EP0232772A1 - Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses - Google Patents

Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses Download PDF

Info

Publication number
EP0232772A1
EP0232772A1 EP87100949A EP87100949A EP0232772A1 EP 0232772 A1 EP0232772 A1 EP 0232772A1 EP 87100949 A EP87100949 A EP 87100949A EP 87100949 A EP87100949 A EP 87100949A EP 0232772 A1 EP0232772 A1 EP 0232772A1
Authority
EP
European Patent Office
Prior art keywords
component
boron
starting components
amorphous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87100949A
Other languages
English (en)
French (fr)
Other versions
EP0232772B1 (de
Inventor
Ludwig Dr. Dipl.-Phys. Schultz
Egon Dipl.-Phys. Hellstern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0232772A1 publication Critical patent/EP0232772A1/de
Application granted granted Critical
Publication of EP0232772B1 publication Critical patent/EP0232772B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • B22F3/007Amorphous articles by diffusion starting from non-amorphous articles prepared by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/004Making metallic powder or suspensions thereof amorphous or microcrystalline by diffusion, e.g. solid state reaction
    • B22F9/005Transformation into amorphous state by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Definitions

  • the invention relates to a method for producing a powdery amorphous material, in which at least two powdery, at least partially crystalline, starting components are mechanically alloyed by means of a grinding process.
  • a method for producing an amorphous alloy is e.g. in the publication "Applied Physics Letters", Vol. 43, No. 1, 1.12.1983, pages 1017 to 1019.
  • Such amorphous alloys have a glass-like, amorphous structure instead of a crystalline one and have a number of extraordinary properties or combinations of properties, e.g. high wear or corrosion resistance, high hardness and tensile strength with good ductility as well as special magnetic properties.
  • microcrystalline materials with interesting properties can be produced (see e.g. DE-PS 28 34 425).
  • a process which has been known for a long time for the industrial production of new materials is the so-called "mechanical alloying" (cf. for example "Metallurgical Transactions", vol. 5, August 1974, pages 1929 to 1934, or "Scientific American", vol. 234, 1976, Pages 40 to 48).
  • powders of the starting elements or compounds of the desired alloy are ground together in a ball mill to form a mixed powder.
  • the grinding process is carried out until a homogeneous alloy of the components involved has formed.
  • the object of the present invention is now to design the method mentioned at the outset such that it can also be used to produce amorphous metal-metalloid systems which contain boron as the metalloid using the method of mechanical alloying.
  • this object is achieved by a powdered boron component made from elemental boron or from a boron compound or alloy is added to the powders from the starting components, this powder mixture is then subjected to the grinding process, an amorphous alloy component being formed from the starting components with fine or boron component particles incorporated or attached, and - That finally the resulting mixed powder of an annealing treatment below the crystallization temperature of the amorphous alloy component to diffuse the boron into the amorphous alloy component is exposed.
  • the invention is based on the known fact that the application of the mechanical alloying method in a known manner does not lead to success when using boron powders. It has been shown that boron cannot be alloyed mechanically due to its great hardness. The advantages associated with the invention can thus be seen in particular in that, despite these difficulties, it is possible to produce amorphous materials from special metal-metalloid systems, it also being possible to add boron powder to the powdery starting components and to use the method of mechanical alloying .
  • the metal-metalloid systems stand out compared to metal-metal systems e.g. by a much higher hardness, but also by their special magnetic and corrosive properties, so that they are of particular importance with regard to their technical applications.
