EP0218784B1 - Multifilament-Supraleiterdrähte und Verfahren zu deren Herstellung - Google Patents

Multifilament-Supraleiterdrähte und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0218784B1
EP0218784B1 EP86107338A EP86107338A EP0218784B1 EP 0218784 B1 EP0218784 B1 EP 0218784B1 EP 86107338 A EP86107338 A EP 86107338A EP 86107338 A EP86107338 A EP 86107338A EP 0218784 B1 EP0218784 B1 EP 0218784B1
Authority
EP
European Patent Office
Prior art keywords
nb3sn
wires
metals
v3ga
ingredients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86107338A
Other languages
English (en)
French (fr)
Other versions
EP0218784A2 (de
EP0218784A3 (en
Inventor
René Dr. Flükiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0218784A2 publication Critical patent/EP0218784A2/de
Publication of EP0218784A3 publication Critical patent/EP0218784A3/de
Application granted granted Critical
Publication of EP0218784B1 publication Critical patent/EP0218784B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12819Group VB metal-base component

Definitions

  • the invention relates to multifilament superconductor wires consisting of filaments surrounded with copper or with copper alloy, which are made of superconducting, intermetallic compounds Nb3Sn or V3Ga, each with A15 structure, with additives from the group of elements Rare earth metals, Th, U, Ti, Zr, Hf, V, Nb, Ta, Mo, Fe, Co, Ni, Pd, Cu, Ag, Al, Pt, except Nb as the only additional element for Nb3Sn and V as the only additional element for V3Ga, are built up.
  • the invention further relates to a method for producing such superconductor wires.
  • Multifilament superconductor wires based on bronze Nb3Sn with ternary or quaternary additions of, for example, uranium, titanium, zirconium, hafnium, vanadium, tantalum, iron, nickel, palladium, aluminum or others are from the publication of the European patent application EP-A-0 048 313 known. These additives serve to avoid the so-called press effect and were alloyed with the niobium and / or the copper or the bronze.
  • the alloy compositions described in the European laid-open specification and the measures required for the production of the superconductor wires greatly reduce or prevent the shift in the critical current intensity to lower values, particularly in the case of high magnetic fields, compared to the maximum value.
  • the invention has for its object to provide and manufacture improved multifilament superconductor wires consisting of filaments surrounded with copper or with copper alloy, which are made of superconducting intermetallic compounds Nb3Sn or V3Ga, each with A15 crystal structure, with additives, which in Magnetic fields in their field of application, especially in magnetic fields in the range below 12 T, guarantee increased current density values of more than 10% or higher compared to the values previously achievable with the materials mentioned.
  • the object is achieved by multifilament superconductor wires, consisting of filaments surrounded with copper or with copper alloy, made of superconducting, intermetallic compounds Nb3Sn or V3Ga, each with A15 structure, with additives from the group of elements Rare earth metals, Th, U, Ti, Zr, Hf, V, Nb, Ta, Mo, Fe, Co, Ni, Pd, Cu, Ag, Al, Pt except Nb as the only additional element for Nb3Sn and V as the only additional element for V3Ga , are built up, which are characterized in that there are homogeneously distributed undissolved inclusions within the A15 phase at the grain boundaries of the crystals and / or at the interfaces of the A15 phase with the copper or the copper alloy, which form a further phase and consist of at least one Element of the group.
  • the additional element in the inclusion can be present unreacted in elemental form or after reaction with elements from the environment as a reaction product in the form of a separate phase.
  • the additives mentioned can be provided with both binary conductors (eg Nb3Sn or V3Ga conductors) and multinary conductors (these are those which have ternary or quaternary etc. alloy components in the A15 structure) if these additives contain inclusions, ie separate phases, form.
  • the inclusions generally have radial dimensions of 0.5 ⁇ m or smaller. In an advantageous embodiment of the invention, the inclusions have radial dimensions of less than 0.1 ⁇ m. It is also advantageous for the invention if the inclusions are formed parallel to the axis.
  • the sum of the additives in the inclusions can have a concentration in the range from 0.1% by weight to 50% by weight, based on the Nb content of the A15 phase in the case of Nb3Sn and based on the V content of the A15 -Phase in the case of V3Ga correspond.
  • the inclusions mentioned are not or only partially dissolved in the A15 structure, or part of the inclusion material forms with a matrix or core -Materials of the wire new connections, which form additional phases.
  • Magnetic fields up to a field strength of 15 Tesla can today be achieved in commercial superconducting laboratory coils at temperatures of 4.2 K. Recent developments have made magnetic fields of 18 T (at 1.8 K even 20 T) possible. To generate these fields, materials such as Nb3Sn, V3Ga (both with A15 crystal structure) must be used. These are all very brittle, with an elongation at break of 0.1%. In order to cope with this unfavorable property, a large number of sometimes quite complex processes for producing the corresponding superconductor wires have been developed. In all of these processes, sub-elements that do not yet have the final superconducting properties but are still ductile are mechanically deformed into a wire with the final dimensions.
  • a typical superconductor wire with a diameter of approx. 1 mm consists of several thousand filaments, which consist of the above-mentioned A15 materials. These filaments have diameters (or characteristic dimensions in the case of deviations from the circular shape) below 5 ⁇ m, whereby individual production methods even have typical filament dimensions ⁇ 1 ⁇ m.
  • the outer sheath (or the core) of a superconductor wire consists of pure copper, which is separated from the copper bronze or the superconductor material by an Nb or Ta barrier in order to avoid contamination during the reaction annealing.
  • the wire is twisted around its own axis, with a pitch of approx. 20 mm.
  • the bronze method has been the most widespread to date, but has the disadvantage that the Cu-13 wt.% Sn bronze hardens very strongly during cold forming, which requires annealing after every 50% reduction in area. In total, 15 to 20 anneals of approx. 1 hour at 500 ° C are required per wire, which considerably slows down the manufacturing process.
  • the "modified jelly roll” method is based on thin Nb and Cu-Sn bronze foils, which are wrapped around a copper core and then extruded. Because of the small film thickness, you come with less relaxation glow than with the bronze method.
  • J c depends on the density of the adhesion centers at the grain boundaries and thus on the grain size.
  • Various grain structures have so far been demonstrated: at the Nb boundary, relatively large, columnar grains (up to 1 ⁇ m in length) with strong texturing perpendicular to the wire axis, then very fine grains with statistically distributed orientations (80 to 200 nm (800 to 2000 ⁇ ) an annealing time of 3 days at 700 ° C), followed by a coarse-grained layer ( ⁇ 200 nm (2000 ⁇ )) (W. Schauer and W. Schelb, IEEE Trans.Magn., MAG-17, 374 (1981)). The very fine grains contribute most to J c .
  • Niobium powder with grain sizes between 106 and 125 ⁇ m was used to prepare the samples. Its Vickers hardness was approx. 85 kg / mm2.
  • the wire was manufactured, mostly by hammering, sometimes also by rolling.
  • the sheath material was etched off with dilute nitric acid at a wire diameter of approximately 1 mm and then 19 pieces of the conductor were again bundled in a Cu-Zr tube. The second bundling took place in a bronze tube, which was then hammered to a final diameter of 0.6 mm.
  • the final reaction annealing in which the Nb3Sn-A15 structure was formed, was carried out at 675 ° C and an annealing time of 100 hours.
  • an increase in the J c value was achieved, at 6 T by 43.6%, at 8 T by 41.5% and at 10 T by 17.6% compared to the corresponding J c values for an Nb3Sn -Conductor with 100 wt% Nb in the A15 structure without Ni inclusions (see figure below).
  • Curve 1 was obtained by the process according to the invention with an Nb3Sn conductor, in which 85% by weight of Nb and 15% by weight of Ni (as inclusions), based on the sum (Nb + Ni), was contained.
  • Curve 2 was formed from the J c values of the Nb3Sn conductor with 100% by weight of Nb (comparison conductor without inclusions).
  • the processability of the other specified materials is similar to that of nickel. Avoid contamination with oxygen, carbon and nitrogen in the starting materials.
  • the Vickers hardness of the mixed powders must be approximately the same so that the two types of powder deform evenly.
  • the manufacturing example was carried out according to the bronze method, but the desired superconducting wire could also be produced using the similar methods of internal tin diffusion and the ECN method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

