EP0235562B1 - Procédé et dispositif pour l'introduction dosée de fines granules dans un four industriel - Google Patents

Procédé et dispositif pour l'introduction dosée de fines granules dans un four industriel Download PDF

Info

Publication number
EP0235562B1
EP0235562B1 EP87101087A EP87101087A EP0235562B1 EP 0235562 B1 EP0235562 B1 EP 0235562B1 EP 87101087 A EP87101087 A EP 87101087A EP 87101087 A EP87101087 A EP 87101087A EP 0235562 B1 EP0235562 B1 EP 0235562B1
Authority
EP
European Patent Office
Prior art keywords
conveying
metering container
section
duct
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87101087A
Other languages
German (de)
English (en)
Other versions
EP0235562A2 (fr
EP0235562A3 (en
Inventor
Hans-Günther Dr.-Ing. Rachner
Hans-Klaus Dr. Schott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuettner GmbH and Co KG
Paul Wurth SA
Original Assignee
Kuettner GmbH and Co KG
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuettner GmbH and Co KG, Paul Wurth SA filed Critical Kuettner GmbH and Co KG
Priority to AT87101087T priority Critical patent/ATE68589T1/de
Publication of EP0235562A2 publication Critical patent/EP0235562A2/fr
Publication of EP0235562A3 publication Critical patent/EP0235562A3/de
Application granted granted Critical
Publication of EP0235562B1 publication Critical patent/EP0235562B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet

Definitions

  • the invention relates to a method for the metered introduction of fine-grained, in particular dust-like solids, in particular coal dust, from a metering container containing a solid supply and under pressure into an industrial furnace having several feed points, in particular a shaft furnace such as a blast furnace or a cupola furnace, in which the solids are fed to the individual feed points in a carrier gas stream with a high solids load, each through a conveying line, the carrier gas being fed to the lower end section of the metering container in a flow causing local loosening in the lower section of the solids supply and the delivery lines open into the loosening area.
  • a shaft furnace such as a blast furnace or a cupola furnace
  • the invention further relates to a device for carrying out the aforementioned method with a metering container designed as a pressure vessel, which is to be filled with solid to be fed to the furnace at its upper section and which has a plurality of open-topped chambers at its lower end section, in each of which at least one to a supply point leading delivery line opens, and which are each provided with a gas-permeable inflow base, on the side facing away from the solid column, a carrier gas line for supplying carrier gas opens.
  • a metering container designed as a pressure vessel, which is to be filled with solid to be fed to the furnace at its upper section and which has a plurality of open-topped chambers at its lower end section, in each of which at least one to a supply point leading delivery line opens, and which are each provided with a gas-permeable inflow base, on the side facing away from the solid column, a carrier gas line for supplying carrier gas opens.
  • coal dust which can be obtained from raw coal in a grinding and drying plant, the coal dust being fed to the industrial furnace by means of a corresponding device by pneumatic conveying.
  • the most important metallurgical requirement is that the metering of the coal dust, ie the amount of coal dust supplied to the furnace per unit of time, is carried out with the greatest possible accuracy, so that the metallurgical As far as possible, processes in the furnace are subject to as little fluctuation as possible.
  • coal dust for example in a blast furnace, is not supplied at one point but has to be fed to each blow mold, industrial furnaces generally have several feed points, a further requirement being that the coal dust must be fed evenly to the individual feed points.
  • the carrier gas flow to be fed to the chambers of the dosing container below the inflow bottoms must (at least) be dimensioned such that it always leads to sufficient loosening of the solid in the local loosening zone in the case of the type of solid to be conveyed - that is to say also at the highest operating pressure occurring in the dosing container that the so-called loosening point of the solid bed in the metering container is reached or exceeded in every operating state. In the case of a fine-grained solid, this loosening point is only insignificantly dependent on the pressure under which the solid bed is.
  • the present invention has for its object to provide a method and a device suitable for performing the method of the types described above, by means of which, with the least possible investment, an accurate, operationally reliable and robust, largely independent of the inevitably fluctuating respective properties of the solid Dosage of the predetermined total amount of solids fed to the furnace is to be ensured, the total amount of the solid also being to be largely uniformly fed to the individual feed points of the furnace and the largest possible control range for the respective solids delivery capacity should be present in the individual delivery lines, and furthermore the wear of the delivery lines should be as small as possible or limited to a small section.
  • the dosing container containing the solids supply is continuously weighed, so that the actual weight of the dosing container (including its contents) with which the initial weight is the target -Delivery capacity and the target weight that has elapsed since the start of the discharge are compared and the pressure in the metering container is increased or decreased when the target weight is exceeded or undershot, and that regulation of the delivery capacity of each delivery line is independent of the other delivery lines in in a manner known per se by adding secondary gas, the secondary gas being fed to the feed lines in each case adjacent to the relevant feed point of the industrial furnace upstream to a throttle point or narrowing of the cross-section.
  • the above-described gravimetric metering of the total amount of solids supplied to the furnace per unit of time and its regulation via the pressure difference between the pressure in the metering container and the furnace or the end of the delivery lines achieve an extraordinarily high degree of accuracy within the scope of the requirements , which is usually so large that the pressure regulating the total discharge rate in the dosing container is generally only changed at intervals of the order of 5 to 10 minutes, this accuracy being able to be achieved with comparatively little effort.
  • the differential pressure is preferably regulated in a manner known per se by supplying or removing pressurized top gas which is supplied through the metering container of the solid supply.
  • the amount of top gas supplied is preferably such that not only is the amount of solids discharged from the metering container replaced by top gas, and the gap volume between the solid parts corresponding to the respective operating pressure is filled by gas, but also that part of the top gas supplied is always up to the local loosening area flows and is discharged through the delivery lines together with the solids and the carrier gas supplied to the metering vessel at the lower end section.
  • the latter has proven to be extremely useful for ensuring a steady flow of solids into the chambers and for the desired high solids loading.