  • M1 and M2 can generally be the powdered starting components in elemental form or in the form of alloys or compounds, the alloy M1, M2 can be obtained by the known mechanical alloying in amorphous form. M1 and M2 can in particular be transition metals such as Fe and Zr. Accordingly, a metallic glass is an exemplary embodiment made from a ternary alloy FeZrB.
  • amorphous powder from this alloy powders of the two starting components Fe and Zr and B powder together with hardened steel balls are first placed in a suitable grinding bowl, the ratio of the three powder types of this powder mixture being determined by the predetermined resulting atomic concentration of the powder to be produced from these powders Material is determined.
  • proportions (in atomic%) of the three components with 20 ⁇ x ⁇ 80 and with 4 ⁇ y ⁇ 30 are advantageously chosen.
  • a weight ratio of the three elementary powders can be provided which corresponds to Fe60Zr260B20 after alloying.
  • the size of the individual powders can be arbitrary; however, a similar size distribution of the two starting components involved is expedient in a range between 5 ⁇ m and 1 mm, preferably between 50 ⁇ m and 0.5 mm.
  • the B powder should be as fine as possible, advantageously a size of the powder particles below 10 ⁇ m, preferably below 1 ⁇ m. This can be largely amorphous B powder.
  • the three powders with the corresponding powder particle sizes are placed in a planetary ball mill (Fritsch brand: type "Pulverisette-5"), the steel balls of which, for example, have a diameter of 100 mm.
  • the grinding intensity can be influenced as desired with a variation of the ball diameter and the number of balls.
  • the grinding speed and the ratio of the steel balls to the amount of powder are further parameters which determine the grinding time required for amorphization.
  • the grinding container made of steel is placed under the mill Shielding gas, for example under argon, is kept and only opened again after the grinding process has ended.
  • finely layered powder grains are formed, which consist of Fe and Zr layers.
  • the B particles are embedded both at the Fe / Zr interfaces and in the elemental metals.
  • this layer structure becomes finer and finer until amorphous FeZr is present at the end of the grinding process after about 10 to 30 hours, in or on the powder particles of which B-particles are incorporated or attached.
  • the individual powder particles of the resulting mixed powder have a diameter of approximately 10 to 200 ⁇ m.
  • the amorphous FeZr material thus formed which is an alloy component of the ternary alloy to be produced, has good thermal stability, so that annealing at temperatures up to 600 ° C. does not lead to crystallization. Accordingly, the mixed powder thus produced is subjected to an annealing treatment below the crystallization temperature of the amorphous alloy component FeZr from the two starting components Fe and Zr for a few hours. After about 4 hours at 600 ° C, the B atoms have diffused into the amorphous FeZr, whereby amorphous Fe60Zr20B20 has formed. The amorphicity of this powder formed in this way can be demonstrated by X-ray examinations.
  • the powder of a metal-metalloid system produced in accordance with the invention in this way can then be further processed in a known manner to form a body or workpiece with the desired shape and dimension by compacting and, if appropriate, in further shaping steps.
  • This body has the characteristics that are characteristic of the amorphous material such as great strength at high temperatures.
  • the method according to the invention explained on the basis of the exemplary embodiment described above is limited to alloys which consist of three or more components or elements. At least two of the metallic components must be able to be amorphized by mechanical alloying.
  • the one starting component M1 should be a late transition metal such as Fe, Ni, Co, Cu, Au, Re, Cr, Mn and the second starting component M2 an early transition metal such as Zr, Ti, Hf, W, Nb, V, Mo or a rare earth metal or an actinide metal.
  • the boron provided for the process according to the invention does not always have to be provided in elementary form, but can also be partially replaced by another metalloid such as Si, P, C, Ge, if necessary.
  • the metalloid components are advantageously added in elemental form, and the boron can also be in amorphous form. In special cases, however, these elements can also be in the form of alloys or compounds such as add Fe2B or FeB as intermetallic phases.

