EP0259376B2 - Plaque en ciment ayant des bords renforces - Google Patents
Plaque en ciment ayant des bords renforces Download PDFInfo
- Publication number
- EP0259376B2 EP0259376B2 EP87901221A EP87901221A EP0259376B2 EP 0259376 B2 EP0259376 B2 EP 0259376B2 EP 87901221 A EP87901221 A EP 87901221A EP 87901221 A EP87901221 A EP 87901221A EP 0259376 B2 EP0259376 B2 EP 0259376B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- mesh
- mix
- trough
- improved apparatus
- carrier sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004568 cement Substances 0.000 title claims description 42
- 239000000203 mixture Substances 0.000 claims description 88
- 239000004567 concrete Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000002002 slurry Substances 0.000 claims description 13
- 239000003365 glass fiber Substances 0.000 claims description 11
- 230000036571 hydration Effects 0.000 claims description 11
- 238000006703 hydration reaction Methods 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- 230000000887 hydrating effect Effects 0.000 claims description 7
- 230000003014 reinforcing effect Effects 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 230000001464 adherent effect Effects 0.000 claims description 3
- 239000012783 reinforcing fiber Substances 0.000 claims description 2
- 230000002028 premature Effects 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000004744 fabric Substances 0.000 description 14
- 239000000835 fiber Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 9
- 239000010440 gypsum Substances 0.000 description 8
- 229910052602 gypsum Inorganic materials 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 6
- 238000010924 continuous production Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 240000003834 Triticum spelta Species 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008030 superplasticizer Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011507 gypsum plaster Substances 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0006—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
Definitions
- This invention relates to the continuous production of a reinforced cementitious panel. More particularly, it relates to a method and an apparatus for casting a cementitious slurry in the form of a thin, indefinitely long panel whose faces and longitudinal edges are reinforced by a network of fibers which is submerged just below the cementitious surface. Still more particularly, this invention relates to a bare cement board whose faces and longitudinal edges are reinforced by a sub-surface network of fibers.
- Cement board a thin, reinforced concrete panel
- cement board has become increasingly popular during the past two decades as a durable substrate for ceramic tile in bath rooms, shower rooms, and other areas where the walls are subject to frequent splashing of water and high humidity.
- cement boards on the exterior of buildings as in the construction of curtain walls. Having such uses, a covering for the surface of the concrete is neither needed nor desired. Because the boards are often attached at the margins to the building framework with nails or screws, however, it is highly desirable that the longitudinal edges of the boards be fully and uniformly filled and that they be reinforced at least as well as the faces of the boards.
- the border regions of the faces adjacent to the edges must not be thicker than the field regions thereof lest the wall turn out to be wavy rather than flat.
- U.S. Pat. No. 1,439,954 discloses a wallboard having a core of gypsum or Portland cement and a mesh material such as cotton gauze, wire cloth, perforated paper or perforated cloth applied to both faces of the core while the cementitious material is still in the plastic state.
- U.S. Pat. No. 3,284,980 discloses a pre-cast, lightweight concrete panel having a cellular core, a thin, high density layer on each face, and a layer of fiber mesh embedded in each of the high density layers.
- Each panel is case separately in forms in a step-wise procedure beginning with a thin layer of dense concrete mix, laying the mesh thereupon, pouring the lightweight concrete mix over the mesh to form the core, laying a second layer of mesh over the core mix, and pouring another layer of dense concrete mix over the second mesh layer.
- Schupack in U.S. Pat. No. 4,159,361, discloses a cold formable cementitious panel in which fabric reinforcing layers are encapsulated by the cementitious core.
- the layers of reinforcing fabric and cementitious material of the Schupack panel are laid and deposited on a vibrating forming table from a fabrication train which reciprocates longitudinally over the table.
- the cementitious core mix is smoothed by a laterally oscillating screed.
- British Patent Application No. 2 053 779 A discloses a method for the continuous production of a building board which comprises advancing a pervious fabric on a lower support surface, depositing a slurry of cementitious material such as gypsum plaster on said advancing fabric, contacting the exposed face of the slurry with a second fabric, passing the fabric faced slurry under a second support surface, and advancing the fabric faced slurry between the two support surfaces while vibrating said surfaces. The vibration is said to cause the slurry to penetrate through the fabric to form a thin, continuous film on the outer faces of the fabric.
- cementitious material such as gypsum plaster
- the product is a gypsum board having a woven fiberglass mat embedded in the upper and lower faces of the core and a non-woven fiberglass felt extending across the lower face, around the longitudinal edges, and partially inward from the edges while the upper face is covered by another non-woven felt which is glued to the folded-in lower felt.