  • the amount of carrier gas supplied to the lower end section of the metering vessel (based on the standard state) is preferably kept constant for a particular type of solid in the method according to the invention, the amount of carrier gas being dimensioned such that it falls below the respective type of solid the highest operating pressure in the dosing tank leads to a loosening of the solid in the local loosening zone.
  • the metering vessel is designed in a manner known per se as a weighing vessel, in the upper end section of which a top gas line provided with a control valve for supplying top gas under excess pressure opens out, that a (first) control device is present by means of which the actual weight of the metering vessel (together with its contents) is to be compared with its target weight at predetermined intervals and if the target weight is exceeded or undershot, the pressure in the metering container is increased or regulated by regulating the top gas pressure.
  • another essential feature of the present invention is the cross-sectional narrowing of the delivery lines at their end section and the supply of Secondary gas to the delivery lines more or less immediately adjacent to the cross-sectional constriction.
  • the large cross-sectional constriction at the end of the delivery lines also gives the great advantage that the non-narrowed part of the delivery lines, the length of which can be 100 to 200 meters, is driven at a relatively low delivery speed of, for example, 0.8 to 3 m / sec can be, which only causes a correspondingly low wear, while only the flow velocity in the narrowed part is relatively high (e.g. 18 to 30 m / sec) and only in this short section of the delivery line there is more wear, these short sections according to Wear can be exchanged.
  • the cross-sectional constriction in the delivery lines is preferably continuous, with a conical and the like between the section of the delivery line having the larger cross section and its section having the smaller cross section. trained intermediate section may be present.
  • the cross-sectional ratio between the non-constricted and the constricted part of a delivery line can, according to the invention, be approximately 10: 1 - 25: 1, it being preferably provided that the non-restricted cross-section of the delivery lines each has a diameter of approximately 25 to 40 mm, while the constricted Cross section has a diameter of 6 to 8 mm.
  • Electrical load cells on which the dosing vessel is supported, and whose measurement signals are to be fed to the first control device, are preferably provided as weight measuring devices for the weight measurements of the metering container, together with their contents.
  • load cells are not only extremely robust and relatively inexpensive, but also have a level of accuracy that is sufficiently high for gravimetric dosing within the framework of the circumstances described above.
  • the measuring devices for determining the relative actual delivery rate in the delivery lines do not need to be highly complex measuring devices which measure the flow rate in the delivery lines with a relatively high degree of accuracy, since according to the invention only a relative measurement of the delivery rate in the individual delivery lines to one another needs to take place because with these measuring devices, in contrast to previously known devices such as the device described above according to DE-OS 29 34 130, no absolute values have to be measured. Accordingly, it is preferably provided that these measuring devices are capacitively operating measuring devices, with impairments in the measuring results due to changes in moisture etc. not playing a role in this relative measurement, since the properties of the conveyed material in the individual delivery lines are essentially the same at the same time are.
  • Fig. 1 shows a highly schematic and simplified representation of a device for the metered introduction of coal dust into a blast furnace, not shown, of which only one blow mold 2 is indicated, of which there are several distributed over the circumference of the blast furnace, each in one Wind tunnel 3 open.
  • the coal dust to be blown into the blast furnace 1 is put into a storage silo 4 after its production in a grinding and drying system, in which a quantity of coal can be stored under an inert atmosphere, which is sufficient to bridge a production loss of the grinding and drying system that lasts several hours can.
  • the ground coal passes from the storage silo 4 via a cellular wheel sluice 5 into a sluice vessel 6, which after filling is closed by a valve 7 to the storage silo 4.
  • the sluice vessel 6 is strung at its lower end section via a line 8 with sluice gas originating from a wind boiler 9 until the predetermined working pressure of a metering container 10 arranged below the sluice vessel 6, also designed as a pressure vessel, is reached and that in the sluice vessel 6 located coal dust reaches the metering container 10 after opening valves 11. After filling the metering container 10, the valves 11 are closed again.
  • the gas line 12 leading from the wind boiler 9 to line 8 for the lock gas is continued via the connection point of line 8 and connected to an upper gas line 13 which leads to the upper section of the metering container 10 and in which a control valve 14 is arranged.
  • a plurality of chambers 15 are arranged which are open at the top, that is to say into the metering container 10, the maximum number of which corresponds to the number of blow molds 2 of the blast furnace 1 to be charged with coal dust.
  • Each chamber 15 is provided with a gas-permeable inflow base 16 in its lower region.
  • a carrier gas line 17 opens into each chamber 15 below the inflow bottoms 16, the carrier gas lines 17 being connected to the gas line 12 via a valve 18.
  • a delivery line 19 is led out of each chamber 15, the delivery lines 19, of which only one line is shown for the sake of clarity, each end in the chambers 15 somewhat above the inflow floor 16, where the coal dust is loosened or fluidized by the introduced carrier gas is.