Abstract

Mit dem Verfahren ist ein pulverförmiges amorphes Material herzustellen, wobei mindestens zwei pulverförmige Ausgangskomponenten mittels eines Mahlprozesses mechanisch legiert werden. Um eine mechanisch nicht-zulegierbare Bor-Komponente dennoch zulegieren zu können, ist erfindungsgemäß vorgesehen, daß den Ausgangskomponenten eine pulverförmige Bor-Komponente beigemischt wird, daß dann dieses Pulvergemisch dem Mahlprozeß unterzogen wird, wobei eine amorphe Legierungskomponente aus den Ausgangskomponenten mit ein- oder angelagerten feinen Partikeln der Bor-Komponente ausgebildet wird, und daß schließlich das so entstandene Mischpulver einer Glühbehandlung unterhalb der Kristallisationstemperatur der amorphen Legierungskomponente zum Eindiffundieren des Bors in die amorphe Legierungskomponente ausgesetzt wird.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Her­stellung eines pulverförmigen amorphen Materials, bei dem mindestens zwei pulverförmige, zumindest zum Teil kristalline Ausgangskomponenten mittels eines Mahl­prozesses mechanisch legiert werden. Ein derartiges Verfahren zur Herstellung einer amorphen Legierung ist z.B. in der Veröffentlichung "Applied Physics Letters", Vol. 43, No. 1, 1.12.1983, Seiten 1017 bis 1019 be­schrieben.
  • Amorphe, auch als "metallische Gläser" oder "glasartige Metalle" bezeichnete Materialien sind seit längerem allgemein bekannt (vgl. z.B. "Zeitschrift für Metall­kunde", Bd. 69, 1978, Heft 4, Seiten 212 bis 220, oder "Elektrotechnik und Maschinenbau", 97. Jg., Sept. 1980, Heft 9, Seiten 378 bis 385). Bei diesen Materialien handelt es sich im allgemeinen um spezielle Legie­rungen, die aus mindestens zwei vorbestimmten, auch als Legierungskomponenten bezeichneten Ausgangselementen oder -verbindungen mittels besonderer Verfahren her­zustellen sind. Entsprechend ihrer Zusammensetzung wer­den diese Legierungen anhand des Periodensystems der Elemente im allgemeinen in zwei Klassen aufgeteilt:
    • 1. Metall-Metalloid-Systeme, wobei als Metall Elemente wie Fe, Co, Ni, Cr, Mo, Zr, Ti usw. und als Metalloid B, Si, C, N, P, Ge usw. in Frage kommen.
    • 2. Metall-Metall-Systeme, bei denen das erste Metall­element aus der Gruppe der späten Übergangsmetalle wie z.B. Fe, Ni, Co, Cu usw. und das zweite Element aus der Gruppe der frühen Übergangselemente wie Zr, Ti, Nb usw. oder aus der Gruppe der Seltenen Erden oder Actiniden zu entnehmen ist.
  • Derartige amorphe Legierungen weisen anstelle eines kristallinen ein glasartiges, amorphes Gefüge auf und besitzen eine Reihe von außergewöhnlichen Eigen­schaften bzw. Eigenschaftskombinationen wie z.B. hoher Verschleiß oder Korrosionsbeständigkeit, große Härte und Zugfestigkeit bei gleichzeitig guter Duktilität sowie gegebenenfalls besondere magnetische Eigen­schaften. Außerdem lassen sich über den Umweg des amorphen Zustandes mikrokristalline Materialien mit interessanten Eigenschaften herstellen (vgl. z.B. DE-PS 28 34 425).
  • Ein seit längerem bekanntes Verfahren zur industriellen Herstellung neuer Werkstoffe ist das sogenannte "mecha­nische Legieren" (vgl. z.B. "Metallurgical Trans­actions", Vol. 5, August 1974, Seiten 1929 bis 1934, oder "Scientific American", Vol. 234, 1976, Seiten 40 bis 48). Bei diesem Verfahren werden Pulver der Aus­gangselemente oder -verbindungen der gewünschten Legie­rung gemeinsam in einer Kugelmühle zu einem Mischpulver gemahlen. Der Mahlprozeß wird dabei solange durchge­führt, bis eine homogene Legierung der beteiligten Komponenten entstanden ist.
