
  • the output signal of the adder AD16 and thus that of the maximum value selection MAX is positive and multiplied by the multiplier M7 by a factor set in a constant encoder KG8.
  • This factor is chosen so that the divisor for the divider DV2 is approximately equal to that for 470 ° C ( Figure 2).
  • a circuit could be used whose output signal changes depending on the temperature so that the family of curves shown in FIG. 2 is achieved.
  • the temperature difference on the superheater UH1 also depends on the pressure with constant heating output. This dependence on the controlled system gain is compensated for by dividing the control difference at the output of the adder AD5 by a pressure and temperature-dependent value which is formed in a function generator FG1.
  • the pressure and temperature dependent divisor values DIV1 are shown in FIG. 4.
  • Figure 5 shows details of the function generator FG1.
  • the values supplied by the pressure transmitter MP2 are compared in an adder AD18 with a value which corresponds to a pressure of 30 bar and is set in a constant encoder KG10.
  • the difference is multiplied by a multiplier M8 by a factor supplied by a constant encoder KG11.
  • the result is multiplied in a multiplier M9 by a difference formed in an adder AD20 and subtracted in an adder AD21 from the value 1.86 generated by a constant encoder KG13.
  • the result is fed to the divider DV1 as a divisor.
  • An adder AD19 forms the difference between the signal emitted by the temperature converter MT2 and the value set in a constant encoder KG14, which corresponds to a temperature of 440 ° .
  • the difference is fed via a function generator FG3, which generates the non-linear dependence of the divisor on the temperature shown in FIG. 4, to an adder AD20, which subtracts the output signal of the function generator FG3 from a value set in a constant generator KG12, the value one.
  • the function generator FG3 is designed such that its output signal is zero when the input signal is zero, corresponding to 440 ° , and that its output signal increases nonlinearly with increasing temperature, such that it is approximately 0.14 at 465 ° and a value at 490 ° of about 0.24.
  • the factor fed to the multiplier M9 is therefore at 440 ° one and decreases nonlinearly to approximately 0.76 with increasing temperature.
  • the output signal of the adder AD18 is zero and the divisor is the value 1.86 set in the constant encoder KG13. If the pressure rises at a constant 440 ° C., the output signal of the multiplier M8 increases and, since it is not changed in the multiplier M9 because of the multiplication by one, is subtracted from the value 1.86 in the adder AD21. The divisor therefore changes with increasing pressure in accordance with the straight line labeled 440 ° in FIG. As the temperature rises, the factor supplied by the adder AD20 to the multiplier M9 becomes smaller and thus also the subtrahend supplied to the adder AD21, so that the divisor DIV1 rises at constant pressure in accordance with the diagrams shown in FIG.
  • the multiplier M9 and the circuit forming the correction factor can be dispensed with.
  • the constant encoder KG11 is then expediently set to such a value that the divisor follows a middle line shown in FIG. 4 when the pressure changes. Such a straight line is e.g. B. for 460 ° .
  • the controller described so far shows very good stability because of the decoupling of the two control loops; Because of the long delay and compensation times of the superheaters, however, if the temperatures are determined exclusively at the outlet of the superheaters, the faults are only determined after a relatively long delay time.
  • the arrangement according to FIG. 1 contains two fault detection circuits STM1, STM2.
  • each superheater has a model with several, e.g. B. four, series-connected delay elements can be simulated. Since only the inlet and outlet temperatures are measured on the superheater, only the input signal of the first and the output signal is on the model. of the last delay element known.
  • the control difference corrected in the divider DV2 is fed to an adder AD12.
  • a differentiating element DG1 the time constant of which is equal to that of the last delay element of the model for the superheater UH2.
  • the effect of the differentiating element can be adjusted by multiplying the returned signal by a constant encoder KG1. A signal is thus available at the output of the adder AD12 which corresponds to the input of the last delay element of the superheater model.
  • the output signal of the penultimate delay element of the superheater model is determined from this signal with an adder AD13, a multiplier M2 with a constant encoder KG2 and a differentiator DG2.
  • a signal is available which corresponds to the temperature change in the middle of the superheater.
  • the speed at which the input signals of the last two delay elements are determined can be selected with the constant encoders KG1, KG2 at the inputs of the differentiators DG1, DG2.
  • the time constants of the differentiators match those of the delay elements; they are therefore also changed with the reciprocal of the steam flow.
  • the output signal of the adder AD13 is applied to a differentiating element DG3 with the same time constant as the other differentiating and delay elements. This creates a reserve for the control, the size of which depends on the ordinal number of the controlled system and can be set on a constant encoder KG3. Since the temperature behind the second cooler KL2 is changed by the control so that the temperature at the outlet of the superheater reaches the setpoint with a constant fault, the output signal of the temperature converter MT3 delayed by the delay element VZ2 is connected to the input of the fault determination circuit STM2 via the adder AD10 .
  • the second fault detection circuit STM2 works in the same way as the first STM1. Your description is therefore unnecessary.
  • FIGS. 1, 3 and 5 The exemplary embodiment is shown in FIGS. 1, 3 and 5 in the manner of a circuit diagram and has also been described for the sake of clarity. In fact, with the exception of the cooler, superheater and transmitter, the exemplary embodiment will be implemented with a programmable computer. The same applies to all configurations within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (12)

