EP0243663B1 - Druckgasbehälter aus einer austenitischen Stahllegierung - Google Patents

Druckgasbehälter aus einer austenitischen Stahllegierung Download PDF

Info

Publication number
EP0243663B1
EP0243663B1 EP87104162A EP87104162A EP0243663B1 EP 0243663 B1 EP0243663 B1 EP 0243663B1 EP 87104162 A EP87104162 A EP 87104162A EP 87104162 A EP87104162 A EP 87104162A EP 0243663 B1 EP0243663 B1 EP 0243663B1
Authority
EP
European Patent Office
Prior art keywords
weight
steel alloy
deformation
container
austenitic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87104162A
Other languages
English (en)
French (fr)
Other versions
EP0243663A2 (de
EP0243663A3 (en
Inventor
Martin Dr. Kesten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to AT87104162T priority Critical patent/ATE75641T1/de
Publication of EP0243663A2 publication Critical patent/EP0243663A2/de
Publication of EP0243663A3 publication Critical patent/EP0243663A3/de
Application granted granted Critical
Publication of EP0243663B1 publication Critical patent/EP0243663B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2172Polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0781Diving equipments

Definitions

  • the invention relates to a pressurized gas container made of an austenitic steel alloy according to the preamble of claim 1, which is provided in particular for the storage of ultra-pure gases.
  • a compressed gas container of this type is known for example from DE-A-1452533.
  • the equipment and devices used to store and distribute ultra-pure gases, which are increasingly used, for example, in the semiconductor industry, must meet very special requirements. Only materials whose surfaces can be pretreated in such a way that the composition of the gases in contact with them do not change may be used. In particular, no surface particles may be released that would contaminate the gases in an unacceptable manner.
  • All storage and distribution components for ultra-pure gases are therefore made of austenitic CrNi steels and their gas-side surface is electrolytically polished. Electrolytic polishing removes the surface layer that is particularly contaminated and disturbed by production and processing. Surface roughness is also leveled, reducing the effective surface in contact with the medium.
  • the main problem is the extraordinarily low mechanical strength of the austenitic CrNi steels.
  • austenitic CrNi steels when used in the usual way, have strength values that are three to four times lower. For containers with the same capacity, this means a correspondingly greater material expenditure and a correspondingly higher weight.
  • the weight-related storage capacity of conventional austenitic compressed gas containers is negligibly small. Their use for gas transport, e.g. as a compressed gas bottle, is therefore economically justifiable only in exceptional cases.
  • the invention is therefore based on the object of creating a pressurized gas container for storing ultra-pure gases, which on the one hand makes it possible for reasons of gas purity to use the required CrNi steels as the container material, on the other hand makes the weight-related storage capacity of the container so large that it approximately corresponds to that of pressure containers made of conventional ferritic materials.
  • cryogenic deformation of austenitic materials also for the production of pressure vessels, is known, for example from DE-A-14 52 533 and DE-B-26 54 702.
  • Container materials suitable for the invention are, for example, the metastable steel qualities 1.4301, 1.4306 and 1.4404 DIN 17 440, but with analysis tolerances that deviate from the norm.
  • An essential prerequisite for carrying out the solidification process while simultaneously meeting the purity requirements and the associated surface treatment is that the materials used do not contain titanium and niobium (Ti + Nb below 0.02% by weight).
  • the carbon and nickel content must be additionally limited in the manner specified.
  • the prefabricated containers are deformed by applying a certain amount of pressure at low temperatures.
  • the temperature must be below the martensite formation temperature Md. This is the temperature above which regardless of size there is no martensitic transformation due to mechanical deformation. Under these conditions, the material solidifies more than is the case with normal cold forming, because the structure is partly transformed into martensite. The degree of solidification corresponds to the amount of the transformed structure.
  • the microstructural component converted into martensite increases with falling deformation temperature and increasing degree of deformation, the most favorable hardening conditions for the containers are achieved if the deformation process is carried out at a temperature which is significantly below Md. It is most expedient if the deformation takes place below the Ms temperature. This is the temperature at which the martensite transformation of the structure begins even without simultaneous deformation. Only a relatively small amount of deformation, for example a degree of deformation below 12%, is then required in order to convert a sufficiently large proportion of the structure and to achieve the desired high strength.
  • the Ms temperatures of the suitable metastable CrNi steels with the carbon and nickel contents according to the invention can be calculated using the known formulas from Eichelmann and Hull and are close to the temperature of the liquid nitrogen. It is therefore best to deform the prefabricated containers after they have been cooled by filling or immersing them in liquid nitrogen. Either liquid nitrogen itself or a gas which does not condense at this temperature, for example helium, can be used as the medium for generating the internal pressure required for the deformation. The amount of pressure to be applied depends on the container geometry and the desired material strength. A device for performing the method according to the invention is shown in the drawing.
  • the prefabricated container 1 is located in an insulated cryogenic container 2, which is filled with liquid nitrogen 3. Gaseous helium is drawn off from a storage container 4, brought to the desired deformation pressure by means of the compressor 5 and introduced through the line 6 into the interior of the prefabricated container. The deformation pressure is checked with the manometer 7.
  • the stress that occurs during cryoforming according to this formula corresponds to the material strength R p (cryo) achieved (yield point at the deformation temperature). As tests with appropriately manufactured containers have shown, this is in turn to be equated with the tensile strength of the material at ambient temperature R m (RT) , since it has been found that the burst pressure of the containers produced by cryoforming is in good agreement with the pressure used for cryosolidification . Knowing these relationships, it is possible to manufacture the containers according to their operational requirements interpret and solidify in the manner described.
  • the following table contains the characteristic data of test containers produced according to the invention from a cylindrical tube and two welded hemispherical bases made of modified material 1.4301 and, in comparison, the corresponding values of a container manufactured according to conventional methods.
  • this process expediently takes place with the raw container which has not yet been cryoformed.
  • the container material still has a homogeneous, austenitic structure, the polishability of which is not impaired by the simultaneous presence of austenitic and martensitic structural components.
  • This surface condition remains essentially unchanged in the subsequent solidification process, because the deformation of the raw container, as described, takes place at a low temperature, so that despite a high increase in strength, the overall deformation of the container material and thus also that of the electrolytically polished surface remains small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pens And Brushes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Description

