EP0226192B1 - Verfahren zur Herstellung eines Speicherelementes zum Dosieren und Einbringen von Quecksilber in eine Entladungslampe - Google Patents

Verfahren zur Herstellung eines Speicherelementes zum Dosieren und Einbringen von Quecksilber in eine Entladungslampe Download PDF

Info

Publication number
EP0226192B1
EP0226192B1 EP86117328A EP86117328A EP0226192B1 EP 0226192 B1 EP0226192 B1 EP 0226192B1 EP 86117328 A EP86117328 A EP 86117328A EP 86117328 A EP86117328 A EP 86117328A EP 0226192 B1 EP0226192 B1 EP 0226192B1
Authority
EP
European Patent Office
Prior art keywords
mercury
metal
alloy
weight
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86117328A
Other languages
English (en)
French (fr)
Other versions
EP0226192A3 (en
EP0226192A2 (de
Inventor
Werner Dr. Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0226192A2 publication Critical patent/EP0226192A2/de
Publication of EP0226192A3 publication Critical patent/EP0226192A3/de
Application granted granted Critical
Publication of EP0226192B1 publication Critical patent/EP0226192B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the invention relates to a method for producing a storage element which is used for metering and introducing liquid mercury or liquid mercury alloys into a discharge lamp.
  • Mercury is required for the operation of almost all discharge lamps.
  • the mercury In the case of high-pressure discharge lamps, the mercury is brought into the discharge vessel in the form of halide compounds or by direct dropping over the pump handle.
  • glass or metal containers in which the mercury or the mercury alloy is filled in addition to the direct dropping for metering and introduction. These containers are placed near an electrode inside the discharge vessel and opened with the aid of induced high frequency or laser beams after the vessel has been closed, so that the mercury can escape.
  • An example of this is listed in DE-OS 30 41 398.
  • a method is recently proposed in DE patent application 35 34 208.0 in which a strand of liquid mercury is cooled below the solidification point. Sub-strands of the required length, i.e. the required amount of mercury is separated off and introduced into the discharge vessel. This procedure enables a much more precise dosing.
  • the method is very complex in terms of mechanical engineering and, since the corresponding devices have to be integrated into the production machines for the lamps, can be implemented only with great effort.
  • liquid mercury is a major environmental and workplace burden, since mercury has a relatively high vapor pressure, whereby the vapor is highly toxic. When it hits hard documents, it splashes into tiny droplets that are very difficult to collect again.
  • the invention has for its object to provide a method for producing a storage element for the dosing and introduction of liquid mercury or liquid mercury alloys.
  • the storage element manufactured according to this method should enable precise dosing of the mercury or the mercury alloy and should simply be incorporated into the Lamp to be introduced.
  • the physical properties of the mercury or the mercury alloy should not be changed.
  • the metal content in the mercury metal suspension is 0.5 to 1%.
  • the filtering carried out in step f) increases the metal content of the remaining filter cake to 5 to 8% and is increased again by a factor of 5 to 10 by the subsequent pressing.
  • This pressing carried out in process step g) allows the proportion of mercury in the compact to be varied within certain limits by changing the pressing pressure.
  • the tempering carried out in step d) causes crystal growth, as a result of which the filterability in process step f) is significantly improved.
  • possible mercury alloys which have formed with one of the metals involved in the mercury metal suspension product can be decomposed by the tempering, so that the metals can then form an alloy with one another which is mercury-free.