  • Die Erfindung betrifft Multifilament-Supraleiterdrähte, bestehend aus mit Kupfer oder mit Kupferlegierung umgebenen Filamenten, die aus supraleitenden, intermetallischen Verbindungen Nb₃Sn oder V₃Ga, jeweils mit A15-Struktur, mit Zusätzen aus der Gruppe der Elemente
       Seltene Erdmetalle, Th, U, Ti, Zr, Hf, V, Nb, Ta, Mo, Fe, Co, Ni, Pd, Cu, Ag, Al, Pt, ausgenommen Nb als einziges Zusatzelement Für Nb₃Sn und V als einziges Zusatzelement für V₃Ga,
    aufgebaut sind. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung solcher Supraleiterdrähte.
  • Multifilament-Supraleiterdrähte auf der Basis Bronze-Nb₃Sn mit ternären oder quaternären Zusätzen von beispielsweise Uran, Titan, Zirkonium, Hafnium, Vanadium, Tantal, Eisen, Nickel, Palladium, Aluminium oder andere sind aus der Veröffentlichung der europäischen Patentanmeldung EP-A-0 048 313 bekannt. Diese Zusätze dienen dort der Vermeidung des sogenannten Prestress-Effektes und wurden dem Niob und/oder dem Kupfer bzw. der Bronze zulegiert. Durch die in der europäischen Offenlegungsschrift beschriebenen Legierungszusammensetzungen und zur Herstellung der Supraleiterdrähte erforderlichen Maßnahmen wird die vor allem bei hohen Magnetfeldern auftretende Verschiebung der kritischen Stromstärke zu niedrigeren Werten im Vergleich zu dem maximalen Wert stark verringert bzw. verhindert.
  • Mit den bekannten Methoden zur Herstellung von Nb₃Sn- oder V₃Ga-Multifilament-Supraleiterdrähten erhält man Produkte, welche bei mittleren Magnetfeldern (12 T) kritische Stromdichtewerte um 10⁵ A/cm² aufweisen.
  • Der Erfindung liegt die Aufgabe zugrunde, verbesserte Multifilament-Supraleiterdrähte, bestehend aus mit Kupfer oder mit Kupferlegierung umgebenen Filamenten, die aus supraleitenden intermetallischen Verbindungen Nb₃Sn oder V₃Ga, jeweils mit A15-Kristall-Struktur, mit Zusätzen aufgebaut sind, bereitzustellen und herzustellen, welche in Magnetfeldern ihres Anwendungsbereiches, vor allem in Magnetfeldern im Bereich unterhalb 12 T, erhöhte Stromdichte-Werte um mehr als 10 % oder höher gegenüber den bisher mit den genannten Materialien erreichbaren Werten gewährleisten.
  • Die Aufgabe wird erfindungsgemäß gelöst durch Multifilament-Supraleiterdrähte, bestehend aus mit Kupfer oder mit Kupferlegierung umgebenen Filamenten, die aus supraleitenden, intermetallischen Verbindungen Nb₃Sn oder V₃Ga, jeweils mit A15-Struktur, mit Zusätzen aus der Gruppe der Elemente
       Seltene Erdmetalle, Th, U, Ti, Zr, Hf, V, Nb,Ta, Mo, Fe, Co, Ni, Pd, Cu, Ag, Al, Pt ausgenommen Nb als einziges Zusatzelement für Nb₃Sn und V als einziges Zusatzelement für V₃Ga,
    aufgebaut sind, welche dadurch gekennzeichnet sind, daß innerhalb der A15-Phase an den Korngrenzen der Kristalle und/oder an den Grenzflächen der A15-Phase zum Kupfer oder zur Kupferlegierung homogen verteilte, ungelöste Einschlüsse vorliegen, die eine weitere Phase bilden und aus mindestens einem Element der Gruppe bestehen.
  • Das Zusatzelement im Einschluß kann unreagiert in elementarer Form oder nach Reaktion mit Elementen der Umgebung als Reaktionsprodukt in Form einer separaten Phase vorliegen. Mit den genannten Zusätzen können sowohl binäre Leiter (z.B. Nb₃Sn- oder V₃Ga-Leiter) als auch multinäre Leiter (das sind solche, die ternäre oder quaternäre etc. Legierungsbestandteile in der A15-Struktur aufweisen) versehen sein, wenn diese Zusätze Einschlüsse, d.h. separate Phasen, bilden. Die Einschlüsse weisen allgemein radiale Abmessungen von 0,5 µm oder kleiner auf. In einer vorteilhaften Ausbildung der Erfindung weisen die Einschlüsse radiale Abmessungen von weniger als 0,1 µm auf. Für die Erfindung ist es ebenfalls von Vorteil, wenn die Einschlüsse achsenparallel ausgebildet sind. Die Summe der Zusätze in den Einschlüssen kann einer Konzentration im Bereich von 0,1 Gew.-% bis 50 Gew.-%, bezogen auf den Nb-Anteil der A15-Phase im Falle von Nb₃Sn und bezogen auf den V-Anteil der A15-Phase im Falle von V₃Ga, entsprechen.