  • the conveyor lines 19, the length of which is between 100 and 200 meters, have a free cross section of 25 mm over their entire length.
  • the cross section of the delivery lines 19 is in each case significantly reduced downstream of the feed point 20 in question and adjacent to it, to a diameter of 6 mm. As can be seen from FIG. 2, this considerable reduction in cross-section does not occur suddenly, but essentially continuously via a conical intermediate piece 21.
  • the gas line 12 coming from the air boiler 9 is continued via the connection point of the carrier gas lines 17 with a bypass line 22, via which secondary gas is to be conducted into the relevant delivery line 19.
  • a control valve 23 is arranged in each bypass line 22 and is used to regulate the amount of secondary gas supplied to the relevant delivery line 19.
  • connection point 24 for the bypass line 22 is preceded by a capacitive measuring device 25 upstream in each delivery line 19, by means of which the relative delivery rate of the relevant delivery line 19 can be determined.
  • the measuring devices 25 each give their measured values to a u.a. a control device 26 containing a computer, with which the control valves 23 in the bypass lines 22 are to be controlled.
  • the dosing container 10 is supported on load cells 27, by means of which its weight (together with its content) can be measured continuously, the measured values being fed to a control device 28, which is also connected to the control valve 14 of the upper gas line 13.
  • the required operating pressure is set in the dosing tank 10 via the upper gas line 13, the differential pressure between the pressure in the dosing tank 10 and the pressure prevailing in the blast furnace 1 or that prevailing at the end of the delivery lines 19 Pressure is basically kept constant during the emptying of the metering container 10.
  • the actual weight of the dosing container 10 (including its contents) is constantly compared by the control device 28 with the target weight of the dosing container 10, that is to say with the weight which the dosing container has after the time that has elapsed since emptying, taking into account the specified discharge rate ought to. If the actual weight of the metering container 10 corresponds to its target weight, this indicates that the specified discharge quantity has actually been discharged and fed to the blast furnace 1 in the relevant time interval, so that the operating conditions are not changed. If, on the other hand, the actual weight of the metering container 10 is greater than its target weight at the relevant time, this means that too little coal dust has been discharged from the metering container 10.
  • the control device operates 28 that the previously constant pressure in the metering container 10 is increased by the control device 28 acting accordingly on the control valve 14 of the upper gas line 13. If, on the other hand, the actual weight is smaller than the target weight of the metering container 10 and accordingly too much coal dust has been discharged from the metering container at the time of measurement, the control device 28 brings about a reduction in the previously constant pressure in the metering container 10 and thus a corresponding reduction in the discharge capacity.
  • the amount of carrier gas supplied to the dosing container 10 via the chambers 15 via the carrier gas lines 17 is kept constant. so that the conditions determined during or before start of operation, adapted to the respective properties of the coal dust and adjusted to the predetermined throughput, remain essentially unchanged. This obviously also applies in an advantageous manner to the fluidization conditions at the beginning of the delivery lines 19.
  • control device 26 detects that the measured delivery capacity of a particular delivery line 19 is greater than the determined mean value and must therefore be reduced for the purpose of equalization, the control device 26 acts on the control valve 23 of the relevant bypass line 22 in such a way that that of the relevant delivery line 19 at the connection point 24 supplied secondary gas is increased in quantity, so that there is a corresponding dilution of the two-component flow and thus a reduction in the discharge capacity of the delivery line 19 in question of solid matter (coal dust). If, on the other hand, the delivery rate determined in a delivery line 19 is less than the mean value, the reverse process takes place, ie the secondary gas flow supplied to the delivery line 19 is reduced accordingly.
  • connection points 24 of the bypass lines 22 are each arranged adjacent to the constriction point 21, there is therefore a considerable pressure drop due to the pressure drop during delivery in the delivery line 19 to the metering container 10 and also due to the cross-sectional constriction to the blast furnace 1, so that there is a large control range of the order of 1: 3 - 1: 4 can be achieved in the individual delivery lines 19.
  • the wear on the delivery lines 19 is extremely low, since you can get under normal conditions with conveyor speeds in the range of about 0.8 to 3 m / sec and only in the area of the lance-shaped constriction section 19 'speeds in the range of 18 to 30 m / sec can be achieved, which, however, not as a negative side effect of Cross-sectional narrowing of the delivery lines 19 to be considered, but in view of the high wind speeds in the wind tunnel 3 or in the blow molds 2 and the internal pressure prevailing in the furnace are necessary in order to be able to blow the two-component flow into the blast furnace.
  • the relatively small diameter at the narrowed end section 19 'of the conveyor lines 19 also proves to be advantageous when it is introduced into the blast furnace 1, since such dimensions allow manual insertion even with the high internal pressures of the blast furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Blast Furnaces (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Claims (12)