  • Aus der eingangs genannten Veröffentlichung (Appl.Phys. Lett.) ist es nun bekannt, dieses Verfahren des mecha­nischen Legierens auch zur Herstellung amorpher Metalle der vorstehend aufgeführten zweiten Klasse und ins­besondere von Übergangsmetall-Übergangsmetall-Systemen in Pulverform vorzusehen. Dementsprechend konnten z.B. Pulver aus amorphem NiNb hergestellt werden. Die durch mechanisches Legieren hergestellten amorphen Metalle entsprechen im allgemeinen in ihren Eigenschaften denen, die durch das sogenannte Schmelzspinnverfahren (englisch: melt spinning) erzeugt werden (vgl. auch z.B. die genannten Veröffentlichungen "Z.Metallkde." und "E.u.M."). Allerdings kann der Konzentrations­bereich, in dem Glasbildung erfolgt, weit größer als beim Schmelzspinnverfahren sein. Außerdem ist das Ver­fahren des mechanischen Legierens sehr kostengünstig, und die entsprechenden Pulver haben eine sehr saubere Oberfläche und damit eine sehr gute Reaktivität, die z.B. bei Sinterprozessen, aber auch bei katalytischen Anwendungen vorteilhaft ist.
  • Aufgabe der vorliegenden Erfindung ist es nun, das ein­gangs genannte Verfahren dahingehend auszugestalten, daß mit ihm auch amorphe Metall-Metalloid-Systeme, die Bor als das Metalloid enthalten, unter Anwendung des Verfahrens des mechanischen Legierens hergestellt werden können.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst,
    - daß den Pulvern aus den Ausgangskomponenten eine pulverförmige Bor-Komponente aus elementarem Bor oder aus einer Bor-Verbindung oder -Legierung bei­gemischt wird,
    - daß dann dieses Pulvergemisch dem Mahlprozeß unter­zogen wird, wobei eine amorphe Legierungskomponente aus den Ausgangskomponenten mit ein- oder angelager­ten feinen Partikeln der Bor-Komponente ausgebildet wird,
    und
    - daß schließlich das so entstandene Mischpulver einer Glühbehandlung unterhalb der Kristallisationstempe­ratur der amorphen Legierungskomponente zum Ein­diffundieren des Bors in die amorphe Legierungs­ komponente ausgesetzt wird.
  • Bei der Erfindung wird von der bekannten Tatsache aus­gegangen, daß die Anwendung des Verfahrens des mecha­nischen Legieren in bekannter Weise bei Verwendung von Bor-Pulvern nicht zum Erfolg führt. Es hat sich nämlich gezeigt, daß Bor aufgrund seiner großen Härte mecha­nisch nicht legierbar ist. Die mit der Erfindung ver­bundenen Vorteile sind somit insbesondere darin zu sehen, daß es trotz dieser Schwierigkeiten möglich ist, amorphe Materialien aus speziellen Metall-Metalloid-­Systemen herzustellen, wobei den pulverförmigen Aus­gangskomponenten auch Bor-Pulver zugemischt und das Verfahren des mechanischen Legierens eingesetzt werden kann. Die Metall-Metalloid-Systeme zeichnen sich dabei gegenüber Metall-Metall-Systemen z.B. durch eine weit höhere Härte, aber auch durch ihre besonderen magne­tischen und korrosiven Eigenschaften aus, so daß ihnen hinsichtlich ihrer technischen Anwendungsmöglichkeiten besondere Bedeutung zukommt.
  • Vorteilhafte Ausgestaltungen des erfindungsgemäßen Ver­fahrens gehen aus den Unteransprüchen hervor.
  • Die Erfindung wird nachfolgend noch weiter anhand der Herstellung von amorphem Pulver aus einer besonderen Metall-Metall-Bor(M₁M₂B)-Legierung erläutert.
  • Bei diesem Legierungstyp können für M₁ und M₂ ganz all­gemein die pulverförmigen Ausgangskomponenten in elemen­tarer Form oder in Form von Legierungen oder Verbin­dungen vorgesehen werden, deren Legierung M₁, M₂ durch das bekannte mechanische Legieren in amorpher Form zu erhalten ist. Bei M₁ und M₂ kann es sich insbesondere um Übergangsmetalle wie Fe und Zr handeln. Dementspre­chend sei als Ausführungsbeispiel ein metallisches Glas aus einer ternären Legierung FeZrB angenommen.
  • Zur Herstellung von amorphem Pulver aus dieser Legie­rung werden zunächst Pulver der beiden Ausgangskompo­nenten Fe und Zr sowie B-Pulver zusammen mit gehärteten Stahlkugeln in einen geeigneten Mahlbecher gegeben, wo­bei das Mengenverhältnis der drei Pulversorten dieses Pulvergemisches durch die vorbestimmte resultierende atomare Konzentration des aus diesen Pulvern herzustel­lenden Materials bestimmt ist. Dabei werden für das amorphe Pulver der Zusammensetzung (Fe1-xZrx)1-yBy vor­teilhaft Anteile (in Atom-%) der drei Komponenten mit 20 ≦ x ≦ 80 und mit 4 ≦ y ≦ 30 gewählt. So kann bei­spielsweise ein Gewichtsverhältnis der drei elementaren Pulver vorgesehen werden, das nach dem Legieren der Zusammensetzung Fe₆₀Zr₂₀B₂₀ entspricht. Die Größe der einzelnen Pulver