  • Der Teil der Aufgabe, der sich mit der Herstellung der erfindungsgemäßen Multifilament-Supraleiterdrähte befaßt, wird erfindungsgemäß dadurch gelöst, daß man
    • a) ein metallisches Pulver aus einem der genannten Zusatzmetalle mit Ausnahme von V und Nb oder aus mehreren der genannten Zusatzmetalle oder aus einer oder mehreren Legierungen aus mindestens zwei der Zusatzmetalle mischt mit einem Pulver
      • a₁) aus Niob, oder
      • a₂) aus einer oder mehreren Nb-Legierungen aus der Gruppe Nb-Ta, Nb-Ti, NbZr oder
      • a₃) aus Vanadium oder
      • a₄) aus einer oder mehreren V-Legierungen aus der Gruppe V-Ta, V-Nb, V-Ti, V-Zr,
      wobei alle Pulver Korngrößen aufweisen im Bereich zwischen 0,1 µm und 400 µm Durchmesser und der Anteil y des bzw. der Zusatzmetalle im Pulvergemisch einem Gewichtsprozentwert innerhalb der Grenzen 0,1 ≦ y ≦ 50 entspricht,
    • b) das aus a) erhaltene Pulvergemisch in einen kompaktierbaren und evakuierbaren Behälter aus Kupfer oder aus einer Kupferlegierung einfüllt, die eingeschlossene Luftmenge entfernt und danach das Pulvergemisch mit dem geschlossenen Behälter durch einfaches oder isostatisches Pressen gemeinsam kompaktiert bis zu einer Pulverdichte von mehr als 90 % theoretische Dichte und
    • c) den kompaktierten Behälter in an sich bekannter Weise zu einem Draht mit einem Durchmesser im Bereich von 0,5 mm bis 15 mm verformt und nach Entfernen der äußeren Cu- oder Cu-Legierungs-Schicht nach einer der bekannter Verfahrensweisen zu Nb₃Sn-Drähten oder zu V₃Ga-Drähten weiterverarbeitet.
  • Eine andere Version des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß man
    • a)Stäbe und/oder Drähte aus einem der genannten Zusatzmetalle mit Ausnahme von V und Nb oder aus mehreren der genannten Zusatzmetalle und/oder aus einer oder mehreren Legierungen aus mindestens zwei der Zusatzmetalle in Rohre
      • a₁) aus Niob, oder
      • a₂) aus einer oder mehreren Nb-Legierungen aus der Gruppe Nb-Ta, Nb-Ti, Nb-Zr oder
      • a₃) aus Vanadium oder
      • a₄) aus einer oder mehreren V-Legierungen aus der Gruppe V-Ta, V-Nb, V-Ti, V-Zr
      einführt, wobei der Anteil z des bzw. der Zusatzmetalle im Gesamtverbund Stäbe/Drähte-Rohre einem Gewichtsprozentwert innerhalb der Grenzen 0,1≦z ≦ 50 entspricht,
    • b) die gefüllten Rohre zu hexagonalen Querschnitten in an sich bekannter Weise plastisch verformt,
    • c) die hexagonalen Rohre bündelt zu einer dichten Packung, diese in ein Rohr aus Cu oder aus einer Cu-Legierung einsetzt, letztere in bekannter Weise zu runden Stäben verformt, die äußere Schicht aus Cu oder Cu-Legierungen vollständig oder teilweise entfernt und nach einer der bekannten Verfahrensweisen zu Nb₃Sn-Drähten oder zu V₃Ga-Drähten weiterverarbeitet.
  • Das Vorliegen gleichmäßig und fein verteilter ungelöster oder zumindest zum Teil ungelöster Einschlüsse aus den genannten Zusatzelementen bzw. Zusatzmetallen im Multifilament-Supraleiterdraht bringen folgende Veränderungen mit sich:
    Verringerung der Korngrößen
    Erhöhung der Dichte der Haftzentren (pinning centers)
    Erhöhung der Grenzflächensumme
    Erhöhung der kritischen Stromdichte bei mittleren Magnetfeldern.
  • Bei der Reaktion zur supraleitenden Verbindung bzw. zur A15-Struktur gegen Ende des Herstellungsprozesses im Temperaturbereich zwischen 550 und 800°C werden die genannten Einschlüsse nicht oder nur teilweise in der A15-Struktur gelöst, oder ein Teil des Einschlußmaterials formt mit Matrix- oder Kern-Materialien des Drahtes neue Verbindungen, welche zusätzliche Phasen bilden.