  1. Procédé pour l'introduction dosée de matières solides en grains fins et plus particulièrement à l'état pulvérulent et, plus particulièrement, de poussière de charbon provenant d'un réservoir de dosage sous pression contenant une réserve de matière solide dans un four industriel présentant plusieurs points d'alimentation et, en particulier, un four à cuve tel qu'un haut-fourneau ou un cubilot, dans lequel la matière solide est amenée aux différents points d'alimentation dans un courant de gaz porteur avec une charge en matière solide élevée en passant chaque fois par une conduite de transport, tandis que le gaz porteur est introduit dans la section terminale inférieure du réservoir de dosage dans une section inférieure de la réserve de matière solide sous forme d'un courant provoquant un ameublissement local et que les conduites de transport débouchent dans la zone d'ameublissement, caractérisé en ce que le réservoir de dosage contenant la réserve de matière solide est pesé en continu, que le poids réel du réservoir de dosage est comparé à son poids nominal et que, dans le cas où le poids nominal est dépassé ou n'est pas atteint, la pression dans le réservoir de dosage est augmentée ou diminuée; et qu'un réglage du débit dans chaque conduite de transport est assuré d'une manière connue en soi, par adduction de gaz secondaire et indépendamment des autres conduites de transport, tandis que le gaz secondaire est introduit dans les conduites de transport à proximité du point d'alimentation correspondant et en amont d'un point d'étranglement ou d'une réduction de section.
  2. Procédé selon la revendication 1, caractérisé en ce que le débit de gaz porteur rapporté à l'état normal et introduit instantanément dans la section terminale inférieure du réservoir de dosage est maintenu constant pour un type déterminé de matière solide, tandis que le débit de gaz porteur est calculé de façon à ce qu'il provoque encore l'ameublissement de la matière solide dans la zone d'ameublissement locale, même pour la pression de service la plus élevée existant dans le réservoir de dosage.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la régulation de la pression dans le réservoir de dosage est assurée par adduction ou évacuation du gaz amené par le dessus et sous pression qui est amené ou évacué au-dessus de la réserve de matière solide.
  4. Procédé selon la revendication 3, caractérisé en ce que la quantité de gaz amené par le dessus dans le réservoir de dosage est calculée de façon à ce que non seulement la quantité de matière solide extraite du réservoir de dosage soit remplacée par du gaz amené par le dessus et que le volume des vides entre les particules de matière solide soit rempli de gaz à la pression de service considérée, mais également qu'une partie du gaz amené par le dessus pénètre jusqu'à la zone d'ameublissement locale et soit extraite avec la matière solide, tout comme le gaz porteur amené au réservoir de dosage dans la section terminale inférieure, l'extraction se produisant par les conduites de transport.
  5. Dispositif pour mettre en oeuvre le procédé selon une ou plusieurs des revendications précédentes, avec un réservoir de dosage se présentant comme un récipient à pression qui doit être rempli de matière solide par sa section supérieure et qui présente, dans sa section terminale inférieure, plusieurs chambres ouvertes vers le haut dans lesquelles débouche au moins une conduite de transport menant à un point d'alimentation et qui sont pourvues chacune de fonds de passage perméables aux gaz, avec une conduite de gaz porteur destinée à amener le gaz porteur qui débouche sur le côté de ce fond opposé à la colonne de matière solide, caractérisé en ce que le réservoir de dosage (10) se présente, d'une manière connue en soi, sous forme d'un récipient de pesage dont la section terminale supérieure reçoit une conduite de gaz amenée par le dessus (13) pourvue d'une vanne de réglage (14) pour amener par le dessus du gaz sous pression, en ce qu'un premier dispositif de régulation (28) est prévu pour permettre de comparer le poids réel du réservoir de dosage (10) avec son poids nominal et que, si le poids nominal est dépassé ou n'est pas atteint, la pression dans le réservoir de dosage (10) est augmentée ou diminuée par réglage de la pression du gaz amené par le dessus et que, en cas de coïncidence du poids nominal avec le poids réel, cette pression est maintenue constante, en ce que la section des conduites de transport (19) est diminuée sensiblement dans la section (19') située immédiatement en amont du point d'alimentation considéré (20), en ce qu'une conduite de by-pass (22) amenant du gaz secondaire débouche en amont à proximité du rétrécissement de section (21) dans chaque conduite de transport (19), en ce qu'il existe, dans chaque conduite de transport (19), un dispositif de mesure (25) au moyen duquel le débit réel relatif de la conduite de transport considérée (19) est déterminé; et en ce qu'il existe dans chaque conduite de transport (19) un deuxième dispositif de régulation (26), au moyen duquel le débit de gaz secondaire amené à la conduite de transport (19) peut être augmenté ou diminué si le débit de transport réel déterminé par le dispositif de mesure (25) dans la conduite de transport (19) est supérieur ou inférieur au débit de transport moyen pour chaque conduite de transport (19) déterminé par le calculateur de valeur moyenne.
  6. Dispositif selon la revendication 5, caractérisé en ce que le résevoir de dosage (10) repose sur des boîtes électriques dynamométriques (27) dont les signaux de mesure sont amenés au premier dispositif de régulation (28).
  7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que le rétrécissement de section (21) dans les conduites de transport (19) est réalisé de manière essentiellement progressive.
  8. Dispositif selon la revendication 7, caractérisé en ce qu'il existe, entre la partie d'une conduite de transport (19) présentant une plus grande section et sa partie présentant une plus petite section (19'), une section intermédiaire (21) en forme de cône.
  9. Dispositif selon une ou plusieurs des revendications 5 à 8, caractérisé en ce que le rapport des sections avant et après l'endroit du rétrécissement de section (21) est égal à environ 10:1 - 25:1.
  10. Dispositif selon une ou plusieurs des revendications 5 à 9, caractérisé en ce que la section des conduites de transport (19) est diminuée d'environ 25 à 40 mm jusqu'à environ 6 à 8 mm.
  11. Dispositif selon une ou plusieurs des revendications 5 à 10, caractérisé en ce que les dispositifs de mesure (25) pour déterminer le débit de transport réel relatif dans les conduites de transport (19) sont des dispositifs de mesure capacitifs.
  12. Dispositif selon une ou plusieurs des revendications 5 à 11, caractérisé en ce que les chambres (15) disposées dans la section terminale inférieure du réservoir de dosage (10) se présentent chacune sous forme d'embases en forme de cuvette dans lesquelles débouche chaque fois une conduite de transport (19).
EP87101087A 1986-02-01 1987-01-27 Procédé et dispositif pour l'introduction dosée de fines granules dans un four industriel Expired - Lifetime EP0235562B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87101087T ATE68589T1 (de) 1986-02-01 1987-01-27 Verfahren und vorrichtung zum dosierten einfuehren feinkoerniger feststoffe in einen industrieofen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3603078 1986-02-01
DE3603078A DE3603078C1 (de) 1986-02-01 1986-02-01 Verfahren und Vorrichtung zum dosierten Einfuehren feinkoerniger Feststoffe in einen Industrieofen,insbesondere Hochofen oder Kupolofen