  • Die Erfindung betrifft einen Druckgasbehälter aus einer austenitischen Stahllegierung nach dem Oberbegriff des Anspruches 1, der insbesondere für die Speicherung ultrareiner Gase vorgesehen ist. Ein Druckgasbehälter dieser Gattung ist beispielsweise aus der DE-A-1452533 bekannt. Die zur Speicherung und Verteilung von ultrareinen Gasen, die in zunehmendem Maße z.B. in der Halbleiterindustrie verwendet werden, eingesetzten Einrichtungen und Geräte müssen ganz besondere Anforderungen erfüllen. So dürfen nur Materialien verwendet werden, deren Oberflächen so vorbehandelt werden können, daß sich die Zusammensetzung der mit ihnen in Berührung kommenden Gase nicht verändert. Insbesondere dürfen keine Oberflächenpartikel abgegeben werden, welche die Gase in unzulässiger Weise verunreinigen würden.
  • Diese Voraussetzungen sind mit den herkömmlichen ferritischen Werkstoffen nicht mehr erfüllbar. Alle Speicher- und Verteilungskomponenten für ultrareine Gase werden daher aus austenitischen CrNi-Stählen hergestellt und ihre gasseitige Oberfläche wird elektrolytisch poliert. Durch das elektrolytische Polieren wird die durch die Herstellung und Verarbeitung besonders verunreinigte und gestörte Oberflächenschicht abgetragen. Außerdem werden Oberflächenrauhigkeiten eingeebnet und somit die effektive mediumberührte Oberfläche verringert.
  • Während diese Technik bei Transport- und Speicherbehältern für tiefkalte verflüssigte Gase bereits weitgehend eingeführt ist, bestehen große, bisher nicht gelöste Schwierigkeiten bei der Übertragung dieser Maßnahmen auf Druckgasbehälter für komprimierte ultrareine Gase.
  • Das Hauptproblem stellt die außerordentlich geringe mechanische Festigkeit der austenitischen CrNi-Stähle dar. Im Vergleich zu den üblichen ferritischen Druckbehälterwerkstoffen haben austenitische CrNi-Stähle, wenn sie in der gängigen Weise eingesetzt werden, Festigkeitskennwerte, die um den Faktor 3 bis 4 geringer sind. Für Behälter mit gleicher Kapazität bedeutet dies einen entsprechend größeren Materialaufwand und ein entsprechend höheres Gewicht. Dadurch wird die gewichtsbezogene Speicherkapazität herkömmlicher austenitischer Druckgasbehälter verschwindend klein. Ihre Verwendung für den Gastransport, z.B. als Druckgasflasche, ist deshalb nur in Ausnahmefällen wirtschaftlich vertretbar.
  • Der Erfindung liegt daher die Aufgabe zugrunde,einen Druckgasbehälter für die Speicherung ultrareiner Gase zu schaffen, welcher es einerseits ermöglicht, die aus Gründen der Gasreinheit erforderlichen CrNi-Stähle als Behältermaterial zu verwenden, andererseits die gewichtsbezogene Speicherkapazität der Behälter so groß macht, daß sie annähernd der von Druckbehältern aus üblichen ferritischen Werkstoffen entspricht.
  • Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik ist diese Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.
  • Eine vorteilhafte Weiterbildung der Erfindung ist im Unteranspruch angegeben.
  • Die Kryoverformung austenitischer Werkstoffe, auch zur Herstellung von Druckbehältern, ist bekannt, beispielsweise aus der DE-A-14 52 533 und der DE-B-26 54 702. Für die Erfindung geeignete Behälterwerkstoffe sind beispielsweise die metastabilen Stahlqualitäten 1.4301, 1.4306 und 1.4404 nach DIN 17 440, jedoch mit von der Norm abweichenden Analysentoleranzen. Eine wesentliche Voraussetzung für die Durchführung des Verfestigungsprozesses bei gleichzeitiger Erfüllung der Reinheitsanforderungen und der damit zusammenhängenden Oberflächenbehandlung ist nämlich, daß die verwendeten Werkstoffe kein Titan und Niob enthalten (Ti + Nb unter 0,02 Gew.%). Außerdem muß der Kohlenstoff- und Nickelgehalt in der angegebenen Weise zusätzlich eingeschränkt werden.
  • Um die Druckgasbehälter auf die gewünschte hohe Festigkeit zu bringen, werden die vorgefertigten Behälter durch Aufbringen von Innendruck um einen bestimmten Betrag bei tiefen Temperaturen verformt. Die Temperatur muß unterhalb der Martensitbildungstemperatur Md liegen. Dies ist die Temperatur, oberhalb der unabhängig von der Größe der mechanischen Verformung keine martensitische Umwandlung stattfindet. Unter diesen Bedingungen verfestigt sich das Material stärker, als dies bei normaler Kaltverformung der Fall ist, weil sich das Gefüge zu einem Teil in Martensit umwandelt. Der Grad der Verfestigung entspricht dabei der Menge des umgewandelten Gefüges.