kann zwar beliebig sein; jedoch ist eine ähnliche Größenverteilung der beiden beteiligten Ausgangskomponenten in einem Bereich zwischen 5 µm und 1 mm, vorzugsweise zwischen 50 µm und 0,5 mm zweck­mäßig. Außerdem sollte das B-Pulver möglichst fein sein, wobei vorteilhaft eine Größe der Pulverpartikel unter 10 µm, vorzugsweise unter 1 µm gewählt wird. Dabei kann es sich um weitgehend amorphes B-Pulver han­deln. Die drei Pulver mit entsprechenden Pulverpartikel­größen werden in eine Planetenkugelmühle (Marke Fritsch: Typ "Pulverisette-5") gegeben, deren bei­spielsweise 100 Stahlkugeln Durchmesser von jeweils mm aufweisen. Mit einer Variation des Kugeldurch­messers und der Kugelanzahl läßt sich dabei die Mahl­intensität beliebig beeinflussen. Auch die Mahlge­schwindigkeit und das Verhältnis der Stahlkugeln zur Pulvermenge sind weitere Parameter, die die zu einer Amorphisierung notwendige Mahldauer bestimmen. Um eine Oberflächenoxidation der Teilchen zu verhindern, wird der aus Stahl bestehende Mahlbehälter der Mühle unter Schutzgas, beispielsweise unter Argon, gehalten und erst nach Beendigung des Mahlprozesses wieder geöffnet. Während des Mahlprozesses bilden sich zunächst fein ge­schichtete Pulverkörner, die aus Fe- und Zr-Schichten bestehen. Dabei werden die B-Teilchen sowohl an den Fe/Zr-Grenzflächen, als auch in den elementaren Metallen eingelagert. Mit fortschreitender Mahldauer wird diese Schichtstruktur immer feiner, bis am Ende des Mahlprozesses nach etwa 10 bis 30 Stunden amorphes FeZr vorliegt, in oder an dessen Pulverteilchen B-Teil­chen ein- bzw. angelagert sind. Die einzelnen Pulver­teilchen dieses so entstandenen Mischpulvers haben da­bei einen Durchmesser von etwa 10 bis 200 µm.
  • Das so einmal gebildete amorphe FeZr-Material, das eine Legierungskomponente der herzustellenden ternären Le­gierung darstellt, verfügt über eine gute thermische Stabilität, so daß eine Glühung bei Temperaturen bis 600°C nicht zu einer Kristallisation führt. Dementspre­chend wird also das so erzeugte Mischpulver einer Glüh­behandlung unterhalb der Kristallisationstemperatur der amorphen Legierungskomponente FeZr aus den beiden Aus­gangskomponenten Fe und Zr einige Stunden lang unterzo­gen. Nach etwa 4 Stunden bei 600°C sind die B-Atome in das amorphe FeZr hineindiffundiert, wobei sich amorphes Fe₆₀Zr₂₀B₂₀ gebildet hat. Die Amorphizität dieses so gebildeten Pulvers läßt sich durch Röntgenuntersuchun­gen nachweisen.
  • Das so erfindungsgemäß hergestellte Pulver eines Metall-Metalloid-Systems kann dann noch durch Kom­paktierung und gegebenenfalls in weiteren Formgebungs­schritten in bekannter Weise zu einem Körper oder Werk­stück mit der gewünschten Form und Abmessung weiter­verarbeitet werden. Dieser Körper weist dabei die für das amorphe Material charakteristischen Eigenschaften wie z.B. große Festigkeit bei hohen Temperaturen auf.
  • Das anhand des vorstehend beschriebenen Ausführungs­beispieles erläuterte erfindungsgemäße Verfahren ist beschränkt auf Legierungen, die aus drei oder mehr Komponenten bzw. Elementen bestehen. Dabei müssen mindestens zwei der metallischen Komponenten durch mechanisches Legieren amorphisierbar sein. Hierzu sollte die eine Ausgangskomponente M₁ ein spätes Übergangsmetall wie z.B. Fe, Ni, Co, Cu, Au, Re, Cr, Mn und die zweite Ausgangskomponente M₂ ein frühes Über­gangsmetall wie z.B. Zr, Ti, Hf, W, Nb, V, Mo oder ein Seltene-Erden-Metall oder ein Actiniden-Metall sein. Das für das erfindungsgemäße Verfahren vorgesehene Bor braucht nicht immer nur in elementarer Form vorgesehen zu sein, sondern kann gegebenenfalls auch partiell durch ein anderes Metalloid wie Si, P, C, Ge ersetzt werden. Aus thermodynamischen Gründen werden die Metalloid-Komponenten vorteilhafterweise in elemen­tarer Form zugegeben, wobei das Bor auch in amorpher Form vorliegen kann. In speziellen Fällen lassen sich jedoch diese Elemente auch in Form von Legierungen oder Verbindungen wie z.B. als intermetallische Phasen Fe₂B oder FeB hinzufügen.