  • a compact made by the above method stores a precisely definable amount of mercury or mercury alloy per unit weight of metal. Measurements showed that the amount of mercury stored fluctuated at most by ⁇ 10% in the case of compacts from different batches, which were each produced under the same process conditions. In this way, depending on the weight of the compact, any desired amount of mercury or mercury alloy can be obtained.
  • the compact can be inserted into the discharge lamp very easily, and it does not suffer a memory loss due to intermediate storage or touching. In the case of longer storage, this must of course take place either under vacuum or under protective gas, since the mercury evaporates in a normal atmosphere due to the high vapor pressure. An overdosing of the mercury in the lamp is therefore no longer necessary.
  • ammonium sulfate can also be added to the electrolysis vessel to increase the conductivity. Possible anodic oxidation can be largely prevented by adding ethanol. In order to achieve the most uniform possible enrichment, the mixture of mercury or mercury alloy and metal salt solution must be constantly stirred during the electrolysis.
  • the mercury metal suspension can be formed periodically or continuously in the electrolysis vessel. In the case of continuous electrolysis, a certain amount of the mercury-metal suspension that has already formed is drained downward and the corresponding amount of pure liquid mercury is refilled at the top.
  • all elements of the fourth to eighth subgroup of the periodic table are suitable as metals for the metal salt solutions and the corresponding anode, which, in addition to mercury, should each have the largest proportion of the mercury metal suspension product.
  • metals are considered which are non-toxic and / or radioactive and which enable the pressed body to be produced as inexpensively as possible.
  • the metals iron and nickel have proven to be useful in this sense, a second metal such as copper being required here in order to achieve sufficient resistance to oxidation. Even with the metals iron, chromium and possibly nickel for the metal salt solutions and the anodes, compacts with good storage properties can be achieved.
  • the proportion of metals in the mercury metal suspension product should consist of 65 to 75% by weight of iron, 12 to 25% by weight of chromium and the remainder 100% from 23 to 0% by weight.
  • % Nickel exist.
  • such a compact does not have the high oxidation resistance as the two compact compositions mentioned above.
  • the electrolysis vessel 1 shown in FIG. 1 for the production of the mercury-metal suspensions consists of a double-walled glass vessel 2 through which cooling water flows through an inlet 3 and an outlet 4.
  • a metal cylinder 5 serves as an anode, which is connected via a cable 6 to the positive pole of a DC voltage source, not shown here.
  • the metal cylinder 5 has a central bore 7 through which a stirrer 8 made of glass is inserted.
  • the cathode which is formed by the mercury 9 located at the bottom in the vessel 2, is connected via a copper wire 10 to the negative pole of the voltage source.
  • Above the mercury cathode 9 is the electrolyte 11 in the form of a metal salt solution, the metal of the salt solution and the anode matching in each case.
  • the mercury is enriched with the metal of the electrolyte 11, the stirrer 8 ensuring the highest possible uniformity with its movement.
  • the finished mercury metal suspension can be drained down via a tap 12.
  • FIG. 2 shows the steel cylinder 13 for pressing out the filter cake 14. It consists of a cylinder part 15 with a circular central bore 16 of 15 mm in diameter, in which the filter cake 14 is located and into which a stamp 17 is inserted from above.
  • the cylinder part 15 is on its polished end face screwed to a hardened steel plate 18. With the help of a pressure of up to 7 x 108 Pa on the stamp 17, the excess mercury is pressed out of the filter cake 14. It seeps through the cracks between the cylinder part 15 and the steel plate 18 and emerges from the steel cylinder 13 at the points indicated by the arrows 19, 20.