- a method for making a cementitious wallboard wherein an indefinitely long non-adherent carrier sheet is continuously towed on an endless conveyor belt over a forming table which is upstream from the conveyor belt and continuously depositing a hydrating cementitious mix on the mesh and distributing the mix laterally to a substantially uniform depth, comprising the steps of providing reinforced longitudinal edges by providing the carrier sheet wider than the cement board being made, forming a continuous trough by bending outer portions of the carrier sheet to form uprights walls, continuously laying a first indefinitely long mesh of resilient fibers into the trough, the mesh being wider than the trough and thereafter depositing the hydrating mix in the trough and distributing the mix in the trough to fill it to a substantially uniform depth, towing the filled trough in an abutting relationship with and between a pair of fixedly spaced apart edger rails which extend longitudinally of the conveyor belt in slidable engagement therewith , folding upright portions of the
- a cement board prepared from a thin, indefinitely long panel which is cut into desired lengths consisting essentially of a hydrated cementitious core, a bottom surface a top surface and uniform longitudinal edge surfaces, the improvement comprising a woven mesh of reinforcing glass fibers embedded in the core just beneath the longitudinal edges surfaces and said top and bottom surfaces.
- the '335 patent describes a method for submerging a woven glass fiber mesh in the top surface of the concrete mix while the mix is moving over the forming table; the mesh is corned into the nip between the advancing mix and a cylindrical screeding roller which rotates counter to the direction of travel of the mix so that the roller presses the mesh into the surface of the mix and cleans itself of adhering mix by wiping the mix onto the upper surface of the mesh and into the voids thereof.
- the '909 patent describes a concrete mix which is preferred for the high speed continuous production of the cement board of this invention.
- the forming table 10 and the conveyor belt 12 constitute the support for the carrier sheet 14 and the woven glass fiber mesh 16.
- Mounted transversely above the forming table 10 are the mortar distribution belt 18 and the stationary plow 20 whose blades 20a, 20b, 20c, and 20d contact the surface of the distribution belt 18 in scraping relationship.
- the guide flanges 22 are mounted on the table 10 just upstream from the mortar screeding roller 24 which is adjustable up and down so that the nip between it and the carrier sheet 14 may be set to the desired thickness of the panel to be manufactured.
- the roller 24 is journalled and driven by conventional means not shown.
- the carrier sheet 14 is wider than the cement board being formed so that the sheet may be made into a continuous trough.
- the creaser wheels 26 are optional; they may be used to score longitudinal lines along side each lateral margin of the carrier sheet 14 to facilitate the bending of the sheet to form the upright walls 28 as the sheet is towed between the guide flanges 22.
- the mesh 16 is also wider than the desired board and, therefore, wider than the trough formed by the bent carrier sheet; it may be of the same or narrower width as the flat carrier sheet but not wider.
- the mesh 16 is fed into the trough under the hold-down roller 30 but because it is not scored and is rather resilient it does not conform precisely to the corners of the trough but rather curves from the bottom of the trough to the walls 28, leaving the spaces 32, as shown in FIG. 2.
- the longitudinal edger rails 34 extend downstream from the forming table 10 in slidable contact with the conveyor belt 12.
- the posts 36 are mounted on the rails 34 and the rods 38 are slidably mounted within the rings 40, as shown are clearly in FIG.4.
- the distance between the rails 34 is adjusted and maintained by sliding the rings 40 along the rods 38 and tightening the set screws 42 at the selected points.
- several sets of the posts 36 and the rods 38 are spaced apart along the rails 34 to prevent lateral movement of the rails independently of each other and thus assure a constant cement board width.
- the rails may move laterally in tandem in response to occasional shifting of the conveyor belt as it travels around the drive and take-up pulleys but, since the distance between them is constant, the upright walls 28 of the carrier sheet are not allowed to fall away and let the concrete mix spread haphazardly.
- the edger rails 34 are continuous lengths of a lightweight material such as aluminium and, in a preferred embodiment of this invention, the rails are hollow in order to further lighten their weight and allow them to, in effect, float on the conveyor belt with negligible wear.
- the posts and rods are also made of lightweight material to achieve that effect.
- the rails are rectangular in cross-section and about 3.75 x 10 -2 m (1.5 inches) wide and about 1.9 x 10 -2 m (0.75 inches)thick, their weight being distributed across their width as the conveyor belt glides beneath them.
- the spatulas 44 are mounted in pairs on the rods 38, as shown in detail in FIG. 4. Only three pairs of spatulas are shown in FIG. 3 but it is to be understood that as many as eight or more pairs of spatulas may be spaced apart downstream from the roller 24.
- the first pair of spatulas are preferably spaced from about 1.2 to 2.44 meters (four to about eight feet) downstream from said roller and the space between consecutive pairs is preferably from about 1.5 to 3.05 meters (five to about ten feet).
- Each spatula is pivotably fastened to a bracket 46 by a screw 47.
- the bracket extends tangentially from a collar 48 which in turn is rotatably mounted on a rod 38 inboard from a ring 40 and is locked in place by a set screw 50.