Claims (9)

1. Verfahren zur Herstellung eines pulverförmigen amorphen Materials, bei dem mindestens zwei pulver­förmige, zunächst zumindest zum Teil kristalline Aus­gangskomponenten mittels eines Mahlprozesses mecha­nisch legiert werden, dadurch gekenn­zeichnet,
- daß den Pulvern aus den Ausgangskomponenten eine pulverförmige Bor-Komponente aus elementarem Bor oder aus einer Bor-Verbindung oder -Legierung bei­gemischt wird,
- daß dann dieses Pulvergemisch dem Mahlprozeß unter­zogen wird, wobei eine amorphe Legierungskomponente aus den Ausgangskomponenten mit ein- oder ange­lagerten feinen Partikeln der Bor-Komponente aus­gebildet wird,
und
- daß schließlich das so entstandene Mischpulver einer Glühbehandlung unterhalb der Kristallisationstempe­ratur der amorphen Legierungskomponente zum Ein­diffundieren des Bors in die amorphe Legierungskompo­nente ausgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß Ausgangskomponenten ge­wählt werden, mit denen ein amorphes Metall-Metall-­System zu bilden ist.
3. Verfahren nach Anspruch 2, dadurch ge­kennzeichnet, daß als erste Ausgangs­komponente ein Metall aus der Gruppe der späten Übergangsmetalle im Periodensystem gewählt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß als zweite Aus­ gangskomponente ein Metall aus der Gruppe der frühen Übergangsmetalle oder der Seltenen Erden oder der Actiniden im Periodensystem gewählt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, da­durch gekennzeichnet, daß von Aus­gangskomponenten mit Teilchengrößen zwischen 5 µm und 1 mm, vorzugsweise zwischen 50 µm und 0,5 mm aus­gegangen wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, da­durch gekennzeichnet, daß eine pulverförmige Bor-Komponente mit Teilchengrößen unter 10 µm, vorzugsweise unter 1 µm beigemischt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, da­durch gekennzeichnet, daß als Ausgangskomponenten Fe und Zr vorgesehen werden, wobei die in Atom-% zu messenden An­teile der Komponenten in dem amorphen Pulver der Zu­sammensetzung (Fe1-xZrx)1-yBy den Beziehungen genügen:
20 ≦ x ≦ 80;
4 ≦ y ≦ 30.
8. Verfahren nach Anspruch 7, daß das Pulvergemisch aus den Ausgangskomponenten und der B-Komponente minde­stens 10, vorzugsweise zwischen 10 und 30 Stunden lang gemahlen wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß eine Glühbehand­lung zwischen etwa 500°C und 600°C vorgenommen wird.
EP87100949A 1986-02-05 1987-01-23 Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses Expired EP0232772B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3603549 1986-02-05
DE3603549 1986-02-05

Publications (2)

Publication Number Publication Date
EP0232772A1 true EP0232772A1 (de) 1987-08-19
EP0232772B1 EP0232772B1 (de) 1989-12-27

Family

ID=6293443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100949A Expired EP0232772B1 (de) 1986-02-05 1987-01-23 Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses

Country Status (4)