Publications (3)

Publication Number Publication Date
EP0235562A2 EP0235562A2 (fr) 1987-09-09
EP0235562A3 EP0235562A3 (en) 1988-09-28
EP0235562B1 true EP0235562B1 (fr) 1991-10-16

Family

ID=6293137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87101087A Expired - Lifetime EP0235562B1 (fr) 1986-02-01 1987-01-27 Procédé et dispositif pour l'introduction dosée de fines granules dans un four industriel

Country Status (7)

Country Link
US (1) US4758118A (fr)
EP (1) EP0235562B1 (fr)
AT (1) ATE68589T1 (fr)
BR (1) BR8700455A (fr)
CA (1) CA1296530C (fr)
DE (1) DE3603078C1 (fr)
RU (1) RU2054047C1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883390A (en) * 1982-08-16 1989-11-28 Petrocarb, Inc. Method and apparatus for effecting pneumatic conveyance of particulate solids
LU86701A1 (fr) * 1986-12-04 1988-07-14 Wurth Paul Sa Procede d'injection par voie pneumatique,de quantites dosees de matieres pulverulentes,dans une enceinte se trouvant sous pression variable
LU87453A1 (fr) * 1989-02-14 1990-09-19 Wurth Paul Sa Procede d'injection pneumatique de quantites dosees de matieres pulverulentes dans une enceinte sous pression variable
JP3083593B2 (ja) * 1991-07-16 2000-09-04 ダイヤモンドエンジニアリング株式会社 微粉炭排出量制御装置
US5265983A (en) * 1992-06-02 1993-11-30 The Babcock & Wilcox Company Cascading pressure continuous blow bottle
US5388537A (en) * 1994-08-02 1995-02-14 Southern California Edison Company System for burning refuse-derived fuel
US5657704A (en) * 1996-01-23 1997-08-19 The Babcock & Wilcox Company Continuous high pressure solids pump system
US5992335A (en) 1996-09-13 1999-11-30 Nkk Corporation Method of blowing synthetic resin into furnace and apparatus therefor
DE19755368B4 (de) * 1996-12-27 2005-10-27 Makita Corp., Anjo Startvorrichtung für einen Elektromotor
DE19857306C2 (de) * 1998-12-14 2003-05-28 Eko Stahl Gmbh Verfahren und Vorrichtung zum Einblasen von festen Teilchen in einen Schachtofen
LU90585B1 (en) * 2000-04-26 2001-10-29 Wurth Paul Sa A device for discharging dust from a dry dust collector of a blast furnace
DE10162398A1 (de) * 2001-12-13 2003-07-24 Moeller Materials Handling Gmb Anlage zum Beschicken einer Mehrzahl von Verbrauchern, z. B. von Zellen von Aluminiumschmelzöfen mit Schüttgut, z. B. pulverförmigem Aluminiumoxid
US6722294B2 (en) * 2002-08-06 2004-04-20 Vitro Global, S.A. Method and apparatus for feeding a pulverized material
US6748883B2 (en) * 2002-10-01 2004-06-15 Vitro Global, S.A. Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
JP4516081B2 (ja) * 2003-10-21 2010-08-04 オウトテック オサケイティオ ユルキネン 直接製錬プラントおよび方法
DE202005021660U1 (de) * 2005-10-04 2009-03-05 Siemens Aktiengesellschaft Vorrichtung zur geregelten Zufuhr von Brennstaub in einem Flugstromvergaser
US7660680B1 (en) 2006-06-26 2010-02-09 Rockwell Automation Technologies, Inc. Systems and methods for totalizing parallel feeds
DE202006016093U1 (de) * 2006-10-20 2008-03-06 Claudius Peters Technologies Gmbh Kohleverteiler für Hochöfen u.dgl.
US7524146B2 (en) * 2006-11-30 2009-04-28 William Jeffrey Peet Pneumatic uneven flow factoring for particulate matter distribution system
US8496412B2 (en) * 2006-12-15 2013-07-30 General Electric Company System and method for eliminating process gas leak in a solids delivery system
JP2010540397A (ja) * 2007-10-04 2010-12-24 ヴィトロ グローバル エス.エイ. 粉体材料の供給方法及び装置
US20100014946A1 (en) * 2007-10-29 2010-01-21 Uop Llc Catalyst flow control device for transfer of solids between two vessels