  • Magnetfelder bis zu einer Feldstärke von 15 Tesla können heute in kommerziellen supraleitenden Laborspulen bei Temperaturen von 4,2 K erreicht werden. Neuere Entwicklungen haben Magnetfelder von 18 T (bei 1,8 K sogar 20 T) in den Bereich des Möglichen gerückt. Um diese Felder zu erzeugen, müssen Materialien wie Nb₃Sn, V₃Ga (beide mit A15-Kristallstruktur) verwendet werden. Diese sind alle sehr spröde, mit einer Bruchdehnung um 0,1 %. Um mit dieser ungünstigen Eigenschaft fertig zu werden, wurde eine Vielzahl z.T. recht komplexer Verfahren zur Herstellung der entsprechenden Supraleiterdrähte entwickelt. Bei allen diesen Verfahren werden Teilelemente, die noch nicht die endgültigen supraleitenden Eigenschaften haben, aber noch duktil sind, mechanisch zu einem Draht mit den Endabmessungen verformt. Dieser wird dann einer Reaktionsglühung zwischen 550 und 800°C unterzogen um die supraleitende Phase zu bilden. Ein typischer Supraleiterdraht von ca. 1 mm Durchmesser besteht aus mehreren tausend Filamenten, die aus den o.g.A15-Materialien bestehen. Diese Filamente haben Durchmesser (oder charakteristische Abmessungen bei Abweichungen von der Kreisform) unterhalb 5 µm, wobei einzelne Herstellungsmethoden sogar typische Filamentabmessungen < 1 µm aufweisen.
  • Zur thermischen Stabilisierung besteht die äußere Hülle (oder der Kern) eines Supraleiterdrahtes aus reinem Kupfer, das durch eine Nb-oder Ta-Barriere von der Kupferbronze oder vom Supraleitermaterial getrennt ist, um Verunreinigungen bei der Reaktionsglühung zu vermeiden. Zur Verringerung der Wechselstromverluste ist der Draht um die eigene Achse verdrillt, mit einer Ganghöhe von ca. 20 mm.
  • Die zur Zeit gebräuchlichsten Methoden zur Herstellung von Nb₃Sn- oder V₃Ga-Multifilament -Supraleiterdrähten (Verfahrensschritt c) sind:
    • a) das Bronzeverfahren (A.R.Kaufmann and J.J.Pickett, J.Appl.Phys. 42, 58 (1971))
    • b) die externe Sn-Diffusion: für Nb₃Sn
      (M.Suenaga and W.B.Sampson, Appl.Phys.Lett., 20, 443 (1972))
    • c) die externe Ga-Diffusion: für V₃Ga
      (R.Bormann and H.C.Freyhardt, IEEE, Trans.Magn., Mag-17, 270 (1981))
    • d) die interne Sn-Diffusion: für Nb₃Sn
      (Y.Hashimoto, K.Yoshizaki und M.Tanaka, 5th. Int. Cryogenics Eng. Conf.Proc., IPC Science und Technology Press, London, p. 332, 1974)
    • e) die kalte pulvermetallurgische Methode: für Nb₃Sn und für V₃Ga
      (R.Flükiger, IEEE Trans.Magn., MAG-16, 1236 (1980))
    • f) die Modified Jelly Roll-Methode: für Nb₃Sn und für V₃Ga
      (W.K. McDonald, C.W.Curtis, R.M.Scanlan, D.C.Larbalestier, K.Marten und D.B.Smathers, IEEE Trans.Magn. MAG-19, 1124 (1983))
    • g) die Infiltrationsmethode: für Nb₃Sn
      (K.Hemachalam and M.R.Pickus, IEEE Trans.Magn., MAG-13, 466 (1977))
    • h) Die ECN-Methode: für Nb₃Sn
      (H.Veringa, P.Hoggendahm and A.C.A.Van Wees, IEEE Trans. Magn., MAG-19, 773 (1983))
    • i) die "In situ" Methode: für V₃Ga
      (C.C.Tsuei, Science, 180, 57 (1983))
  • Von allen bis heute bekannten Methoden zur industriellen Herstellung von Nb₃Sn-Vielkerndrähten haben drei die größte Verbreitung gefunden, nämlich die "Bronze-Methode", die "Modified Jelly Roll"-Methode und die Methode der "Internen Sn-Diffusion". Diese Methoden haben ein wesentliches gemeinsames Merkmal: bei der Reaktionsglühung am Ende des Drahtziehprozesses (typisch 3 Tage bei 700°C) entsteht die A15-Phase durch eine Diffusionsreaktion, d.h. Sn diffundiert aus der Cu-Sn-Bronze (welche erst zu Beginn der gewünschten Reaktion gebildet wird) und reagiert mit Nb zu Nb₃Sn.