1. Dispositif pour régler la température de sortie de la vapeur d'un générateur de vapeur, qui comporte un premier refroidisseur (KL1), un premier surchauffeur (UH1), un second refroidisseur (KL2) et un second surchauffeur (UH2), disposés les uns à la suite des autres dans l'écoulement de vapeur, et comporte un premier régulateur (PIR1) commandant le premier refroidisseur (KL1) et un second régulateur (PIR2) commandant le second refroidisseur (KL2), caractérisé en ce qu'un signal correspondant à la différence de température dans le second refroidisseur (KL2) est comparé à une valeur de consigne (SG1) et que le résultat de la comparaison est appliqué en tant qu'écart de réglage au premier régulateur (PIR1), et qu'un signal correspondant à la température de sortie du générateur de vapeur est comparé à une valeur de consigne (SG3) et que le résultat de la comparaison est appliqué en tant qu'écart de réglage au second régulateur (PIR2).
2. Dispositif selon la revendication 1, caractérisé en ce que la température à l'entrée du second refroidisseur (KL2) est limitée à une valeur limite (SG2).
3. Dispositif suivant la revendication 1 ou 2, caractérisé par le fait qu'un signal qui correspond à la température à la sortie du premier refroidisseur (KL1) ou à un signal dérivé de ce signal, est transmis par l'intermédiaire d'un premier circuit de retard (VZ1), dont les constantes de temps sont égales à celles du premier surchauffeur (UH1), que la différence entre le signal de sortie du premier circuit de retard (VZ1) et le signal correspondant à la température présente à la sortie du premier refroidisseur (KL1 ) ou le signal délivré de ce signal est formée et est appliquée au premier régulateur (PIR1), qui commande le débit de l'eau d'alimentation introduite dans le premier refroidisseur (KL1).
4. Dispositif suivant la revendication 3, caractérisé par le fait que le signal dérivé de la température présente à la sortie du refroidisseur (KL1) est un signal correspondant à l'enthalpie.
5. Dispositif suivant l'une des revendications 1 à 4, caractérisé par le fait qu'un signal correspondant à la température présente à la sortie du second refroidisseur (KL2) est transmis par l'intermédiaire d'un second circuit de retard (VZ2), dont la constante de temps est égale à celle du second surchauffeur (UH2), et que la différence entre le signal de sortie du second circuit de retard (VZ2) et le signal correspondant à la température est formée et est appliquée au second régulateur (PIR2), qui commande le débit de l'eau d'alimentation injectée dans le second refroidisseur (KL2).
6. Dispositif suivant l'une des revendications 3 à 5, caractérisé par le fait que les constantes de temps des circuits de retard (VZ1, VZ2) sont inversement proportionnelles au débit de vapeur.
7. Dispositif suivant l'une des revendications 3 à 6, caractérisé par le fait que la différence entre le signal de sortie du second circuit de retard (VZ2) et le signal correspondant à la température présente à l'entrée du second refroidisseur (KL2) est comparée à la valeur de consigne (SG1) de la différence de température au niveau du second refroidisseur (KL2) et est appliquée en tant qu'écart de réglage, au premier régulateur (PIR1).
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que la différence de réglage de la température au niveau de la sortie du générateur de vapeur et/ou à l'entrée du second refroidisseur (KL2) est corrigée en fonction de la pression de vapeur de telle sorte que la dépendance vis-à-vis de la variation de température est compensée dans le surchauffeur par la pression de vapeur.
9. Dispositif suivant la revendication 8, caractérisé par le fait que la différence de réglage est corrigée en fonction de l'enthalpie de la vapeur à la sortie du surchauffeur.
10. Dispositif suivant l'une des revendications 1 à 9, caractérisé par le fait que les températures présentes au niveau des sorties des surchauffeurs (UH1, UH2) sont envoyées, par l'intermédiaire de circuits différentiateurs (DG1, DG2, DG3), aux régulateurs respectifs (PIR2 ou PIR1), en aval desquels sont branchés les refroidisseurs (KL1, KL2) situés en amont des surchauffeurs respectifs (UH1, UH2).
11. Dispositif suivant la revendication 10, caractérisé par le fait que pour chaque surchauffeur, il est prévu un circuit (STM1, STM2) de détermination de perturbations, qui contient un premier circuit différentiateur (DG1), dont la constante de temps est égale à celle du dernier circuit de retard du modèle de surchauffeur, et un second circuit différentiateur (DG2), qui est branché en aval du premier circuit différentiateur (DG1) et dont la constante de temps est égale à celle de l'avant-dernier circuit de retard du modèle de surchauffeur, etc, le nombre des circuits différentiateurs (DG1, DG2) étant approximativement égal à la moitié du nombre ordinal du modèle de surchauffeur, et qu'en aval du dernier circuit différentiateur est branché un circuit de dérivation (DG3), dont le signal de sortie est appliqué au régulateur (PIR2).
12. Dispositif suivant la revendication 11, caractérisé par le fait que les signaux de sortie des circuits de retard (VZ1, VZ2) sont appliqués aux entrées des circuits (STM1, STM2) de détermination de perturbations.
EP87710014A 1986-09-15 1987-09-15 Dispositif de régulation de la température de vapeur d'un générateur de vapeur Expired - Lifetime EP0263056B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87710014T ATE50853T1 (de) 1986-09-15 1987-09-15 Anordnung zum regeln der dampftemperatur eines dampferzeugers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3631386 1986-09-15
DE3631386 1986-09-15