- the blade tip 52 of each spatula is preferably cut back at an angle of about 20° or less as shown in FIG. 5 so that each spatula may be canted toward the respective rail 34 by pivoting it on the bracket 46 and thus cause its tip 52 to be aligned at a substantially right angle with its respective rail.
- the outboard edge of the tip is thus caused to press down more heavily than the inboard edge on the folded strip 54 of the carrier sheet 14. In this manner, the margins of the cement are tapered to the desired degree.
- a rubber band 56 or other restraining means connects a peg 58 on the spatula blade to a set screw 42 as shown or to a ring 40.
- the spatula blade is made of a resilient material such as a chrome plated spring steel which is not readily corroded by contact with a hydraulic cement mixture.
- the blade is thin, e.g. about 20 gauge, and is about 22.5 x 10 -2 to 30 x 10 -2 (nine to twelve inches) long.
- the folded strip 54 is preferably about 3.75 x 10 -2 m (1.5 inches) wide and the spatula blade may be as wide as the strip 54 but no wider because scraping of the concrete mix adjacent the strip is to be avoided.
- An alternative means for mounting the spatulas on the rails 34 is a carrier having a foot insertable in the hollow end of a rail 34, and upright leg attached at an angle to the foot and extending above the horizontal plane of the foot, and a shaft attached to the leg at a right angle to the vertical plane passing through the foot so as extend inboard when the foot is inserted in the rail.
- the first pair of spatula carriers are mountable in the upstream end of hollow rails 34,; succeeding pairs may be inserted in hollow rail segments mounted atop the rails 34.
- Individual carriers may be right-handed or left-handed or they may be made reversible by making the feet bidirectional.
- the spatulas are mounted on the carrier shafts in the same way as on the rods 38.
- FIGS. 1, 3 and 5 Also shown in FIGS. 1, 3 and 5 are the air jets 60 connected to the valves 62 which are mounted on the forming table 10 and are connected to a source of compressed air.
- the fingers 64 used only when it is desired to fold the margins of the lower mesh 16 to lie under the top mesh 66, are mounted on the table 10 and extend in over the guide flanges 22 to urge the upstanding margins of the bottom mesh 16 inward and downward so that said margins may be further bent down as they pass under the roller 24.
- the finished cement board 70 is shown in cross-section in FIG. 6 to reveal the core 72 which extends through the bottom mesh 16 even as said mesh bends up and around to overlap the top mesh 66 which lies just beneath the upper surface of the board.
- the concrete mix in the cement board is an autogenous binder for the lapping meshes 16 and 66 at the margins 76 of the upper surface of the board.
- the edges 74 and the margins 76 are smooth because of the smoothing effect of the carrier sheet strips 54 being pressed onto the mix by the rails 34 and the spatulas 44.
- the smooth margins 76 are preferred when the cement boards are fastened side-by-side on a partition and joint tape is adhesively applied to the margins before joint compound is applied.
- the strips 54 may be peeled off, along creases made by the spatulas, before final set of the concrete mix has occurred. The strips 54 will then remove a thin layer of the mix from the margins and leave a roughened surface. If the creaser wheels 26 are used, all but the bottom of the carrier sheet 14 may be removed before or after final set.
- FIG. 6 shows the folded bottom mesh 16 overlying the woven top mesh 66 along the margins
- the board of this invention may be made so that the mesh 16 lies under the top mesh 66 when the fingers 64 are employed to bend the upstanding portions of the mesh 16 inward and downward before they reach the roller 24.
- the creased carrier sheet 14 and the woven mesh 16 are passed manually beneath the distribution belt 18, between the flanges 22, under the screeding roller 24 and onto the conveyor belt 12 so that when the conveyor drive means (conventional, not shown) is actuated, a mesh lined trough having the upright walls 28 is towed in the machine direction indicated by the arrow MD.
- Concrete mix is fed onto the belt 18 from a continuous mixer shown as the box CM and is scraped onto the mesh 16 by the plow blades 20a, b, c, and d.
- the streams of concrete mix thus formed spread and merge as the roller 24 dams their movement.
- the spreading mix penetrates the curved mesh 16 and moves into the spaces 32.
- the top mesh 66 is dragged between the roller 24 and the dammed mix while the roller rotates counter to the MD.
- the roller constantly picks up a coat of concrete mix which squeezes through the voids of the woven top mesh 66 at the nip and then it wipes the mix onto the obverse face of the top mesh 66 to aid in the impregnation thereof.
- the top mesh is slightly narrower than the cylindrical roller 24, a ring of the concrete mix clings to the unwiped edges of the cylinder. Said mix is thrown by centrifugal force alongside the upright walls 28 of the paper trough. If the walls 28 show a tendency to bend over prematurely, they may be held upright by the force of air directed against the walls by the air jets 60. Unwanted splatters of the mix on the walls 28 may be cleaned off by such air, also.