  • the electrolyte consists of 200 ml of 6 g FeSO4, 10 ml concentrated H2SO4 as well as 10 g (NH4) 2SO4 and 10 ml ethanol.
  • a DC voltage of 20 V is applied with a current of 20 A, a mercury-iron suspension with an iron content of approx. 0.5% by weight is obtained with constant stirring after an electrolysis time of 20 minutes.
  • the electrolyte for the mercury-copper electrolysis in an amount of also 200 ml contains 20 g of CuSO4, which NH3 is added until the solution is clear.
  • a mercury-copper suspension with a copper content of approx. 1% is obtained.
  • the two mercury-metal suspensions are mixed in such a way that the metal content in addition to mercury is composed of 95% by weight of iron and 5% by weight of copper.
  • the resulting mercury metal suspension product is covered with anhydrous glycerol and annealed at 240 ° C for one hour. After decanting the glycerol, the suspension product is washed and dried. By subsequently filtering off the excess mercury with the help of a glass frit of porosity G3, the metal content increases tenfold. The remaining filter cake is shown in the figure. 2 shown steel cylinders filled and with a high pressure (see below) the remaining excess mercury is pressed out on the stamp. The compact created in this way is pulverized and, with the help of an eccentric press, disc-shaped compact of 1.5 mm in diameter and approximately 0.4 mm in height is produced.
  • the following weight percentages for the mercury in the pressed body can be obtained: at 5.7 x 107 Pa 74% by weight, at 11.3 x 107 Pa 66% by weight, at 22.6 x 107 Pa 63 wt .-% and at 56.6 x 107 Pa 60 wt .-%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Speicherelementes, das zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe dient.
  • Quecksilber wird für den Betrieb von fast allen Entladungslampen benötigt. Bei Hochdruckentladungslampen wird das Quecksilber in Form von Halogenidverbindungen oder durch direktes Eintropfen über den Pumpstengel in das Entladungsgefäß gebracht. Bei Niederdruckentladungslampen dagegen ist es üblich, neben dem direkten Eintropfen für das Dosieren und Einbringen Behälter aus Glas oder Metall zu verwenden, in die das Quecksilber bzw. die Quecksilberlegierung gefüllt wird. Diese Behälter werden nahe einer Elektrode im Innern des Entladungsgefäßes angebracht und mit Hilfe von induzierter Hochfrequenz oder Laserstrahlen nach dem Verschließen des Gefäßes geöffnet, so daß das Quecksilber austreten kann. Ein Beispiel dafür ist in der DE-OS 30 41 398 aufgeführt.
  • Aufgrund der hohen Oberflächenspannung ist eine exakte Dosierung von flüssigem Quecksilber, insbesondere in kleinsten Mengen praktisch nicht möglich. Daher wird in den meisten Fällen eine weit höhere Menge in die Lampe gefüllt, als für den Betrieb benötigt wird. Bei direktem Einbringen des flüssigen Quecksilbers wird somit auch verhindert, daß die Quecksilbertropfen im Pumpstengel hängenbleiben, was dann der Fall ist, wenn die Tröpfchen eine gewisse Mindestgröße unterschreiten.
  • Neuerdings ist in der DE-Patentanmeldung 35 34 208.0 auch ein Verfahren vorgeschlagen, bei der ein Strang flüssigen Quecksilbers unter den Erstarrungspunkt abgekühlt wird. Von diesem gefrorenen Strang werden dann Teilstränge der benötigten Länge, d.h. der benötigten Quecksilbermenge abgetrennt und in das Entladungsgefäß eingebracht. Dieses Verfahren ermöglicht eine wesentlich genauere Dosierung. Das Verfahren ist jedoch maschinentechnisch sehr aufwendig und, da die entsprechenden Vorrichtungen in die Fertigungsmaschinen für die Lampen integriert sein müssen, nur mit großem Aufwand zu realisieren.