  • Die Bronzemethode hat bis heute die größte Verbreitung gefunden, hat aber den Nachteil, daß die Cu-13Gew.%Sn-Bronze bei der Kaltverformung sehr stark härtet, was Erholungsglühungen nach jeweils 50 % Flächenreduktion notwendig macht. Total werden also pro Draht 15 bis 20 Glühungen von ca. 1 Stunde bei 500°C erforderlich, was den Herstellungsprozeß erheblich verlangsamt. Bei der "Modified Jelly Roll"-Methode wird von dünnen Nb und Cu-Sn-Bronzefolien ausgegangen, die um einen Kupferkern gewickelt und anschließend stranggepreßt werden. Wegen der geringen Foliendicke kommt man mit weniger Erholungsglühungen aus als bei der Bronze-Methode. Wird die Cu-Sn-Folie durch Sn ersetzt, so ergibt sich dieselbe Situation wie bei der dritten oben genannten Methode, der "internen Sn-Diffusion", bei der die Erholungsglühungen ganz wegfallen, was sich als zeitsparend und kostengünstig auswirkt. Der Umstand, daß die Kombination der Elemente Cu und Sn wesentlich einfacher zu verformen ist als die Cu-13Gew.%Sn-Bronze, ist ein weiterer Vorteil für die interne Sn-Diffusionsmethode, der deswegen gute Zukunftsaussichten eingeräumt werden.
  • Jc ist von den Haftzentren-Dichte an den Korngrenzen und somit von der Korngröße abhängig. Verschiedene Kornstrukturen wurden bis jetzt nachgewiesen: an der Nb-Grenze relativ große, säulenartige Körner (bis zu 1 µm Länge) mit starker Texturierung senkrecht zur Drahtachse, anschließend sehr feine Körner mit statistisch verteilten Orientierungen (80 bis 200nm (800 bis 2000 Å) nach einer Glühzeit von 3 Tagen bei 700°C), gefolgt von einer grobkörnigen Schicht (≧ 200 nm (2000 Å)) (W. Schauer and W. Schelb, IEEE Trans.Magn., MAG-17, 374 (1981)). Die sehr feinen Körner tragen am meisten zu Jc bei.
  • Im folgenden wird die Erfindung anhand der Beschreibung eines Durchführungsbeispiels näher erläutert:
  • Beispiel 1 (Bronze-Methode):
  • Zur Herstellung der Proben wurden Niobpulver mit Korngrößen zwischen 106 und 125 µm verwendet. Seine Vickershärte betrug ca. 85 kg/mm². Der Zusatzstoff war Nickelpulver (ca. 20 µm Durchmesser; HV= 70 - 85 kg/mm²). Abgewogene Pulvermengen wurden gemischt und dann vorsichtig - damit sie sich nicht wieder entmischen - mit einem Trichter in ein unten verschlossenes Cu-Zr-Rohr geschüttet, dessen Länge ca. 7 cm und dessen Durchmesser 9 mm war. Um eine hohe Kompaktierung zu erreichen, wurde das Pulver schon bei Teilfüllungen des Rohrs mit ca. 200 MPa vorgepreßt. Zum Verschliessen wurde ein Cu-Zr-Stopfen mit ca. 300 MPa von oben eingepreßt.
  • Anschließend erfolgte die Drahtherstellung, größtenteils durch Hämmern, teilweise auch durch Walzen. Um die Einschlüsse auf eine Dimension von kleiner 0,1 µm zu bringen, ist eine Querschnittsflächenreduktion Ra= 10⁶ erforderlich. Aufgrund der kleinen Probendurchmesser war es notwendig, den Leiter mehrfach zu bündeln. Dazu wurde bei ca. 1 mm Drahtdurchmesser das Hüllmaterial mit verdünnter Salpetersäure abgeätzt und dann 19 Stücke des Leiters wieder in ein Cu-Zr-Rohr gebündelt. Die zweite Bündelung erfolgte in ein Bronzerohr, welches dann auf den Enddurchmesser von 0,6 mm gehämmert wurde.
  • Die abschließende Reaktionsglühung, bei der die Nb₃Sn-A15-Struktur entstand, erfolgte bei 675°C und einer Glühdauer von 100 Stunden. Mit dem erfindungsgemäßen Verfahren wurde eine Erhöhung des Jc-Wertes erreicht, bei 6 T um 43,6 %, bei 8 T um 41,5 % und bei 10 T um 17,6 % gegenüber den entsprechenden Jc-Werten für einen Nb₃Sn-Leiter mit 100 Gew.-% Nb in der A15-Struktur ohne Ni-Einschlüsse (siehe nachfolgende Figur). Kurve 1 wurde nach dem erfindungsgemäßen Verfahren mit einem Nb₃Sn-Leiter erhalten, in welchem 85 Gew.-% Nb und 15 Gew.-% Ni (als Einschlüsse), bezogen auf die Summe (Nb + Ni), enthalten war. Kurve 2 entstand aus den Jc-Werten des Nb₃Sn-Leiters mit 100 Gew.-% Nb (Vergleichsleiter ohne Einschlüsse).
  • Die Verarbeitbarkeit der anderen angegebenen Materialien ist ähnlich der des Nickels. Verunreinigungen durch Sauerstoff, Kohlenstoff und Stickstoff in den Startmaterialien sind zu vermeiden. Die Vickershärte der gemischten Pulver muß ungefähr gleich hoch sein, damit sich die beiden Pulversorten gleichmäßig verformen.
  • Das Herstellungsbeispiel wurde nach der Bronze-Methode durchgeführt, der gewünschte Supraleiterdraht ließe sich aber auch nach den ähnlichen Verfahren der Internen-Zinndiffusion und der ECN-Methode produzieren.