- the margins of the mesh 16 and the walls 28 of the trough are tucked under the spatulas 44a to initiate the folding over of the continuously approaching carrier sheet 14 and mesh 16. It is preferred to fold the bottom mesh over onto the concrete mix which already covers the top mesh 66 and use the pressure of the flexed spatula blades to press the strips 54 down onto the folded over mesh 16 to urge the woven glass fibers into the mix. Folding of the margins of the mesh 16 onto the body of the mix before the top mesh 66 is applied is another way to produce the reinforced-edge cement board of this invention. To do so, the fingers 64 of FIGS.
- the pressure of the flexed spatula blades on the strips 54 is varied according to the consistency of the concrete mix and the stiffness of the mesh. A range of from about 1 to about 4 psi (gauge) is preferred. The smallest pressure is applied by the first pair of spatulas 44a and the pressure is increased in increments as the strips 54 pass under the succeeding pairs of flexed spatulas 44b, 44c, etc.
- the placing of the spatulas 44 downstream from the mixer CM is determined by the line speed at which the board is manufactured and the rate of hydration of the cement which, in turn, is a function of the cement formulation and the temperature of the concrete mix.
- a rapid hardening, high early strength cement such as that described in the aforementioned U.S. Patent No. 4,488,909 is preferred in the production of the cement board of this invention.
- the high temperature concrete mix described in the '909 patent is preferred, also.
- 4,504,335 describes the mix as a relatively stiff, immobile mortar
- a particularly preferred mix for the purposes of this invention has a consistency such that a dimple made in the mix just after it has been deposited on the belt 12 will disappear by the time the mix arrives at the roller 24, i.e. about 4 seconds. It has been found that when such a self-leveling mortar is used the bottom mesh 16 may be well embedded in the mortar even though the means for creating a gap between the carrier sheet and the bottom mesh described in U.S. 4,450,022 is not used.
- An example of such a mortar is one in which the cement powder consists of 68.1% Type III portland cement, 17.79% high alumina cement, 5.69% landplaster, 0.57% hydrated lime, and 7.84% fly ash.
- a lower cost cement powder may be used if a fine high alumina cement (about 6000 cm 2 /g Blaine) is employed at about a 12.5% level with concomitant changes in the amounts of the other cementitious solids for an optimized formulation.
- the mortar also contains blast furnace slag in an amount equal to, on a dried basis, the weight of the cement powder.
- the self-leveling property of the mortar is enhanced and prolonged by one part of Lomar D superplasticizer and about 0.5 part of an 8% aqueous solution of citric acid per hundred parts by weight of the cement powder
- the water to cement powder ratio is about 0.35 by weight, including the water introduced with wet slag, the superplasticizer and citric acid solution.
- Foam and expanded polystyrene beads are also introduced into the continuous mixer along with the other solids and liquids so as to make a cement board having a density of from 1199 to 1296 kilograms per cubic metre (74 to 80 pounds per cubic foot).
- the embedding of the folded-over mesh 16 must, of course, take place before the initial set of the concrete has occurred but the mix cannot be so soupy at the first spatula pair that the mesh will rise up again after passing under a spatula.
- a convenient and satisfactory way to measure the extent of hydration of the cement at various points along the line is to place a sample from the mixer in a calorimeter connected to a recording chart so as to plot the rise in temperature against elapsed time. The total temperature rise up to the equilibrium temperature is noted. The distance between the roller 24 and the selected spatula position is measured and that distance is divided by the line speed to give the travel time for the concrete mix from the roller 24 to the selected position.
- a time factor for the travel of the mix from the mixer CM to the roller 24 must be added. This factor can be determined by measuring the travel time of a spot of pigment such as iron oxide placed in the mix at the mouth of the mixer.
- a plot of the age of the concrete mix on the time-temperature curve gives the temperature rise at the selected spatula positon.
- the ratio of the incremental temperature rise against the total temperature rise is an indication of the extent of hydration at the selected position. For example, a concrete mix prepared according to the '909 patent reached the equilibrium temperature in 750 seconds, which is within the range of set time disclosed in said patent, and the total temperature rise was 15°C (27°F) (from 39°C to 54°C) (103°F to 130°F).
- the spatulas may be used to press the mesh 16 into the upper longitudinal margins of the concrete ribbon and to form in co-operation with the edger rails 34, smooth reinforced edges along the ribbon while the extent of hydration, as so expressed, is in the range of from about 10 to 35%. It is preferable that the spatulas 44a are placed to press down lightly upon the strips 54 as the hydration reaches a stage equal to from about 10 to about 18% of the hydration which will have occurred at the equilibrium temperature.
- the woven mesh is preferably composed of glass fibers but nylon, metal, and aramid resin fibers may also be used.