  • Die Verarbeitung von flüssigem Quecksilber stellt eine große Umwelt- bzw. Arbeitsplatzbelastung dar, da Quecksilber einen relativ hohen Dampfdruck besitzt, wobei der Dampf stark toxisch ist. Beim Auftreffen auf harte Unterlagen verspritzt es in winzige Tröpfchen, die nur sehr schwer wieder aufgesammelt werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Speicherlements für das Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen zu schaffen. Das nach diesem Verfahren hergestellte Speicherelement Sollte eine genaue Dosierung des Quecksilbers bzw. der Quecksilberlegierung ermöglichen und einfach in die Lampe einzubringen sein. Dabei sollten die physikalischen Eigenschaften des Quecksilbers bzw. der Quecksilberlegierung nicht verändert werden.
  • Das Verfahren zur Herstellung eines solchen Speicherelements ist erfindungsgemäß durch die folgenden Verfahrensschritte gekennzeichnet:
    • a) Das Quecksilber oder die Quecksilberlegierung wird in ein oder mehrere Elektrolysegefäße mit jeweils unterschiedlichen Metallsalzlösungen und einer Anode des entsprechenden Metalls gegeben, wobei die Metalle Elemente sind, die entweder allein oder als Mischung bzw. als Legierung selbst keine Legierung mit Quecksilber bilden, von Quecksilber benetzbar sind und eine hohe Oxidationsbeständigkeit aufweisen
    • b) das Quecksilber oder die Quecksilberlegierung wird mit dem jeweiligen Metall der Salzlösung elektrolytisch angereichert, so daß eine oder mehrere Quecksilber-Metallsuspensionen gebildet werden
    • c) im Fall von mehreren Quecksilber-Metallsuspensionen werden diese in bestimmten Verhältnissen gemischt
    • d) das entstandene Quecksilber-Metallsuspensionsprodukt wird mit wasserfreiem Glycerin überschichtet und bei mindestens 100 °C getempert
    • e) das Glycerin wird dekantiert und das Suspensionsprodukt gewaschen und getrocknet
    • f) das überschüssige nicht adsorbierte Quecksilber bzw. die überschüssige nicht adsorbierte Quecksilberlegierung wird abgefiltert
    • g) der verbleibende Filterkuchen wird in die Bohrung eines Stahlzylinders gefüllt und das überschüssige Quecksilber bzw. die überschüssige Quecksilberlegierung mit Hilfe eines Stempels unter hohem Druck herausgepreßt
    • h) der so entstandene spröde Preßling wird pulverisiert und aus dem Pulver Preßkörper der entsprechenden Dimensionen hergestellt
  • Nach der in Schritt b) erfolgten Elektrolyse beträgt der Metallanteil an der Quecksilber-Metallsuspension 0,5 bis 1 %. Durch die im Schritt f) durchgeführte Filterung erhöht sich der Metallanteil am verbleibenden Filterkuchen auf 5 bis 8 % und wird durch die anschließende Pressung nochmals um den Faktor 5 bis 10 erhöht. Diese im Verfahrensschritt g) durchgeführte Pressung gestattet es, durch Änderung des Preßdrucks den Anteil des Quecksilbers am Preßling in gewissen Grenzen zu variieren. Die im Schritt d) durchgeführte Temperung bewirkt ein Kristallwachstum, wodurch die Filtrierbarkeit im Verfahrensschritt f) wesentlich verbessert wird. Außerdem können durch die Temperung mögliche Quecksilberlegierungen, die sich mit einem der am Quecksilber-Metallsuspensionsprodukt beteiligten Metall gebildet haben, zersetzt werden, so daß die Metalle dann untereinander eine Legierung bilden können, die quecksilberfrei ist.
  • Ein nach dem obigen Verfahren hergestellter Preßkörper speichert pro Gewichtseinheit des Metalls eine genau festlegbare Menge des Quecksilbers bzw. der Quecksilberlegierung. Messungen ergaben, daß bei Preßkörpern aus unterschiedlichen Chargen, die jeweils unter den gleichen Verfahrensbedingungen hergestellt wurden, die gespeicherte Quecksilbermenge höchstens um ± 10 % schwankt. Auf diese Weise läßt sich abhängig vom Gewicht des Preßkörpers jede gewünschte Menge des Quecksilbers bzw. der Quecksilberlegierung erhalten. Der Preßkörper kann sehr einfach in die Entladungslampe eingebracht werden, wobei er weder durch eine Zwischenlagerung noch durch Berührung einen Speicherverlust erleidet. Bei einer längeren Lagerung muß diese natürlich entweder unter Vakuum- oder aber unter Schutzgas erfolgen, da aufgrund des hohen Dampfdrucks das Quecksilber in normaler Atmosphäre wegdampft. Eine Überdosierung des Quecksilbers in der Lampe ist somit nicht mehr erforderlich. Als weiterer Vorteil ist es möglich, den Preßkörper im Pumpstengel zu fixieren, wodurch Leuchtstoffabtragungen, wie sie durch das Eintropfen von flüssigem Quecksilber verursacht wurden, ausgeschlossen werden. Durch die Wärme bei der Aufheizung der Elektroden wird sodann das Quecksilber vollständig aus dem Preßkörper freigesetzt.