  • Da der in Martensit umgewandelte Gefügeanteil mit sinkender Verformungstemperatur und steigendem Verformungsgrad zunimmt, erreicht man die günstigsten Verfestigungsbedingungen für die Behälter, wenn der Verformungsprozeß bei einer Temperatur durchgeführt wird, die deutlich unter Md liegt. Am zweckmäßigsten ist es, wenn die Verformung unterhalb der Ms-Temperatur stattfindet. Dies ist die Temperatur, bei der die Martensitumwandlung des Gefüges auch ohne gleichzeitige Verformung einsetzt. Es ist dann nur eine relativ geringe Verformung, beispielsweise ein Verformungsgrad unter 12%, erforderlich, um einen ausreichend großen Anteil des Gefüges umzuwandeln und die gewünschtehohe Festigkeit zu erreichen.
  • Die Ms-Temperaturen der geeigneten metastabilen CrNi-Stähle mit den erfindungsgemäßen Gehalten an Kohlenstoff und Nickel lassen sich durch die bekannten Formeln von Eichelmann und Hull berechnen und liegen in der Nähe der Temperatur des flüssigen Stickstoffs. Daher erfolgt die Verformung der vorgefertigten Behälter am zweckmäßigsten, nachdem sie durch Befüllen oder Eintauchen in flüssigen Stickstoff abgekühlt worden sind. Als Medium zur Erzeugung des für die Verformung erforderlichen Innendrucks kann entweder flüssiger Stickstoff selbst oder ein bei dieser Temperatur nicht kondensierendes Gas, z.B. Helium, verwendet werden. Die Höhe des anzuwendenden Druckes richtet sich nach der Behältergeometrie und der angestrebten Materialfestigkeit. Eine Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist in der Zeichnung dargestellt.
  • Der vorgefertigte Behälter 1 befindet sich in einen isolierten Kryobehälter 2, welcher mit flüssigem Stickstoff 3 gefüllt ist. Aus einem Vorratsbehälter 4 wird gasförmiges Helium abgezogen, mittels des Kompressors 5 auf den gewünschten Verformungsdruck gebracht und durch die Leitung 6 in das Innere des vorgefertigten Behälters eingeführt. Der Verformungsdruck wird mit dem Manometer 7 kontrolliert.
  • Bei zylindrischen Behältern mit halbkugelförmigen Böden unter innerem Überdruck tritt die höchste, für die Dimensionierung des Behälters maßgebende Spannung im zylindrischen Umfang auf.
    Figure imgb0001
  • Dm:
    mittlerer zylindrischer Durchmesser(mm)
    p:
    Innendruck (bar)
    s:
    zylindrische Wanddicke (mm)
  • Die sich nach dieser Formel beim Kryoverformen einstellende Spannung entsprich der erzielten Materialfestigkeit Rp (Kryo) (Streckgrenze bei der Verformungstemperatur). Wie Versuche mit entsprechend hergestellten Behältern ergeben haben, ist diese wiederum mit der Zerreißfestigkeit des Material bei Umgebungstemperatur Rm (RT) gleichzusetzen, da sich herausgestellt hat, daß der Berstdruck der durch Kryoverformung hergestellten Behälter in guter Übereinstimmung mit dem bei der Kryoverfestigung angewendeten Druck steht. Bei Kenntnis dieser Zusammenhänge ist es möglich, die herzustellenden Behälter ihren betrieblichen Erfordernissen entsprechend auszulegen und in der beschriebenen Weise zu verfestigen.
  • Die folgende Tabelle enthält als Beispiel die Kenndaten von erfindungsgemäß aus einem zylindrischen Rohr und zwei angeschweißten Halbkugelböden aus modifiziertem Werkstoff 1.4301 hergestellten Versuchsbehältern und im Vergleich dazu die entsprechenden Werte eines nach herkömmlichen Verfahren gefertigten Behälters.
    Figure imgb0002
  • Wie eingangs dargestellt, ist es unbedingt erforderlich, die Innenoberflächen der Druckgasbehälter elektrolytisch zu polieren. Dieser Prozeß kann sowohl vor als auch nach der Kryoverformung durchgeführt werden.
  • Um ein optimales Polierergebnis zu erzielen, findet dieser Prozeß jedoch zweckmäßigerweise mit dem noch nicht kryoverformten Rohbehälter statt. In diesem Zustand besitzt der Behälterwerkstoff noch ein homogenes, austenitisches Gefüge, dessen Polierbarkeit durch das gleichzeitige Vorliegen austenitischer und martensitischer Gefügebestandteile nicht beeinträchtigt ist.
  • Dieser Oberflächenzustand bleibt auch bei dem anschließenden Verfestigungsprozeß im wesentlichen erhalten, weil die Verformung des Rohbehälters, wie beschrieben, bei tiefer Temperatur erfolgt, so daß trotz hoher Festigkeitssteigerung die Gesamtverformung des Behälterwerkstoffes und damit auch die der elektrolytisch polierten Oberfläche gering bleibt.