- the mesh size and the fiber diameter are selected according to the strength desired in the board and the size of the aggregate in the concrete mix.
- a mesh having a thread count per metre of from 10 x 10 -2 x 10 x 10 -2 m (4 x 4 inches), 45 x 10 -2 x 35.0 x 10 -2 m ((18 x 14 inches) or 25 x 10 -2 x 50 x 10 -2 m (10 x 20 inches) is acceptable for most purposes.
- a mesh having a tighter weave along the margins may be used to further strengthen the edges and margins of the board.
- the mesh 16 was 96.3 x 10 -2 m (38.5 inches) wide
- the mesh 66 was 89.4 x 10 -2 m (35.75 inches) wide
- the thread count of each was 25 x 25m (10 x 10 inches)
- the carrier sheet 14 was 100 x 10 -2 m (40 inches) wide.
- the edge of the mesh 66 was inset 0.31 x 10 -2 m (1/8 inch) from each longitudinal edge of the board and there was a 2.19 x 10 -2 (7/8 inch) overlap of the folded-over portion of the mesh 16 above the mesh 66 at each longitudinal margin of the board.
- the cement board of this invention is an improved tile backer board for the construction of bathrooms, particularly shower enclosures, locker rooms, swimming pool rooms and other units which are subject to high humidity and splashing water. Reinforcement of the edges and margins of boards makes attachment of the board to the framework or a room with nails or screws more secure. Use of the edge-reinforced boards in the construction of exterior curtain walls is also contemplated.
- the average force required in the ten tests was 427 newtons (90 pounds).
- the force required to pull the pin out laterally was generally on the order of about 178 newtons (40 pounds).
- a wallboard having a hydraulic cementitious core is also regarded as part of the subject matter of this invention.
- a gypsum wallboard without the usual paper covering but strengthened by a woven mesh of reinforcing fibers embedded in the core at the top, bottom and longitudinal edge surfaces may be made by substituting a slurry of calcium sulfate hemihydrate for the concrete mix in the process described above.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Finishing Walls (AREA)
- Producing Shaped Articles From Materials (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Panels For Use In Building Construction (AREA)
- Laminated Bodies (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Claims (20)
- Panneau de ciment (70) préparé à partir d'un panneau mince indéfiniment long qui est coupé aux longueurs désirées et qui consiste essentiellement en un coeur a base de ciment hydraté (72), une surface de dessous, une surface de dessus et des surfaces des rebords longitudinaux uniformes, le perfectionnement comprenant un seul treillis tissé de fibres de verre renforçantes, s'étendant au-dessus de la surface de dessous et desdites surface de rebords longitudinaux pour chevaucher la surface de dessus, scellé dans le coeur juste sous les surfaces des rebords longitudinaux et lesdites surfaces de dessus et de dessous.
- Procédé de fabrication d'un panneau contenant du ciment selon la revendication 1, dans lequel une bande porteuse (14) indéfiniment longue, non adhérente, est continuement halée sur une bande convoveuse (12) sans fin, par dessus une table de formage (10) qui se trouve en amont de la bande convoyeuse, qui dépose en continu un mélange à base de ciment en cours d'hydratation sur la bande et qui distribue le mélange latéralement en une épaisseur substantiellement uni forme, comprenant des étapes pour obtenir des bords longitudinaux renforcés en utilisant une bande porteuse (14) plus large que le panneau de ciment en cours de fabrication, en formant une gouttière continue en repliant les portions extérieures de la bande porteuse (14) pour former des parois verticales (28), en posant en continu un premier treillis tissé (16) de fibres de verre, indéfiniment long, dans la gouttière, le treillis (16) étant plus large que la gouttière, en déposant ensuite le mélange en cours d'hydratation dans la gouttière et en répartissant le mélange dans la gouttière pour la remplir jusqu'à une hauteur substantiellement uni forme, en halant la gouttière remplie entre et en contact de butée avec deux rails formant rebords latéraux (34) et présentant un espacement fixe entre eux, et s'étendant longitudinalement le long de la bande convoyeuse (12) en contact glissant avec celle-ci, en pliant les portions verticales (28) de la bande porteuse et les parties extérieures du treillis vers l'intérieur, par dessus le mélange, et en pressant la bande porteuse repliée vers le bas sur la surface du mélange de façon à enfoncer ledit treillis (16) dans le mélange.
- Procédé selon la revendication 2, dans lequel un deuxième treillis (66) de fibres de verre, indéfiniment long, est immergé en continu sous la surface du mélange, en recouvrement avec les rebords du premier treillis (16).
- Procédé selon la revendication 3, dans lequel les parties extérieures du premier treillis (16) sont enfoncées dans le mélange après que le deuxième treillis (66) ait été immergé dans le mélange.
- Procédé selon la revendication 3, dans lequel les parties extérieures du premier treillis (16) sont repliées dans le mélange avant que le second treillis (66) ne soit immergé dans le mélange.