Claims (8)

  1. Multifilament-Supraleiterdrähte, bestehend aus mit Kupfer oder mit Kupferlegierung umgebenen Filamenten, die aus supraleitenden, intermetallischen Verbindungen Nb₃Sn oder V₃Ga, jeweils mit A15-Struktur, mit Zusätzen aus der Gruppe der Elemente
       Seltene Erdmetalle, Th, U, Ti, Zr, Hf, V, Nb, Ta,Mo, Fe, Co, Ni, Pd, Cu, Ag, Al, Pt, ausgenommen Nb als einziges Zusatzelement für Nb₃Sn und V als einziges Zusatzelement für V₃Ga,
    aufgebaut sind, dadurch gekennzeichnet, daß
    innerhalb der A15-Phase an den Korngrenzen der Kristalle und/oder an den Grenzflächen der A15-Phase zum Kupfer oder zur Kupferlegierung homogen verteilte, ungelöste Einschlüsse vorliegen, die eine weitere Phase bilden und aus mindestens einem Element der Gruppe bestehen.
  2. Multifilament-Supraleiterdrähte nach Anspruch 1, dadurch gekennzeichnet, daß das oder die Elemente der Gruppe in den Einschlüssen unreagiert in elementarer Form oder als Reaktionsprodukt mit Elementen der Umgebung vorliegen.
  3. Multifilament-Supraleiterdrähte nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Einschlüsse radiale Abmessungen von 0,5 µm oder kleiner aufweisen.
  4. Multifilament-Supraleiterdrähte nach Anspruch 3, dadurch gekennzeichnet, daß die Einschlüsse radiale Abmessungen von < 0,1 µm aufweisen.
  5. Multifilament-Supraleiterdrähte nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Einschlüsse achsenparallel ausgebildet sind.
  6. Multifilament-Supraleiterdrähte nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Summe der Zusätze in den Einschlüssen einer Konzentration im Bereich von 0,1 Gew.-% bis 50 Gew.-%, bezogen auf den Nb-Anteil der A15-Phase im Falle von Nb₃Sn und bezogen auf den V-Anteil der A15-Phase im Falle von V₃Ga, entspricht.
  7. Verfahren zur Herstellung von Multifilament-Supraleiterdrähten gemäß Anspruch 1, dadurch gekennzeichnet, daß man
    a) ein metallisches Pulver aus einem der genannten Zusatzmetalle mit Ausnahme von V und Nb oder aus mehreren der genannten Zusatzmetalle oder aus einer oder mehreren Legierungen aus mindestens zwei der Zusatzmetalle mischt mit einem Pulver
    a₁) aus Niob, oder
    a₂) aus einer oder mehreren Nb-Legierungen aus der Gruppe Nb-Ta, Nb-Ti, NbZr oder
    a₃) aus Vanadium oder
    a₄) aus einer oder mehreren V-Legierungen aus der Gruppe V-Ta, V-Nb, V-Ti, V-Zr,
    wobei alle Pulver Korngrößen aufweisen im Bereich zwischen 0,1 µm und 400 µm Durchmesser und der Anteil y des bzw. der Zusatzmetalle im Pulvergemisch einem Gewichtsprozentwert innerhalb der Grenzen 0,1 ≦ y ≦ 50 entspricht,
    b) das aus a) erhaltene Pulvergemisch in einen kompaktierbaren und evakuierbaren Behälter aus Kupfer oder aus einer Kupferlegierung einfüllt, die eingeschlossene Luftmenge entfernt und danach das Pulvergemisch mit dem geschlossenen Behälter durch einfaches oder isostatisches Pressen gemeinsam kompaktiert bis zu einer Pulverdichte von mehr als 90 % theoretische Dichte und
    c) den kompaktierten Behälter in an sich bekannter Weise zu einem Draht mit einem Durchmesser im Bereich von 0,5 mm bis 15 mm verformt und nach Entfernen der äußeren Cu- oder Cu-Legierungs-Schicht nach einer der bekannten Verfahrensweisen zu Nb₃Sn-Drähten oder zu V₃Ga-Drähten weiterverarbeitet.
  8. Verfahren zur Herstellung von Multifilament-Supraleiterdrähten gemäß Anspruch 1, dadurch gekennzeichnet, daß man
    a)Stäbe und/oder Drähte aus einem der genannten Zusatzmetalle mit Ausnahme von V und Nb oder aus mehreren der genannten Zusatzmetalle und/oder aus einer oder mehreren Legierungen aus mindestens zwei der Zusatzmetalle in Rohre
    a₁ ) aus Niob, oder
    a₂) aus einer oder mehreren Nb-Legierungen aus der Gruppe Nb-Ta, Nb-Ti, Nb-Zr oder
    a₃) aus Vanadium oder
    a₄) aus einer oder mehreren V-Legierungen aus der Gruppe V-Ta, V-Nb, V-Ti, V-Zr
    einführt, wobei der Anteil z des bzw. der Zusatzmetalle im Gesamtverbund Stäbe/Drähte-Rohre einem Gewichtsprozentwert innerhalb der Grenzen 0,1 ≦ z ≦ 50 entspricht,
    b) die gefüllten Rohre zu hexagonalen Querschnitten in an sich bekannter Weise plastisch verformt,
    c) die hexagonalen Rohre bündelt zu einer dichten Packung, diese in ein Rohr aus Cu oder aus einer Cu-Legierung einsetzt, letztere in bekannter Weise zu runden Stäben verformt, die äußere Schicht aus Cu oder Cu-Legierungen vollständig oder teilweise entfernt und nach einer der bekannten Verfahrensweisen zu Nb₃Sn-Drähten oder zu V₃Ga-Drähten weiterverarbeitet.
EP86107338A 1985-09-06 1986-05-30 Multifilament-Supraleiterdrähte und Verfahren zu deren Herstellung Expired - Lifetime EP0218784B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853531770 DE3531770A1 (de) 1985-09-06 1985-09-06 Multifilament-supraleiterdraehte, bestehend aus mit kupfer oder mit kupfer-legierung umgebenen filamenten aus nb(pfeil abwaerts)3(pfeil abwaerts)sn oder v(pfeil abwaerts)3(pfeil abwaerts)ga mit zusaetzen sowie verfahren zu deren herstellung
DE3531770 1985-09-06