  • Bei der unter Schritt b) aufgeführten Elektrolyse kann zur Erhöhung der Leitfähigkeit zusätzlich Ammoniumsulfat in das Elektrolysegefäß gegeben werden. Eine mögliche anodische Oxidation ist durch einen Zusatz von Ethanol weitgehend zu unterbinden. Um eine möglichst gleichmäßige Anreicherung zu erzielen, muß das Gemisch aus Quecksilber bzw. Quecksilberlegierung und Metallsalzlösung während der Elektrolyse ständig umgerührt werden.
  • Die Bildung der Quecksilber-Metallsuspension im Elektrolysegefäß kann sowohl periodisch als auch kontinuierlich erfolgen. Bei einer kontinuierlichen Elektrolyse wird dabei jeweils eine gewisse Menge der bereits entstandenen Quecksilber-Metallsuspension nach unten abgelassen und die entsprechende Menge an reinem flüssigen Quecksilber oben nachgefüllt.
  • Theoretisch eignen sich als Metalle für die Metallsalzlösungen und der entsprechenden Anode, die neben Quecksilber jeweils den größten Anteil am Quecksilber-Metallsuspensionsprodukt haben sollen, alle Elemente der vierten bis achten Nebengruppe des Periodensystems. Praktisch kommen jedoch nur solche Metalle in Frage, die nicht toxisch und/oder radioaktiv sind und eine möglichst kostengünstige Herstellung des Preßkörpers ermöglichen. Als brauchbar in diesem Sinn erwiesen sich insbesondere die Metalle Eisen und Nickel, wobei hier ein zweites Metall, wie Kupfer, benötigt wird, um eine ausreichende Oxidationsbeständigkeit zu erreichen. Auch mit den Metallen Eisen, Chrom und evtl. Nickel für die Metallsalzlösungen und die Anoden lassen sich Preßkörper mit guten Speichereigenschaften erzielen.
  • Für den Fall, daß die Herstellung des Preßkörpers und das Einbringen des Preßkörpers in das Entladungsgefäß unter Schutzgas abgewickelt wird, ist es nicht erforderlich, daß die Metalle der Metallsalzlösungen und der Anoden allein oder als Mischung bzw. als Legierung eine hohe Oxidationsbeständigkeit aufweisen. Untersuchungen an Preßkörpern aus Eisen, denen kein die Oxidation hemmendes Metall beigegeben war, zeigten, daß diese Preßkörper, wenn sie an der Luft gelagert werden (neben dem Verdampfen von Quecksilber), im Laufe der Zeit Quecksilbertropfen abgeben, da mit fortschreitender Oxidation die Benetzbarkeit des Körpers sinkt.
  • Besonders gute Ergebnisse bezüglich Quecksilberspeicherung, Oxidationsbeständigkeit sowie vollständiger Quecksilberabgabe bei Erwärmung im Entladungsgefäß zeigen Preßkörper, bei deren Herstellung der Anteil der Metalle am Quecksilber-Metallsuspensionsprodukt sich aus 75 bis 99,5 Gew.-% Eisen und als Rest zu 100 % aus 25 bis 0,5 Gew.-% Kupfer zusammensetzt. Auch Quecksilber-Metallsuspensionsprodukte mit einem Metallanteil aus 55 bis 80 Gew.-% Nickel und 45 bis 20 Gew.-% Kupfer führen zu Preßkörpern, die das Quecksilber bzw. die Quecksilberlegierung sehr gut speichern und eine hohe Oxidationsbeständigkeit aufweisen. Die Preßkörper haben jedoch den Nachteil, daß sie bei Raumtemperatur ca. die Hälfte des Quecksilbers hartnäckig festhalten und erst oberhalb 80 bis 100 °C wieder freigeben. Im Fall von Preßkörpern aus Eisen, Chrom und Nickel sollte der Anteil der Metalle am Quecksilber-Metallsuspensionsprodukt aus 65 bis 75 Gew.-% Eisen, 12 bis 25 Gew.-% Chrom und als Rest zu 100 % aus 23 bis 0 Gew.-% Nickel bestehen. Ein solcher Preßkörper besitzt jedoch nicht die hohe Oxidationsbeständigkeit wie die beiden oben erwähnten Preßkörperzusammensetzungen.
  • Die Erfindung wird anhand der nachfolgenden Figuren sowie anhand eines Herstellungsbeispiels für ein Speicherelement entsprechend dem erfindungsgemäßen Verfahren näher veranschaulicht.
  • Figur 1
    zeigt den Aufbau des Elektrolysegefäßes zur Herstellung der Quecksilber-Metallsuspensionen
    Figur 2