Claims (2)

  1. Druckgasbehälter, der aus einer austenitischen Stahllegierung als Rohbehälter hergestellt und anschließend durch Kryoverformung verfestigt ist, wobei die austenitische Stahllegierung ein metastabiler CrNi-Stahl ist
    dadurch gekennzeichnet,
    daß, der Stahl einen Titan- und Niobgehalt von zusammen gleich oder kleiner 0,02 Gew.% und einen Kohlenstoffgehalt von gleich oder kleiner 0,045 Gew.% besitzt, wobei bei Nickelgehalten bis 9,5 Gew% der Kohlenstoffgehalt zwischen 0,03 und 0,045 Gew.% liegt und bei Nickelgehalten zwischen 9,5 und 10,0 Gew.% der Kohlenstoffgehalt unter 0,03 Gew.% liegt.
  2. Druckgasbehälter nach Anspruch 1,
    dadurch gekennzeichnet,
    daß er elektrolytisch poliert ist.
EP87104162A 1986-04-26 1987-03-20 Druckgasbehälter aus einer austenitischen Stahllegierung Expired - Lifetime EP0243663B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87104162T ATE75641T1 (de) 1986-04-26 1987-03-20 Druckgasbehaelter aus einer austenitischen stahllegierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863614290 DE3614290A1 (de) 1986-04-26 1986-04-26 Druckgasbehaelter aus einer austenitischen stahllegierung
DE3614290 1986-04-26