LU91376B1 (en) * 2007-11-16 2009-05-18 Wurth Paul Sa Injections system for solid particles
US8075227B2 (en) * 2007-11-30 2011-12-13 Uop Llc Device to transfer catalyst from a low pressure vessel to a high pressure vessel and purge the transferred catalyst
DE102008049542C5 (de) * 2008-09-30 2016-10-20 Siemens Aktiengesellschaft Staubdosiersystem für hohe Drücke durch eine Kombination von Staubpumpe und Schleuse
US7841807B2 (en) * 2008-10-30 2010-11-30 Uop Llc Method of transferring particles
US7878736B2 (en) * 2008-10-30 2011-02-01 Uop Llc Apparatus for transferring particles
CN101398258B (zh) * 2008-11-04 2012-09-05 首钢总公司 气煤混喷自动控制系统及其方法
US8951315B2 (en) * 2008-11-12 2015-02-10 Exxonmobil Research And Engineering Company Method of injecting fuel into a gasifier via pressurization
US7874769B2 (en) * 2008-12-11 2011-01-25 Uop Llc Method for transferring particles
US7887264B2 (en) * 2008-12-11 2011-02-15 Uop Llc Apparatus for transferring particles
US7878737B2 (en) * 2008-12-22 2011-02-01 Uop Llc Apparatus for transferring particles
US7841808B2 (en) * 2009-01-28 2010-11-30 Uop Llc Method for transferring particles
DE102009048961B4 (de) 2009-10-10 2014-04-24 Linde Ag Dosiervorrichtung, Dichtstromförderanlage und Verfahren zum Zuführen von staubförmigen Schüttgut
DE102014216336A1 (de) 2014-08-18 2016-02-18 Küttner Holding GmbH & Co. KG Verfahren zum Einblasen von Ersatzreduktionsmitteln in einen Hochofen
CN113454008B (zh) * 2019-01-18 2023-04-18 特里高亚科技有限公司 用于转移固体颗粒的系统和方法
JP7365575B2 (ja) * 2019-08-09 2023-10-20 三菱マテリアル株式会社 鉱石連続供給装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1293650A (fr) * 1961-04-07 1962-05-18 Saint Chamond Granat Ets Système de régulation de débit d'un matériau pulvérulent transporté par un véhicule gazeux
DE2105733B2 (de) * 1971-02-08 1975-02-06 Sueddeutsche Kalkstickstoff-Werke Ag, 8223 Trostberg Vorrichtung zur Entnahme eines fluidisierbaren Feststoffes aus einem Druckbehälter
US3689045A (en) * 1971-06-03 1972-09-05 Earl E Coulter Pulverized fuel delivery system for a blast furnace
DE2554565A1 (de) * 1975-12-04 1977-06-16 Otto & Co Gmbh Dr C Anlage zur druckvergasung feinkoerniger brennstoffe
DE2703736C2 (de) * 1977-01-29 1982-11-25 Freier Grunder Eisen- Und Metallwerke Gmbh, 5908 Neunkirchen Vorrichtung zum pneumatischen Aufwärtsfördern von staubförmigem oder feinkörnigem Schüttgut
DE2714355A1 (de) * 1977-03-31 1978-10-12 Klein Alb Kg Verfahren und vorrichtung zum einschleusen von rieselfaehigem beschickungsgut
DD139271A1 (de) * 1978-09-28 1979-12-19 Manfred Schingnitz Verfahren und vorrichtung zur zufuehrung staubfoermiger materialien
DD206309A3 (de) * 1981-07-17 1984-01-18 Kretschmer Horst Verfahren zur regelung von massenstroemen
JPS58104833A (ja) * 1981-12-12 1983-06-22 Kawasaki Steel Corp 1個の粉粒体分配輸送タンクから粉粒体を複数供給端に質量流量を任意の設定値に制御して連続供給する方法及びその装置
DE3225449C2 (de) * 1982-07-07 1988-09-29 Klöckner Stahlforschung GmbH, 8458 Sulzbach-Rosenberg Verfahren und Vorrichtung zum Messen und/oder Regeln des Massestromes von Feststoffteilchen
JPS59115981A (ja) * 1982-12-22 1984-07-04 川崎製鉄株式会社 精錬炉等への粉粒体吹込み方法およびその装置
NL183951C (nl) * 1983-01-12 1989-03-01 Hoogovens Groep Bv Doseerinrichting voor het doseren van poederkool in een luchtleiding naar een hoogoven.
FR2549580A1 (fr) * 1983-07-19 1985-01-25 Wurth Paul Sa Procede et dispositif pour l'injection de charbon pulverise dans un four industriel
EP0164436B1 (fr) * 1984-06-14 1988-03-02 Wilfried Stein Installation de transport dosé de matières pulvérulentes