- Procédé selon le revendication 2, dans lequel la bande porteuse (14) repliée et le treillis (16) sont enfoncés vers le bas sous une pression qui augmente lorsque la gouttière remplie voyage vers l'aval.
- Procédé selon la revendication 6, dans lequel le mélange est du béton et la pression varie entre environ 702 Pa jusqu'à 5619 Pa.
- Procédé selon la revendication 2, dans lequel le mélange est du béton et le degré d'hydratation du mélange au cours de l'étape de pressage varie d'environ 10% à environ 35% de l'hydratation qui aura existé à la température maximum du mélange en cours d'hydratation.
- Procédé selon la revendication 2, dans lequel le mélange est du béton et la pression est appliquée quand le mélange s'est hydraté à un degré d'environ 10% jusqu'à environ 18% de l'hydratation qui aura existé à la température maximum du mélange en cours d'hydratation.
- Dispositif destiné à être utilisé dans un procédé selon l'une quelconque des revendications 2 à 9 pour fabriquer en continu des panneaux muraux en ciment renforcés, indéfiniment longs, comprenant une table de formage (10) et une bande convoyeuse (12) pour haler une bande porteuse (14) non adhérente par dessus la table de formage (10) le long d'une voie prédéterminée, un moyen (22) pour former la bande (14) en une gouttière, des moyens (30) pour déposer en continu un treillis tissé (16) de fibres renforçantes dans la gouttière, des moyens (18) pour déposer une boue à base de ciment en cours d'hydratation sur le treillis posé, en train d'avancer, et des moyens (24) pour niveler la boue et la répartir transversalement par rapport à la voie, comprenant une paire de rails de rebord (34) parallèles et espacés, en contact glissant avec la bande convoyeuse (12) et agencés longitudinalement le long de la bande pour définir la voie de la gouttière, et des moyens (44) pour plier les rebords opposés de la gouttière et du treillis déposé (16) vers l'intérieur et pour presser les rebords vers le bas, respectivement sur et dans la boue en
train d'avancer. - Dispositif perfectionné selon la revendication 10, caractérisé de plus par une tige stabilisatrice (38) relient les rails de rebords (34).
- Dispositif perfectionné selon la revendication 11, dans lequel les rails (34) sont transversalement ajustables par rapport à la tige (38).
- Dispositif perfectionné selon la revendication 10, dans lequel les moyens de pliage et de pressage (44) sont constitués d'une paire de spatules connectées aux rails de rebords (34) et superposées aux bords longitudinaux opposés de la voie.
- Dispositif perfectionné selon la revendication 13, caractérisé de plus par un poteau (36) monté sur chaque rail (34), un anneau (40) sur chaque poteau (36), une tige (38) traversant la voie et montée dans chaque anneau (40) de manière à pouvoir glisser, des moyens pour verrouiller la tige (38) dans les anneaux (40), et des moyens (46, 47, 48, 50) pour relier les spatules (44) à la tige (38) du côté intérieur des anneaux (40).
- Dispositif perfectionné selon la revendication 14, dans lequel le moyen de liaison avec les spatules comprend une paire de colliers (48) cerclant la tige (38) en pouvant glisser.
- Dispositif perfectionné selon la revendication 15, dans lequel le moyen de connexion comprend de plus une potence (46) dépassant tangentiellement de chaque collier (48).
- Dispositif perfectionné selon la revendication 10, comprenant de plus un moyen de jet d'air pour empêcher le pliage prématuré des bords opposés de la gouttière.
- Dispositif perfectionné selon la revendication 10, comprenant de plus, entre les moyens pour déposer la boue et les moyens de nivellement, des moyens (64) pour pousser les bords opposés du treillis vers l'intérieur et vers le bas.
- Dispositif perfectionné selon la revendication 16, dans lequel les spatules (44) sont fixées aux potences (46) de manière à pouvoir pivoter.