Publications (3)

Publication Number Publication Date
EP0218784A2 EP0218784A2 (de) 1987-04-22
EP0218784A3 EP0218784A3 (en) 1989-01-25
EP0218784B1 true EP0218784B1 (de) 1994-01-05

Family

ID=6280233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107338A Expired - Lifetime EP0218784B1 (de) 1985-09-06 1986-05-30 Multifilament-Supraleiterdrähte und Verfahren zu deren Herstellung

Country Status (4)

Country Link
US (1) US4746581A (de)
EP (1) EP0218784B1 (de)
JP (1) JPS6256559A (de)
DE (2) DE3531770A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3855717T3 (de) 1987-03-13 2013-10-17 Kabushiki Kaisha Toshiba Supraleitender Draht und Verfahren zu seiner Herstellung
DE3718258A1 (de) * 1987-05-30 1988-12-15 Kernforschungsz Karlsruhe Verfahren zur herstellung von multifilament-supraleiterdraehten aus nb(pfeil abwaerts)3(pfeil abwaerts)sn- oder v(pfeil abwaerts)3(pfeil abwaerts)ga-filamenten, eingebettet in einer cu- oder cu-legierungs-matrix
EP0301279B1 (de) * 1987-07-28 1992-10-21 BBC Brown Boveri AG Leiter, der aus einem Verbundwerkstoff besteht
US4965249A (en) * 1987-10-02 1990-10-23 U.S. Philips Corporation Method of manufacturing a superconducting wire
JPH0329215A (ja) * 1989-06-26 1991-02-07 Sumitomo Electric Ind Ltd Nb↓3A1多芯超電導線
US4973527A (en) * 1989-09-25 1990-11-27 Teledyne Industries, Inc. Process for making filamentary superconductors using tin-magnesium eutectics
US5226947A (en) * 1992-02-17 1993-07-13 Wisconsin Alumni Research Foundation Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers
US5505790A (en) * 1994-09-09 1996-04-09 General Electric Company Method for enhancing critical current of triniobium tin
US5897963A (en) * 1995-01-10 1999-04-27 Composite Materials Technology, Inc. Composite wires and process of forming same
US20020020051A1 (en) * 1999-04-20 2002-02-21 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
JP2001236836A (ja) * 2000-02-21 2001-08-31 Hitachi Cable Ltd Nb3Sn系超電導線材
US6918172B2 (en) * 2000-03-21 2005-07-19 Composite Materials Technology, Inc. Process for manufacturing Nb3Sn superconductor
US6836955B2 (en) * 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
JP4523861B2 (ja) * 2005-03-10 2010-08-11 株式会社神戸製鋼所 Nb3Sn超電導線材の製造方法
EP1746667B1 (de) * 2005-07-19 2008-02-27 Bruker BioSpin AG Supraleitende Elemente mit Kupfer-Einschlüsse enthaltenden Nb3Sn-Filamenten, sowie ein Verbundwerkstoff und ein Verfahren für ihre Herstellung
WO2008039707A1 (en) * 2006-09-26 2008-04-03 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
CN112298068A (zh) * 2020-09-25 2021-02-02 无锡光美新能源科技有限公司 一种新型抗氧化高导电的电动车线束及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1517689A (fr) * 1966-01-05 1968-03-22 Sodern Procédé de fabrication d'un matériau supra-conducteur
JPS50197B1 (de) * 1970-09-09 1975-01-07
JPS5132478A (ja) * 1974-09-13 1976-03-19 Tokico Ltd Furiipisutonnokakohoho
GB1499507A (en) * 1974-10-01 1978-02-01 Atomic Energy Authority Uk Superconducting members and methods of manufacturing thereof
JPS5256894A (en) * 1975-11-05 1977-05-10 Fujikura Ltd Production of superconductive wire
DE2909290C2 (de) * 1979-03-09 1984-08-09 Hans Dipl.-Phys. Dr. 3392 Clausthal-Zellerfeld Bergmann Verfahren zur pulvermetallurgischen Herstellung eines supraleitenden Faserverbundmaterials
DE3019980C2 (de) * 1980-05-24 1983-03-24 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Herstellung von Supraleiterdrähten aus mit Kupfer oder Kupferlegierung umgebenen, Niob und Aluminium enthaltenden Multifilamenten
DE3035220A1 (de) * 1980-09-18 1982-04-29 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Supraleitende draehte auf der basis von bronze-nb (pfeil abwaerts)3(pfeil abwaerts)sn und verfahren zu deren herstellung
DE3170552D1 (en) * 1980-12-15 1985-06-20 Boc Group Inc Method of manufacture of multifilamentary intermetallic superconductors
US4409297A (en) * 1981-05-14 1983-10-11 The United States Of America As Represented By The Secretary Of The Navy Composite superconductors
US4411959A (en) * 1981-08-17 1983-10-25 Westinghouse Electric Corp. Submicron-particle ductile superconductor
DE3531769A1 (de) * 1985-09-06 1987-03-19 Kernforschungsz Karlsruhe Verfahren zur herstellung von multifilament-supraleiterdraehten aus nb(pfeil abwaerts)3(pfeil abwaerts)sn- oder v(pfeil abwaerts)3(pfeil abwaerts)ga-filamenten, eingebettet in einer cu- oder cu-legierungs-matrix, welche metallische zusatzelemente enthalten, mit vorbestimmten supraleitenden eigenschaften