Also Published As

Publication number Publication date
BR8700455A (pt) 1987-12-08
US4758118A (en) 1988-07-19
EP0235562A2 (fr) 1987-09-09
DE3603078C1 (de) 1987-10-22
ATE68589T1 (de) 1991-11-15
CA1296530C (fr) 1992-03-03
RU2054047C1 (ru) 1996-02-10
EP0235562A3 (en) 1988-09-28

Similar Documents

Publication Publication Date Title
EP0235562B1 (fr) Procédé et dispositif pour l'introduction dosée de fines granules dans un four industriel
DE2831208C2 (fr)
EP2095050B1 (fr) Répartiteur de solides pour installations de soufflage, hauts-fourneaux et similaires
DE2703736C2 (de) Vorrichtung zum pneumatischen Aufwärtsfördern von staubförmigem oder feinkörnigem Schüttgut
DE2723542A1 (de) Verfahren zum kontinuierlichen foerdern und zur gleichmaessigen einspeisung von feststoffteilchen in einen unter druck stehenden apparat
DE3316368A1 (de) Verfahren und vorrichtung zur ermittlung und ueberwachung des brennstoff-massenstromes, der bei der partialoxidation (vergasung) von feinkoernigen bis staubfoermigen brennstoffen dem vergaser zugefuehrt wird
DE2711114C2 (de) Vorrichtung und Verfahren zum Entnehmen von Schüttgut aus einem Stauraum mit einem in den Schüttgutstrom ragenden bewegten Fühler
EP2185902B1 (fr) Étalonnage de systèmes de mesure de débit massique de poussière
EP0059904A1 (fr) Installation pour alimenter un récipient métallurgique ayant des points d'insufflation multiples en charbon et procédé pour faire fonctionner l'installation
EP0218869A1 (fr) Dispositif pour le dosage uniforme d'un matériau abrasif en forme de grenailles pour dispositifs de traitement pneumatique au jet abrasif
DE2934130A1 (de) Verfahren und vorrichtung zur zufuehrung staubfoermiger materialien
EP0164436A1 (fr) Installation de transport dosé de matières pulvérulentes
EP0121599B1 (fr) Procédé et dispositif pour le transport pneumatique des particules fines
DE3050394C2 (de) Verfahren zur Zuführung eines pulverförmigen Brennstoffgemisches zu den Blasformen eines Hochofens
DE3521657A1 (de) Verfahren zur regelung des fuellungsgrades einer gruenpellets durch einen haerteofen foerdernden foerdereinrichtung sowie vorrichtung zur durchfuehrung des verfahrens
EP0495172B1 (fr) Appareil de dosage
EP0516613B1 (fr) Installation comportant une cuve, en particulier four à cuve de réduction
DE2617490A1 (de) Verfahren und vorrichtung zur zufuehrung von trockenem, fliessfaehigem kohlenstaub in einen hochdruck-kohlevergasungsreaktor
DE3418455A1 (de) Verfahren und einrichtung zum einblasen feinkoerniger feststoffe in eine metallschmelze
EP0922776B1 (fr) Procédé et installation d'injection d'au moins un additif au métal en fusion
EP1105544B1 (fr) Procede de production de zinc selon le procede imperial smelting dans une installation a four vertical pour imperial smelting
DE10140411B4 (de) Verfahren und Vorrichtung zum Befüllen von Koksofenkammern einer Koksofenbatterie
DE102017126961A1 (de) Verfahren und Anlage zur thermischen Behandlung von flugfähigem und karbonathaltigem Ausgangsmaterial
DD268835C2 (de) Verfahren und vorrichtung zur zufuehrung staubfoermiger materialien
DE3504848C1 (de) Entstaubungsvorrichtung für Mischer, insbesondere Betonmischer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE FR GB IT SE

17P Request for examination filed

Effective date: 19890323

17Q First examination report despatched

Effective date: 19901206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PAUL WURTH S.A.

Owner name: DR. KUETTNER GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT SE

REF Corresponds to:

Ref document number: 68589

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911111

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920109

Year of fee payment: 6

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920204

Year of fee payment: 6

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930127

Ref country code: AT

Effective date: 19930127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: S.A. PAUL WURTH

Effective date: 19930131

Owner name: KUTTNER G.M.B.H. & CO. K.G.

Effective date: 19930131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87101087.2

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050127