- Dispositif perfectionné selon la revendication 19, dans lequel la lame de spatule (52) est chanfreinée à partir du bord extérieur de la lame selon un angle d'environ 20° ou moins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT8787901221T ATE105233T1 (de) | 1986-02-20 | 1987-01-28 | Zementplatte mit verstaerkten kanten. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83170686A | 1986-02-20 | 1986-02-20 | |
US831706 | 1986-02-20 | ||
PCT/US1987/000155 WO1987004976A1 (fr) | 1986-02-20 | 1987-01-28 | Plaque en ciment ayant des bords renforces |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0259376A1 EP0259376A1 (fr) | 1988-03-16 |
EP0259376A4 EP0259376A4 (fr) | 1990-06-27 |
EP0259376B1 EP0259376B1 (fr) | 1994-05-04 |
EP0259376B2 true EP0259376B2 (fr) | 1998-07-15 |
Family
ID=25259672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87901221A Expired - Lifetime EP0259376B2 (fr) | 1986-02-20 | 1987-01-28 | Plaque en ciment ayant des bords renforces |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0259376B2 (fr) |
JP (2) | JPS63502975A (fr) |
AU (2) | AU601968B2 (fr) |
CA (1) | CA1290587C (fr) |
DE (1) | DE3789744T3 (fr) |
DK (1) | DK164579C (fr) |
FI (1) | FI92167C (fr) |
GB (1) | GB2188271B (fr) |
MX (1) | MX168743B (fr) |
WO (1) | WO1987004976A1 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8825747D0 (en) * | 1988-11-03 | 1988-12-07 | Bpb Industries Plc | Cementitious board |
DE4017057C2 (de) * | 1990-05-26 | 1999-11-04 | Peter Breidenbach | Lehmbauplatte und Verfahren zu ihrer Herstellung |
CA2211984C (fr) | 1997-09-12 | 2002-11-05 | Marc-Andre Mathieu | Panneau a base de ciment a rebords renforces |
US6508895B2 (en) | 1998-09-09 | 2003-01-21 | United States Gypsum Co | Method of producing gypsum/fiber board |
JP4072773B2 (ja) * | 2004-01-29 | 2008-04-09 | 株式会社Inax | 防水床構造 |
JP2005240311A (ja) * | 2004-02-24 | 2005-09-08 | Inax Corp | 浴室とその隣室との床の表面構造 |
JP2013158950A (ja) * | 2012-02-02 | 2013-08-19 | Ibiden Kenso Co Ltd | 不燃化粧板 |
US11224990B2 (en) * | 2016-08-05 | 2022-01-18 | United States Gypsum Company | Continuous methods of making fiber reinforced concrete panels |
CN108381751B (zh) * | 2017-12-14 | 2019-11-05 | 张玉明 | 布筋式水泥板瓦的制备方法 |
US11295248B2 (en) * | 2019-08-01 | 2022-04-05 | Gcp Applied Technologies Inc. | Coordinating concrete delivery and placement |
CN113942097B (zh) * | 2021-09-23 | 2023-01-03 | 重庆建工建材物流有限公司 | 超高性能混凝土装饰板的制备方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1330413A (en) * | 1918-09-03 | 1920-02-10 | United States Gypsum Co | Machine for making plaster-board or the like |
US1654024A (en) * | 1924-05-17 | 1927-12-27 | Universal Gypsum & Lime Co | Apparatus for shaping the edges of wall board or the like |
GB919092A (en) * | 1959-05-29 | 1963-02-20 | Reyes Manuel Jean | A rectangular,pre-fabricated plaster panel for partitioning,and a machine for the manufacture of same |
US3578517A (en) * | 1968-08-26 | 1971-05-11 | Nat Gypsum Co | Gypsum board forming |
DE2008744A1 (de) * | 1970-02-25 | 1971-09-23 | Gebr Knauf, Westdeutsche Gips werke, 8715 Iphofen | Verfahren zur Herstellung emer glas faservhesummantelten Gipsbauplatte |
US4002788A (en) * | 1971-10-28 | 1977-01-11 | The United States Of America As Represented By The Secretary Of The Army | Two-phase material of concrete and polymer and its method of preparation |
AT334047B (de) * | 1973-10-09 | 1976-12-27 | Linecker Josef | Betonteil und verfahren zur herstellung des betonteiles |
IE42358B1 (en) * | 1974-12-09 | 1980-07-30 | Ametex Ltd | Composite building module |
JPS531220A (en) * | 1976-06-25 | 1978-01-09 | Central Glass Co Ltd | Lighttweight plaster board coated with woven fabric or nonwoven fabric and production thereof |
JPS55139205A (en) * | 1979-04-19 | 1980-10-30 | Central Glass Co Ltd | Preparation of glass fiber reineorced cement board |
DE3012293C2 (de) * | 1980-03-29 | 1982-11-11 | Gebr. Knauf Westdeutsche Gipswerke, 8715 Iphofen | Beschichtete Gipsbauplatte |
US4351867A (en) * | 1981-03-26 | 1982-09-28 | General Electric Co. | Thermal insulation composite of cellular cementitious material |
JPS5919733A (ja) * | 1982-07-21 | 1984-02-01 | Nippon Denso Co Ltd | ト−シヨンバ−の固定方法 |
US4504335A (en) * | 1983-07-20 | 1985-03-12 | United States Gypsum Company | Method for making reinforced cement board |
US4647496A (en) * | 1984-02-27 | 1987-03-03 | Georgia-Pacific Corporation | Use of fibrous mat-faced gypsum board in exterior finishing systems for buildings |
US4698258A (en) * | 1986-05-22 | 1987-10-06 | Harkins Jr Joseph C | Surface covering product and process therefor |
-
1987
- 1987-01-23 CA CA000528059A patent/CA1290587C/fr not_active Expired - Lifetime