Also Published As

Publication number Publication date
EP0218784A2 (de) 1987-04-22
JPS6256559A (ja) 1987-03-12
DE3531770C2 (de) 1988-06-16
DE3531770A1 (de) 1987-03-19
US4746581A (en) 1988-05-24
DE3689503D1 (de) 1994-02-17
EP0218784A3 (en) 1989-01-25

Similar Documents

Publication Publication Date Title
EP0218784B1 (de) Multifilament-Supraleiterdrähte und Verfahren zu deren Herstellung
DE3531769C2 (de)
DE3881569T2 (de) Vorrichtungen und Systeme mit einem supraleitenden Körper und Verfahren zur Herstellung dieses Körpers.
DE3855911T2 (de) Supraleitender Draht und Verfahren zu seiner Herstellung
DE68919913T2 (de) Zusammengesetzter supraleitender Draht und Verfahren zu dessen Herstellung.
EP0181496B1 (de) Verfahren zur Herstellung eines supraleitenden Drahtes unter Verwendung von Chevrel-Phasen
EP0301279A1 (de) Leiter, der aus einem Verbundwerkstoff besteht
US4402768A (en) Method for producing superconductive wires of multifilaments which are encased in copper or a copper alloy and contain niobium and aluminum
EP0048313B1 (de) Supraleitende Drähte auf der Basis von Bronze-Nb3Sn und Verfahren zu deren Herstellung
EP0032691B1 (de) Verfahren zur Herstellung eines Supraleiters mit einer intermetallischen Verbindung
WO2009021890A1 (de) Mgb2-supraleiter und verfahren zu seiner herstellung
DE69208856T2 (de) Herstellungsverfahren eines bismutoxyd enthaltenden supraleitenden drahtmaterials
DE69225478T2 (de) Verfahren zum herstellen supraleitfähigen legierungen
DE602005005044T2 (de) Supraleitende Elemente mit Kupfer-Einschlüsse enthaltenden Nb3Sn-Filamenten, sowie ein Verbundwerkstoff und ein Verfahren für ihre Herstellung
WO2006035065A2 (de) Verbunddraht zum wickeln einer magnetspule, verfahren zu seiner herstellung und magnetspule
DE69421197T2 (de) Verfahren zur Herstellung eines Nb3X supraleitenden Drahtes
DE69120685T2 (de) Supraleiter und herstellungsverfahren
Flukiger et al. Multifilamentary Superconductive Wires Composed of Filaments Nb3 Sn or V3 Ga clad in copper or copper alloys and process for manufacturing such wires
DE602004006368T2 (de) Nb3Sn-Supraleiterelement
DE602004010118T2 (de) Verfahren zur Herstellung eines supraleitenden Elementes
EP0258470B1 (de) Verfahren zur Herstellung von Blöcken aus PbxMoySz-Chevrelphasen
EP0325751B1 (de) Verfahren zur Herstellung eines langgestreckten elektrischen Leiters mit einem oxidkeramischen Supraleitermaterial und Vorrichtung zur Durchführung des Verfahrens
EP0196473B1 (de) Hochfeld-Supraleiter mit einer Armierung sowie Verfahren zur Herstellung und Verwendung diese Supraleiters
DE3905805C2 (de) Verfahren zur Herstellung eines drahtförmigen supraleitenden Verbundgegenstands
DE60208876T2 (de) Magnesium und beryllium enthaltende supraleitende intermetallische verbindung und die intermetallische verbindung enthaltende supraleitende legierung und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19870625

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19910313

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3689503

Country of ref document: DE

Date of ref document: 19940217

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940329

Year of fee payment: 9

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940428

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940530

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940920

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050530