Publications (3)

Publication Number Publication Date
EP0243663A2 EP0243663A2 (de) 1987-11-04
EP0243663A3 EP0243663A3 (en) 1988-11-30
EP0243663B1 true EP0243663B1 (de) 1992-05-06

Family

ID=6299672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104162A Expired - Lifetime EP0243663B1 (de) 1986-04-26 1987-03-20 Druckgasbehälter aus einer austenitischen Stahllegierung

Country Status (5)

Country Link
US (1) US4772337A (de)
EP (1) EP0243663B1 (de)
JP (1) JPS62278249A (de)
AT (1) ATE75641T1 (de)
DE (1) DE3614290A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175498A1 (de) 2011-06-22 2012-12-27 Mt Aerospace Ag Druckbehälter zum aufnehmen und speichern von kryogenen fluiden, insbesondere von kryogenen flüssigkeiten, und verfahren zu dessen herstellung sowie dessen verwendung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726960A1 (de) * 1987-08-13 1989-02-23 Messer Griesheim Gmbh Verfahren zur herstellung eines druckgasbehaelters aus austenitischen staehlen durch kryoverformung
DE3736579C3 (de) * 1987-10-26 1996-10-17 Mannesmann Ag Druckbehälter zur Speicherung von Gasen hoher Reinheit
US5085745A (en) * 1990-11-07 1992-02-04 Liquid Carbonic Corporation Method for treating carbon steel cylinder
DE4114301A1 (de) * 1991-05-02 1992-11-05 Messer Griesheim Gmbh Verfahren zur martensitischen umwandlung von metastabilem austenit, insbesondere bei der herstellung von druckgasbehaeltern aus metastabilem austenit
US5259935A (en) * 1991-05-03 1993-11-09 The Boc Group, Inc. Stainless steel surface passivation treatment
DE19645442A1 (de) * 1996-11-04 1998-05-14 Messer Griesheim Gmbh Verbundbehälter für Gase
DE19711844B4 (de) * 1997-03-21 2005-06-02 Metall-Spezialrohr Gmbh Verfahren zum Herstellen eines Druckgasbehälters
DE19934851A1 (de) * 1999-07-24 2001-02-01 Messer Griesheim Gmbh Taucherflasche und Verfahren für deren Herstellung
WO2002065015A2 (en) * 2001-02-13 2002-08-22 African Oxygen Limited Transportation of liquefiable petroleum gas
DE10239372B3 (de) * 2002-08-28 2004-03-11 Mq Engineering Gmbh Verfahren zur Herstellung von Umformteilen
US20040188272A1 (en) * 2003-03-25 2004-09-30 Blanks Jeremy Daniel Method for reducing degradation of reactive compounds during transport
EP1985388B1 (de) * 2008-08-06 2010-03-24 Witzenmann GmbH Hochdruckfester Metallbalg und Verfahren zum Herstellen eines solchen
DE102011105423B4 (de) * 2011-06-22 2013-04-04 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung
ES2594854T3 (es) 2013-10-22 2016-12-23 Reemtsma Cigarettenfabriken Gmbh Paquete para productos de tabaco o materias primas relacionadas del tabaco o dispositivos de fumar y su uso