- 1987-01-28 JP JP62501222A patent/JPS63502975A/ja active Granted
- 1987-01-28 EP EP87901221A patent/EP0259376B2/fr not_active Expired - Lifetime
- 1987-01-28 JP JP5064569A patent/JP2673927B2/ja not_active Expired - Lifetime
- 1987-01-28 AU AU70215/87A patent/AU601968B2/en not_active Expired
- 1987-01-28 WO PCT/US1987/000155 patent/WO1987004976A1/fr active IP Right Grant
- 1987-01-28 DE DE3789744T patent/DE3789744T3/de not_active Expired - Lifetime
- 1987-02-19 MX MX527987A patent/MX168743B/es unknown
- 1987-02-20 GB GB8704039A patent/GB2188271B/en not_active Expired
- 1987-10-19 FI FI874590A patent/FI92167C/fi not_active IP Right Cessation
- 1987-10-19 DK DK544487A patent/DK164579C/da not_active IP Right Cessation
-
1990
- 1990-07-03 AU AU58660/90A patent/AU628187B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
AU5866090A (en) | 1990-10-11 |
GB2188271B (en) | 1989-11-29 |
AU628187B2 (en) | 1992-09-10 |
CA1290587C (fr) | 1991-10-15 |
AU601968B2 (en) | 1990-09-27 |
DE3789744T3 (de) | 1999-03-11 |
EP0259376A4 (fr) | 1990-06-27 |
DK544487D0 (da) | 1987-10-19 |
GB2188271A (en) | 1987-09-30 |
EP0259376B1 (fr) | 1994-05-04 |
JPH07102677A (ja) | 1995-04-18 |
MX168743B (es) | 1993-06-07 |
JP2673927B2 (ja) | 1997-11-05 |
DE3789744D1 (de) | 1994-06-09 |
DK544487A (da) | 1987-10-19 |
DK164579C (da) | 1992-12-07 |
DE3789744T2 (de) | 1994-12-08 |
FI92167C (fi) | 1994-10-10 |
FI874590A0 (fi) | 1987-10-19 |
GB8704039D0 (en) | 1987-03-25 |
JPS63502975A (ja) | 1988-11-02 |
FI92167B (fi) | 1994-06-30 |
WO1987004976A1 (fr) | 1987-08-27 |
AU7021587A (en) | 1987-09-09 |
FI874590A (fi) | 1987-10-19 |
DK164579B (da) | 1992-07-20 |
EP0259376A1 (fr) | 1988-03-16 |
JPH0580326B2 (fr) | 1993-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5221386A (en) | Cement board having reinforced edges | |
US4916004A (en) | Cement board having reinforced edges | |
US4450022A (en) | Method and apparatus for making reinforced cement board | |
US10676927B2 (en) | Lightweight cementitious panel possessing high durability | |
US4504335A (en) | Method for making reinforced cement board | |
US4793892A (en) | Apparatus for producing reinforced cementitious panel webs | |
EP1012422B1 (fr) | Panneau a base de ciment avec bords renforces | |
EP0259376B2 (fr) | Plaque en ciment ayant des bords renforces | |
SE441610B (sv) | Byggmaterialskiva med en kerna av cementartat material, sasom gips, och forfarande for framstellning derav | |
US9914245B2 (en) | Controlling the embedding depth of reinforcing mesh to cementitious board | |
US20150076726A1 (en) | Process for expanding small diameter polystyrene beads for use in cementitious board | |
US9676118B2 (en) | Formation of cementitious board with lightweight aggregate | |
US4842786A (en) | Method for producing an embossed gypsum panel | |
JPH06198618A (ja) | 補強セメント質パネルの製造方法とその装置 | |
RU2102240C1 (ru) | Способ изготовления комбинированных плит | |
NO874345L (no) | Sementplate med armerte kanter. | |
WO2015039064A1 (fr) | Panneau cimentaire léger très résistant dans le temps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR IT NL SE |
|
17P | Request for examination filed |
Effective date: 19880215 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19900627 |
|
17Q | First examination report despatched |
Effective date: 19910829 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR IT NL SE |
|
REF | Corresponds to: |
Ref document number: 105233 Country of ref document: AT Date of ref document: 19940515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3789744 Country of ref document: DE Date of ref document: 19940609 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87901221.9 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: REDCO S.A. Effective date: 19950130 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: REDCO S.A. |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19980715 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE DE FR IT NL SE |
|
NLR2 | Nl: decision of opposition | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20051229 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060103 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060117 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060127 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060131 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060215 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060228 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070128 |
|
EUG | Se: european patent has lapsed | ||
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20070129 |
|
BE20 | Be: patent expired |
Owner name: UNITED STATES *GYPSUM CY Effective date: 20070128 |