Country Link
US (1) US4735770A (de)
EP (1) EP0232772B1 (de)
JP (1) JPS62185801A (de)
DE (1) DE3761255D1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288785A2 (de) * 1987-04-29 1988-11-02 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung eines Werkstoffs mit einem Gefüge nanokristalliner Struktur
EP0319786A1 (de) * 1987-12-04 1989-06-14 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung von Sekundärpulverteilchen mit nanokristalliner Struktur und mit versiegelter Teilchenoberfläche
EP0339366A1 (de) * 1988-04-20 1989-11-02 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung von Metall-Metallmetalloid-Pulver, dessen Pulverteilchen feinstkristalline bis nanokristalline Struktur haben
EP0243641B1 (de) * 1986-03-27 1990-07-25 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Dauermagnetwerkstoffes aus pulverförmigen Ausgangskomponenten
EP0391914A1 (de) * 1987-11-03 1990-10-17 AlliedSignal Inc. Verfahren zur herstellung eines massenerzeugenisses aus massivem metall
EP0494899A1 (de) * 1989-10-03 1992-07-22 The Australian National University Kugelmahlvorrichtung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762678A (en) * 1987-11-03 1988-08-09 Allied-Signal Inc. Method of preparing a bulk amorphous metal article
JPH0693301A (ja) * 1992-09-16 1994-04-05 Harumatsu Miura 機械的エネルギー制御を用いたメカニカルアロイングによるアモルファス合金粉末の製造方法
US5624475A (en) * 1994-12-02 1997-04-29 Scm Metal Products, Inc. Copper based neutron absorbing material for nuclear waste containers and method for making same
DE10304849A1 (de) * 2003-02-06 2004-08-19 Institut für Neue Materialien gemeinnützige Gesellschaft mit beschränkter Haftung Chemomechanische Herstellung von Funktionskolloiden
CN102328935B (zh) * 2011-04-12 2012-11-28 西安交通大学 一种耐锌液腐蚀块体Fe2B化合物制备方法
TWI581470B (zh) * 2016-03-11 2017-05-01 國立臺灣科技大學 熱電結構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785801A (en) * 1968-03-01 1974-01-15 Int Nickel Co Consolidated composite materials by powder metallurgy
WO1984002926A1 (en) * 1983-01-31 1984-08-02 California Inst Of Techn Formation of amorphous materials
EP0200079A1 (de) * 1985-04-26 1986-11-05 Siemens Aktiengesellschaft Verfahren zur Herstellung eines metallischen Körpers aus einer amorphen Legierung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126449A (en) * 1977-08-09 1978-11-21 Allied Chemical Corporation Zirconium-titanium alloys containing transition metal elements
FI65274C (fi) * 1982-06-14 1984-04-10 Neste Oy Foerfarande foer termisk krackning av kolvaeteolja
US4640816A (en) * 1984-08-31 1987-02-03 California Institute Of Technology Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures
DE3518706A1 (de) * 1985-05-24 1986-11-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur herstellung von formkoerpern mit verbesserten, isotropen eigenschaften
US4624705A (en) * 1986-04-04 1986-11-25 Inco Alloys International, Inc. Mechanical alloying

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785801A (en) * 1968-03-01 1974-01-15 Int Nickel Co Consolidated composite materials by powder metallurgy
WO1984002926A1 (en) * 1983-01-31 1984-08-02 California Inst Of Techn Formation of amorphous materials
EP0200079A1 (de) * 1985-04-26 1986-11-05 Siemens Aktiengesellschaft Verfahren zur Herstellung eines metallischen Körpers aus einer amorphen Legierung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, Band 43, Nr. 11, 1. Dezember 1983, Seiten 1017 -1020, American Institute of Physics, Woodbury, GB; C.C. KOCH et al.: "Preparation of "amorphous" Ni60 Nb40 mechanical alloying" *
CHEMICAL ABSTRACTS, Band 103, Nr. 17, 28. Oktober 1985, Seite 719, Zusammenfassung Nr. 152451f, Columbus, Ohio, US; & JP-A-60 91 601 (SUMITOMO SPECIAL METALS CO.) 23.05.1985 *
CHEMICAL ABSTRACTS, Band 83, Nr. 3, 21. Juli 1975, Seite 235, Zusammenfassung Nr. 31785c, Columbus, Ohio, US; K.P. TSOMAYA: "Electron microscopic and electron diffraction studies of dispersed boron powders" & POROSHK. METALL. 1975, Nr. 3, Seiten 6-10 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243641B1 (de) * 1986-03-27 1990-07-25 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Dauermagnetwerkstoffes aus pulverförmigen Ausgangskomponenten
EP0288785A2 (de) * 1987-04-29 1988-11-02 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung eines Werkstoffs mit einem Gefüge nanokristalliner Struktur
EP0288785A3 (en) * 1987-04-29 1989-05-17 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process for preparing powders, and articles with a nanocprocess for preparing powders, and articles with a nanocrystalline structure rystalline structure
EP0391914A1 (de) * 1987-11-03 1990-10-17 AlliedSignal Inc. Verfahren zur herstellung eines massenerzeugenisses aus massivem metall
EP0391914A4 (en) * 1987-11-03 1990-12-27 Allied-Signal Inc. (A Delaware Corporation) A method of preparing a bulk amorphous metal article
EP0319786A1 (de) * 1987-12-04 1989-06-14 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung von Sekundärpulverteilchen mit nanokristalliner Struktur und mit versiegelter Teilchenoberfläche
US5149381A (en) * 1987-12-04 1992-09-22 Fried.Krupp Gmbh Method of making a composite powder comprising nanocrystallites embedded in an amorphous phase
EP0339366A1 (de) * 1988-04-20 1989-11-02 Fried. Krupp AG Hoesch-Krupp Verfahren zur Herstellung von Metall-Metallmetalloid-Pulver, dessen Pulverteilchen feinstkristalline bis nanokristalline Struktur haben
US5147449A (en) * 1988-04-20 1992-09-15 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process for production of metal-metalmetalloid powders with their articles having ultramicrocrystalline to nanocrystalline structure
EP0494899A1 (de) * 1989-10-03 1992-07-22 The Australian National University Kugelmahlvorrichtung
EP0494899A4 (en) * 1989-10-03 1993-09-01 The Australian National University Ball milling apparatus and method, and production of metallic amorphous materials