    zeigt den Stahlzylinder zum Auspressen des Filterkuchens
  • Das in Figur 1 abgebildete Elektrolysegefäß 1 zur Herstellung der Quecksilber-Metallsuspensionen besteht aus einem doppelwandigen Glasgefäß 2, das über einen Zulauf 3 und einen Ablauf 4 von Kühlwasser durchflossen wird. Als Anode dient ein Metallzylinder 5, der über ein Kabel 6 mit dem positiven Pol einer hier nicht dargestellten Gleichspannungsquelle verbunden ist. Der Metallzylinder 5 besitzt eine zentrale Bohrung 7, durch die ein Rührer 8 aus Glas gesteckt ist. Die Kathode, die durch das unten im Gefäß 2 befindliche Quecksilber 9 gebildet wird, ist über einen Kupferdraht 10 mit dem negativen Pol der Spannungsquelle verbunden. Oberhalb der Quecksilber-Kathode 9 befindet sich der Elektrolyt 11 in Form einer Metallsalzlösung, wobei jeweils das Metall der Salzlösung und der Anode übereinstimmen. Durch Anlegen einer Gleichspannung wird das Quecksilber mit dem Metall des Elektrolyten 11 angereichert, wobei der Rührer 8 mit seiner Bewegung für eine möglichst hohe Gleichmäßigkeit sorgt. Die fertige Quecksilber-Metallsuspension kann über einen Hahn 12 nach unten abgelassen werden.
  • In Figur 2 ist der Stahlzylinder 13 zum Auspressen des Filterkuchens 14 dargestellt. Er besteht aus einem Zylinderteil 15 mit einer kreisförmigen zentralen Bohrung 16 von 15 mm Durchmesser, in der sich der Filterkuchen 14 befindet und in die von oben ein Stempel 17 gesteckt ist. Der Zylinderteil 15 ist an seiner polierten Stirnfläche mit einer gehärteten Stahlplatte 18 verschraubt. Mit Hilfe eines Druckes von bis zu 7 x 10⁸ Pa auf den Stempel 17 wird das überschüssige Quecksilber aus dem Filterkuchen 14 herausgepreßt. Es sickert durch die Ritzen zwischen Zylinderteil 15 und Stahlplatte 18 und tritt an den mit den Pfeilen 19, 20 bezeichneten Stellen aus dem Stahlzylinder 13 aus.
  • Herstellungsbeispiel für einen Preßkörper aus Eisen und Kupfer: Es werden 1500 g Quecksilber jeweils in ein Elektrolysegefäß mit einer Eisen-Anode und ein Elektrolysegefäß mit einer Kupfer-Anode, wie es in Fig. 1 abgebildet ist, gegeben. Für die Quecksilber-Eisen-Elektrolyse besteht der Elektrolyt von 200 ml aus 6 g FeSO₄, 10 ml konzentrierte H₂SO₄ sowie als Zusatz 10 g (NH₄)₂SO₄ und 10 ml Ethanol. Bei Anlegen einer Gleichspannung von 20 V mit einem Strom von 20 A erhält man unter ständigem Rühren nach einer Elektrolysezeit von 20 Minuten eine Quecksilber-Eisensuspension mit einem Eisenanteil von ca. 0,5 Gew.-%.
  • Der Elektrolyt für die Quecksilber-Kupfer-Elektrolyse in einer Menge von ebenfalls 200 ml enthält 20 g CuSO₄, dem bis zur klaren Auflösung NH₃ zugegeben wird. Bei einer Spannung von 10 V und einem Strom von 40 A ergibt sich nach einer Elektrolysezeit von 20 Minuten unter ständigem Rühren eine Quecksilber-Kupfersuspension mit einem Kupferanteil von ca. 1 %. Die beiden Quecksilber-Metallsuspensionen werden so gemischt, daß der Metallanteil neben Quecksilber sich aus 95 Gew.-% Eisen und 5 Gew.-% Kupfer zusammensetzt.
  • Das so entstandene Quecksilber-Metallsuspensionsprodukt wird mit wasserfreiem Glycerin überschichtet und bei 240 °C eine Stunde getempert. Nach der Dekantierung des Glycerins wird das Suspensionsprodukt gewaschen und getrocknet. Durch anschließendes Abfiltern des überschüssigen Quecksilbers mit Hilfe einer Glasfritte der Porosität G3 erhöht sich der Metallanteil auf das 10fache. Der zurückbleibende Filterkuchen wird in den in Figur. 2 abgebildeteten Stahlzylinder gefüllt und mit einem hohen Druck (siehe unten) auf den Stempel das verbliebene überschüssige Quecksilber herausgepreßt. Der auf diese Weise geschaffene Preßling wird pulverisiert und mit Hilfe einer Exzenterpresse scheibenförmige Preßkörper von 1,5 mm Durchmesser und ca. 0,4 mm Höhe hergestellt. Abhängig vom Preßdruck des Filterkuchens im Stahlzylinder lassen sich folgende Gewichtsanteile für das Quecksilber im Preßkörper erhalten: bei 5,7 x 10⁷ Pa 74 Gew.-%, bei 11,3 x 10⁷ Pa 66 Gew.-%, bei 22,6 x 10⁷ Pa 63 Gew.-% und bei 56,6 x 10⁷ Pa 60 Gew.-%.