Publications (2)

Publication Number Publication Date
EP0263056A1 EP0263056A1 (fr) 1988-04-06
EP0263056B1 true EP0263056B1 (fr) 1990-03-07

Family

ID=6309634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87710014A Expired - Lifetime EP0263056B1 (fr) 1986-09-15 1987-09-15 Dispositif de régulation de la température de vapeur d'un générateur de vapeur

Country Status (3)

Country Link
EP (1) EP0263056B1 (fr)
AT (1) ATE50853T1 (fr)
DE (1) DE3761855D1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901656A1 (de) 1999-01-18 2000-07-20 Abb Alstom Power Ch Ag Verfahren und Vorrichtung zur Regelung der Temperatur am Austritt eines Dampfüberhitzers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1402362A (fr) * 1964-07-23 1965-06-11 Siemens Ag Chaudière à vapeur à surchauffe intermédiaire
DE3121442A1 (de) * 1981-05-29 1983-01-05 Steag Ag, 4300 Essen Verfahren zur regelung der temperatur von in einer leitung stroemenden dampf durch einspritzung und anordnung zur durchfuehrung des verfahrens

Also Published As

Publication number Publication date
DE3761855D1 (de) 1990-04-12
EP0263056A1 (fr) 1988-04-06
ATE50853T1 (de) 1990-03-15

Similar Documents

Publication Publication Date Title
DE3126331C2 (fr)
DE3750203T2 (de) Adaptives Prozessregelungssystem.
DE69511991T2 (de) Verfahren und Vorrichtung zur Steuerung von Mehrgrössen-/nichtlinearen Systemen
DE3786977T2 (de) Systeme und Verfahren zur Prozessregelung.
DE3618337C2 (fr)
DE3311048C2 (de) Einrichtung zur Verfahrensregelung
DE3023550C2 (fr)
DE3650164T2 (de) Prozessregler mit einem System zur Einstellung mit zwei Freiheitsgraden.
DE69221362T2 (de) Steuergerät für mechanische Vorrichtungen
EP1766288B1 (fr) Procede pour faire fonctionner un generateur de vapeur en continu
EP0639253B1 (fr) Generateur de vapeur a circulation forcee
DE69106031T2 (de) Regler mit zwei Freiheitsgraden.
EP2411735B1 (fr) Procédé et dispositif de réglage de la température de la vapeur pour une centrale à vapeur
EP2874039A1 (fr) Procédé de commande pour un système de transmission de chaleur et système de transmission de chaleur de ce type
DE2347741A1 (de) Prozessregelorgan mit selbsttaetiger anpassung an unbekannte oder veraenderliche parameter
DE2104992A1 (de) Verfahren zur Regelung mindestens einer Regelgroße einer totzeitbehafteten Regelstrecke und Regelsystem zur Durch fuhrung des Verfahrens
DE1673594B2 (de) Verfahren und vorrichtung zur erzeugung eines regelsignals fuer automatisch geregelte einrichtungen
DE3905261C2 (fr)
EP0263056B1 (fr) Dispositif de régulation de la température de vapeur d'un générateur de vapeur
DE3622373A1 (de) Steuerungsvorrichtung fuer ein elektrizitaetskraftwerk
DE2915904C2 (de) Schaltungsanordnung zur Regelung des Effektivwertes des Wechselstromes eines Lastkreises
EP3542229B1 (fr) Dispositif et procédé de détermination des paramètres d'un dispositif de réglage
DE2812820A1 (de) Verfahren und einrichtung zur regelung einer dampfturbine
DE1523535B2 (de) Selbstanpassender Regelkreis
DE3026975A1 (de) Vorrichtung zur regelung der drehzahl eines induktionsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19880425

17Q First examination report despatched

Effective date: 19890810

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900307

Ref country code: NL

Effective date: 19900307

REF Corresponds to:

Ref document number: 50853

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3761855

Country of ref document: DE

Date of ref document: 19900412

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930816

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940915

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060817

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060912

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060919

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061207

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: *SIEMENS A.G.

Effective date: 20070915