Also Published As

Publication number Publication date
DE3761255D1 (de) 1990-02-01
EP0232772B1 (de) 1989-12-27
JPH0356281B2 (de) 1991-08-27
US4735770A (en) 1988-04-05
JPS62185801A (ja) 1987-08-14

Similar Documents

Publication Publication Date Title
DE3935698C2 (de) Legierungstarget für die Herstellung eines magneto-optischen Aufzeichnungsmediums
DE112015001049T5 (de) R-T-B-basierter Sintermagnet und Verfahren zu seiner Herstellung
EP2209621B1 (de) Verfahren zur herstellung eines gleitlagerelementes mit einer bismuthaltigen gleitschicht, und gleitlagerelement
DE4408114B4 (de) Magnetisches Material
EP0232772B1 (de) Verfahren zur Herstellung eines pulverförmigen amorphen Materials unter Vornahme eines Mahlprozesses
DE3035433A1 (de) Ferromagnetische amorphe legierung
EP0200079B1 (de) Verfahren zur Herstellung eines metallischen Körpers aus einer amorphen Legierung
DE19814441B4 (de) Permanentmagnet-Material und Verbundmagnet
DE60029364T2 (de) Automatenlegierung
EP3041631B1 (de) Chrommetallpulver
DE60311960T2 (de) Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis
EP0502397B1 (de) Verfahren zur Herstellung eines weichmagnetischen, Fe-haltigen Werkstoffes mit hoher Sättigungsmagnetisierung und ultrafeiner Kornstruktur
DE60220773T2 (de) Verfahren zur herstellung eines sinterprodukts
EP0223196A2 (de) Verfahren zur Herstellung dispersionsgehärteter Metall-Legierungen
EP0988124B1 (de) Verfahren und pulver zur herstellung metallischer funktionsmuster mittels lasersintern
EP0243641B1 (de) Verfahren zur Herstellung eines Dauermagnetwerkstoffes aus pulverförmigen Ausgangskomponenten
DE3709138C2 (de) Verfahren zur Herstellung eines magnetischen Werkstoffes aus pulverförmigen Ausgangskomponenten
EP0016961A1 (de) Verfahren zur pulvermetallurgischen Herstellung eines supraleitenden Faserverbundmaterials
DE10117657A1 (de) Komplex-Borid-Cermet-Körper, Verfahren zu dessen Herstellung und Verwendung dieses Körpers
DE2033100A1 (de) Dispersionen von Nitriden in einem Metall oder einer Legierung und Verfahren zu deren Herstellung
EP0468317B1 (de) Verfahren zur Herstellung von Magnetmaterial auf Basis des Stoffsystem Sm-Fe-N
DE102019104492A1 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
DE3535065C2 (de)
DE3832472A1 (de) Verfahren zur herstellung eines werkstoffes mit einer hartmagnetischen phase aus pulverfoermigen ausgangskomponenten
DE102015222075A1 (de) Verfahren zu Herstellung eines magnetischen Materials und elektrische Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19870925

17Q First examination report despatched

Effective date: 19880423

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3761255

Country of ref document: DE

Date of ref document: 19900201

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950321

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961001