Claims (12)

  1. Verfahren zur Herstellung eines Speicherelements, das zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe dient, gekennzeichnet durch die folgenden Verfahrensschritte
    a) das Quecksilber oder die Quecksilberlegierung wird in ein oder mehrere Elektrolysegefäße (1) mit jeweils unterschiedlichen Metallsalzlösungen und einer Anode (5) des entsprechenden Metalls gegeben, wobei die Metalle Elemente sind, die entweder allein oder als Mischung bzw. als Legierung selbst keine Legierung mit Quecksilber bilden, von Quecksilber benetzbar sind und eine hohe Oxidationsbeständigkeit aufweisen
    b) das Quecksilber oder die Quecksilberlegierung wird mit dem jeweiligen Metall der Salzlösung elektrolytisch angereichert, so daß eine oder mehrere Quecksilber-Metallsuspensionen gebildet werden
    c) im Falle von mehreren Quecksilber-Metallsuspensionen werden diese in bestimmten Verhältnissen gemischt
    d) das entstandene Quecksilber-Metallsuspensionsprodukt wird mit wasserfreiem Glycerin überschichtet und bei mindestens 100 °C getempert
    e) das Glycerin wird dekantiert und das Suspensionsprodukt gewaschen und getrocknet
    f) das überschüssige nicht adsorbierte Quecksilber bzw. die überschüssige nicht adsorbierte Quecksilberlegierung wird abgefiltert
    g) der verbleibende Filterkuchen wird in die Bohrung eines Stahlzylinders (13) gefüllt und das überschüssige Quecksilber bzw. die überschüssige Quecksilberlegierung mit Hilfe eines Stempels (17) unter hohem Druck herausgepreßt
    h) der so entstandene spröde Preßling wird pulverisiert und aus dem Pulver Preßkörper der entsprechenden Dimensionen hergestellt
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Erhöhung der Leitfähigkeit zusätzlich Ammoniumsulfat in das Elektrolysegefäß gegeben wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Hemmung der anodischen Oxidation zusätzlich Ethanol in das Elektrolysegefäß gegeben wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für eine gleichmäßige Anreicherung des Quecksilbers bzw. der Quecksilberlegierung mit dem Metall im Elektrolysegefäß (1) das Gemisch aus Quecksilber bzw. Quecksilberlegierung und Metallsalzlösung ständig mit einem Rührer (8) bewegt wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für eine kontinuierliche Elektrolyse im Gefäß (1) jeweils eine gewisse Menge der bereits entstandenen Quecksilber-Metallsuspension nach unten abgelassen und die entsprechende Menge an reinem flüssigen Quecksilber oben nachgefüllt wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Metall der Metallsalzlösung und der entsprechenden Anode, das neben Quecksilber jeweils den größten Anteil am Quecksilber-Metallsuspensionsprodukt hat, ein Element der vierten bis achten Nebengruppe des Periodensystems ist.
  7. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, daß die Metalle der Metallsalzlösungen und der Anoden Eisen und Kupfer sind.
  8. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, daß die Metalle der Metallsalzlösungen und der Anoden Nickel und Kupfer sind.
  9. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, daß die Metalle der Metallsalzlösungen und der Anoden Eisen, Chrom und eventuell Nickel sind.
  10. Verfahren nach Anspruch 1 und 7, dadurch gekennzeichnet, daß der Anteil der Metalle am Quecksilber-Metallsuspensionsprodukt sich aus 75 bis 99,5 Gew.-% Eisen und als Rest zu 100 % aus 25 bis 0,5 Gew.-% Kupfer zusammensetzt.
  11. Verfahren nach Anspruch 1 und 8, dadurch gekennzeichnet, daß der Anteil der Metalle am Quecksilber-Metallsuspensionsprodukt sich aus 55 bis 80 Gew.-% Nickel und als Rest zu 100 % aus 45 bis 20 Gew.-% Kupfer zusammensetzt.
  12. Verfahren nach Anspruch 1 und 9, dadurch gekennzeichnet, daß der Anteil der Metalle am Quecksilber-Metallsuspensionsprodukt sich aus 65 bis 75 Gew.-% Eisen, 12 bis 25 Gew.-% Chrom und als Rest zu 100 % aus 23 bis 0 Gew.-% Nickel zusammensetzt.
EP86117328A 1985-12-19 1986-12-12 Verfahren zur Herstellung eines Speicherelementes zum Dosieren und Einbringen von Quecksilber in eine Entladungslampe Expired - Lifetime EP0226192B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3545048 1985-12-19
DE19853545048 DE3545048A1 (de) 1985-12-19 1985-12-19 Verfahren zur herstellung eines speicherelementes zum dosieren und einbringen von quecksilber in eine entladungslampe