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB622713A (en) * 1947-03-21 1949-05-05 Electro Metallurg Co Improvements in stainless steels
DE1093394B (de) * 1956-08-16 1960-11-24 Mannesmann Ag Verfahren zum Herstellen von Walzerzeugnissen aus stabilaustenitischen Chrom-Nickel-Staehlen
DE1452533A1 (de) * 1962-03-28 1969-02-20 Arde Portland Inc Verfahren zur Herstellung von Druckbehaeltern mit hoher Zugfestigkeit und Vorrichtung zur Durchfuehrung des Verfahrens
US3255051A (en) * 1962-07-25 1966-06-07 Aerojet General Co Method for strengthening iron base alloys
US3258370A (en) * 1964-07-27 1966-06-28 Int Nickel Co High strength, notch ductile stainless steel products
US3919061A (en) * 1973-12-13 1975-11-11 John F Jumer Polishing large cylindrical vessels or tanks with closed ends
US4042421A (en) * 1975-12-03 1977-08-16 Union Carbide Corporation Method for providing strong tough metal alloys
JPS592740B2 (ja) * 1980-01-14 1984-01-20 新日本製鐵株式会社 耐食・耐高温使用中脆化特性に優れた化学容器
GB8327016D0 (en) * 1983-10-10 1983-11-09 Sodastream Ltd Manufacture of metal containers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175498A1 (de) 2011-06-22 2012-12-27 Mt Aerospace Ag Druckbehälter zum aufnehmen und speichern von kryogenen fluiden, insbesondere von kryogenen flüssigkeiten, und verfahren zu dessen herstellung sowie dessen verwendung
DE102011105426A1 (de) 2011-06-22 2012-12-27 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102011105426B4 (de) * 2011-06-22 2013-03-28 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung

Also Published As

Publication number Publication date
US4772337A (en) 1988-09-20
EP0243663A2 (de) 1987-11-04
DE3614290A1 (de) 1987-10-29
ATE75641T1 (de) 1992-05-15
JPS62278249A (ja) 1987-12-03
EP0243663A3 (en) 1988-11-30
DE3614290C2 (de) 1988-05-19

Similar Documents

Publication Publication Date Title
EP0243663B1 (de) Druckgasbehälter aus einer austenitischen Stahllegierung
CH673240A5 (de)
EP1680620A1 (de) Verfahren zur gasbefüllung von druckgefässen
DE2853575B2 (de) Verfahren zum pulvermetallurgischen Herstellen von Legierungskörpern aus hydrierten Metallpulverchargen
EP1695001A1 (de) Verfahren zur gasbefüllung von druckgasbehältern
EP1076794B1 (de) Verfahren zum speichern von tiefsiedenden permanenten gasen oder gasgemischen in druckbehältern
EP0303840A2 (de) Ventilmuffe zur Aufnahme des Gasflaschenventils von Druckgasbehältern aus hochlegierten Chrom-Nickelstählen
DE3030652A1 (de) Stahllegierung
DE3237761A1 (de) Verfahren zum herstellen eines druckbehaelters in verbundbauweise
EP0303016B1 (de) Verfahren zur Herstellung eines Druckgasbehälters aus austenitischen Stählen durch Kryoverformung
EP2427284A2 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
DE2435463A1 (de) Hochdruckgefaess und verfahren zu seiner herstellung
EP0364430A1 (de) Vormaterial für die Erzeugung von Verbundwerkstoffen
EP0660029A1 (de) Verfahren zum Transport von Acetylen
EP0840054B1 (de) Verbundbehälter für Gase
US3615921A (en) Process for strengthening alloys
EP1004779B1 (de) Verfahren und Vorrichtung zur Gasversorgung und Gasrückgewinnung
WO2000031312A1 (de) Verfahren zur herstellung einer schutzschicht auf einem martensitischen stahl und verwendung des mit der schutzschicht versehenen stahls
DE3608563C2 (de)
EP0848069A2 (de) Verfahren zur Herstellung von korrosionsbeständigen Flaschen oder Behältern aus Stahl
DE2653847A1 (de) Stahl mit mechanisch anisotroper struktur und verfahren zu seiner herstellung
EP1206662B1 (de) Taucherflasche und verfahren für deren herstellung
DE19940834A1 (de) Verfahren und Vorrichtung zur Gasversorgung und Gasrückgewinnung
EP0106961B1 (de) Verfahren zum Herstellen einer Gasatmosphäre für das Glühen metallischer Werkstücke
EP0813024A2 (de) Verfahren zum Befüllen einer Druckgasflasche mit Ethen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: B21D 51/24

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB LI NL

17P Request for examination filed

Effective date: 19890309

17Q First examination report despatched

Effective date: 19900730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB LI NL

REF Corresponds to:

Ref document number: 75641

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040310

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040311

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060213

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070319

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20