Publications (3)

Publication Number Publication Date
EP0226192A2 EP0226192A2 (de) 1987-06-24
EP0226192A3 EP0226192A3 (en) 1989-05-10
EP0226192B1 true EP0226192B1 (de) 1991-07-24

Family

ID=6288926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117328A Expired - Lifetime EP0226192B1 (de) 1985-12-19 1986-12-12 Verfahren zur Herstellung eines Speicherelementes zum Dosieren und Einbringen von Quecksilber in eine Entladungslampe

Country Status (3)

Country Link
EP (1) EP0226192B1 (de)
JP (1) JPS62157642A (de)
DE (2) DE3545048A1 (de)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI42250C (fi) * 1969-04-18 1970-06-10 Airam Ab Oy Elohopean annostelulaite

Also Published As

Publication number Publication date
JPS62157642A (ja) 1987-07-13
EP0226192A3 (en) 1989-05-10
JPH0532858B2 (de) 1993-05-18
EP0226192A2 (de) 1987-06-24
DE3680488D1 (de) 1991-08-29
DE3545048A1 (de) 1987-06-25

Similar Documents

Publication Publication Date Title
EP0228005B1 (de) Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber in eine Entladungslampe
DE3509039A1 (de) Verbundwerkstoff fuer elektrische kontakte und verfahren zu seiner herstellung
DE2924896C2 (de)
EP0645049B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
DE2631906A1 (de) Metallpulvermischung fuer die herstellung von in der zahnheilkunde verwendbaren zahnamalgamen durch mischen mit quecksilber
DE2856466A1 (de) Verfahren zur herstellung von hochradioaktive abfallstoffe enthaltenden formkoerpern aus in eine metallische matrix eingebetteten glas-granalien
EP0226192B1 (de) Verfahren zur Herstellung eines Speicherelementes zum Dosieren und Einbringen von Quecksilber in eine Entladungslampe
DE3106763C2 (de) Verfahren zur Herstellung eines Überspannungsableiters mit bariumhaltiger Elektrodenbeschichtung
DE2836316A1 (de) Verfahren zur herstellung von keramikteilen mittels elektrophorese
AT2017U1 (de) Verwendung einer molybdän-/wolfram-legierung in bauteilen für glasschmelzen
DE3204794C2 (de)
EP0021457A1 (de) Elektrode für die Wasserelektrolyse
EP0148439B1 (de) Aktivierte Metallanoden sowie ein Verfahren zu deren Herstellung
DE1533319B1 (de) Verfahren zur pulvermetallurgischen Herstellung poroeser Zinkkoerper aus oberflaechlich oxydierten Zinkteilchen
DE2540999C3 (de) Elektrischer Steckkontakt mit einer Kontaktschicht aus einer Silber-Palladium-Legierung
DE3208835A1 (de) Unloesliche elektrode und elektrochemische vorrichtung
DE667929C (de) Verfahren zur Herstellung feiner Pulver
DE2745728A1 (de) Gaslaser bzw. elektrode hierfuer und verfahren zu deren herstellung
DE2718819C2 (de) Verfahren und Vorrichtung zur Herstellung von höchstfeinem Metall- und Metalloxidpulver
DE19735734B4 (de) Pulvermetallurgisches Sputtertarget auf der Basis von Wismut und Verfahren zu seiner Herstellung
DE60023959T2 (de) Verfahren zur Änderung des Metasllisotopenverhältnisses in einem Metalalkyl
DE2657434A1 (de) Gesinterter, elektrisch leitender gegenstand und verfahren zu seiner herstellung
DE914522C (de) Verfahren zur Herstellung von stark waermeabstrahlenden UEberzuegen auf Elektroden von elektrischen Entladungsgefaessen, insbesondere Hochleistungskurzwellenroehren
DE909602C (de) Verfahren zur Herstellung von stark waermeabstrahlenden UEberzuegen auf Elektroden von elektrischen Entladungsgefaessen, insbesondere Hochleistungskurzwellenroehren
DE1533319C (de) Verfahren zur pulvermetallurgischen Herstellung poröser Zinkkörper aus oberflächlich oxydierten Zinkteilchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890608

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

17Q First examination report despatched

Effective date: 19901113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3680488

Country of ref document: DE

Date of ref document: 19910829

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86117328.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051208

Year of fee payment: 20

Ref country code: GB

Payment date: 20051208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060220

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061211

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed