EP0215075B1 - Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage - Google Patents

Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage Download PDF

Info

Publication number
EP0215075B1
EP0215075B1 EP86901811A EP86901811A EP0215075B1 EP 0215075 B1 EP0215075 B1 EP 0215075B1 EP 86901811 A EP86901811 A EP 86901811A EP 86901811 A EP86901811 A EP 86901811A EP 0215075 B1 EP0215075 B1 EP 0215075B1
Authority
EP
European Patent Office
Prior art keywords
immersion tube
cyclone
flow
slit
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86901811A
Other languages
German (de)
English (en)
Other versions
EP0215075A1 (fr
Inventor
Siegbert Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853509789 external-priority patent/DE3509789A1/de
Priority claimed from DE19863607023 external-priority patent/DE3607023A1/de
Application filed by Individual filed Critical Individual
Priority to AT86901811T priority Critical patent/ATE43976T1/de
Publication of EP0215075A1 publication Critical patent/EP0215075A1/fr
Application granted granted Critical
Publication of EP0215075B1 publication Critical patent/EP0215075B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/103Bodies or members, e.g. bulkheads, guides, in the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/181Bulkheads or central bodies in the discharge opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/26Multiple arrangement thereof for series flow

Definitions

  • the invention relates to a cyclone separator with two separating spaces and static guide devices for improving the separating ability with regard to finely dispersed particles from flowing gases and reducing the pressure loss with a tangential, spiral or helical inlet channel, with a cyclone housing which is cylindrical at the top and conical at the bottom and a solid collection container arranged underneath, in which cylindrical separating chamber, a cylindrical immersion tube protrudes centrally from above into the cyclone housing to discharge the clean gas flow, and a slotted split immersion tube lying in the cylindrical separating surface of the cyclone separator and having a split channel with a helical or straight inlet edge that enters a swirl tube connects to the dip tube downwards.
  • the incoming material is separated in a centrifugal separator due to the centrifugal forces occurring in a swirl flow, which act on the particles flowing on circular or spiral paths.
  • a centrifugal separator due to the centrifugal forces occurring in a swirl flow, which act on the particles flowing on circular or spiral paths.
  • the separated coarse material slides spirally on the outer wall of the cyclone into the solid collection container, which forms the lower end of the cyclone housing.
  • the non-separated fine material enters the clean gas duct with the gas flow exiting through the immersion tube.
  • the application-technical advantages of a conventional cyclone are offset by the disadvantages of the high pressure loss and the low separating capacity with regard to the selectivity compared to other separators.
  • the known conventional cyclones as the main cause of the low separating capacity, show an irregular axial speed distribution along the separating surface, secondary flows, short-circuit flows and strong turbulence within the separating space.
  • the main cause of the high pressure loss is the non-conversion of the rotational energy required for separation into pressure energy, as a result of deflection losses and throttling action at the dip tube inlet, so that up to 90% of the total pressure loss in the vortex core (cyclone eye) occurs below the dip tube.
  • the conventional cyclone Due to the demand for emission limitation of respirable dust, recovery of valuable products or maximum separation of abrasion dust from process gases and also for energy reasons, the conventional cyclone has to be increasingly combined with other separation devices that are more efficient in the finely dispersed particle size range below 20 11m. These requirements and the fact that the cyclone for the dedusting of hot gases above 500 ° C is the only separator that can be used on an industrial scale require additional structural measures to improve the separating capacity and to reduce the pressure loss.
  • the cylindrical, conventional immersion tube has, in addition to its axial opening on the lower end face, additionally slotted gas inlet openings in the immersion tube jacket, which are formed by pressed-in tabs of the immersion tube jacket.
  • the effectiveness of the dedusting cannot be promoted, since this slotted immersion tube design suffers from the essential disadvantage that neither the strong sink flow below the immersion tube nor the solid layer flow along the outer surface of the immersion tube is reduced and no devices are provided for a downstream solids separation. Devices for the recovery of the kinetic energy are also not available.
  • a cyclone separator with a slotted immersion tube is also known (EP-A-41 106), which utilizes the effect of a double separation within a single apparatus, but without collecting the solid which is additionally separated within the immersion tube in a second separation space.
  • a slotted conventional immersion tube with an axial outlet gap enables the return of fine material that has already been discharged and enriched on the inner wall of the immersion tube to the separating space of the cyclone separator due to the suction effect from the environment due to a gap that is arranged between the inlet channel and the immersion tube.
  • Disadvantages of this design are however, both the still existing axially unevenly distributed sink flow below the immersion tube and the suction of ambient air into the deposition process, which increases the pressure loss.
  • slotted immersion tubes are published in the journals Chem.-Techn. 22 (1970) No. 9, p. 525/532 and mechanical engineering 7 (1958) No. 8, p. 416/421.
  • these immersion tube designs are only longitudinal slots which are arranged uniformly on the circumference of the immersion tube and not upright gap channels which cause flow deflection or energy recovery.
  • the invention is therefore based on the object, avoiding the described shortcomings of conventional cyclones in general and the shortcomings of known improved cyclone designs with double separation and improved suction conditions in particular, construct a cyclone separator of the type mentioned in such a way that it with a simple basic construction and Additional installations of static, that is, non-rotating control and separation devices are distinguished by a greatly improved overall separation and fraction separation degree, so that the selectivity of the cyclone separator is significantly improved, and the pressure loss is also reduced compared to the conventional design.
  • the immersion tube, the gap immersion tube and a central immersion tube adjoining this downward in the cylindrical separating surface of the cyclone separator form an immersion tube column which surrounds the cyclone axis over the entire separator chamber height (h), the solids collection container (2a) penetrates and is gas-tightly connected to a second solids collection container (2b), the gap immersion tube (6) being the only partially immersing immersion tube.
  • the inventor therefore proposes to provide the immersion tube column as a second separator in the manner of a swirl tube within the actual cyclone, so that in this way a two-stage separation is effected in a single dedusting apparatus, although in comparison to the outer separation process, the mass exchange within the swirl tube through energy transfer via the vortex core, which specifies about the cyclone axis, and backflows cause the solids to be transported into the secondary solids collection container below the central immersion tube if there is a supercritical swirl flow within the swirl tube.
  • the gap immersion tube When developing the cyclone separator according to the invention, it should be noted in principle that the axial flow directed downward on the outer jacket of the cyclone in the outer flow field of the swirl flow causes the good discharge behavior of the solid in combination with the boundary layer flow on the cone wall. Realisie-. tion of an axial speed component, the gap immersion tube must therefore be arranged below the cyclone inlet channel.
  • the slotted gap immersion tube is installed centrally between the conventional immersion tube and the central immersion tube in the cylindrical and not in the conical part of the cyclone housing in order to reduce secondary flows from the separating wall of the cyclone jacket.
  • the gap immersion tube enables the transition from the hole sink which is otherwise present below a conventional immersion tube with an uneven axial distribution of the radial speed to the line sink with a uniform axial distribution of the radial speed at the separating surface.
  • the invention is based on the knowledge that the spinal sink flow in the outer separating space is not disturbed or the flow turbulence in the separating space is reduced and reduced by a spa) "channel with a helical entry edge or by a plurality of helically arranged gap channels with a straight entry edge within the gap immersion tube the volume flow of the gas is sucked in axially evenly out of the outer separation space at a high speed via a curved gap channel adapted to the streamlines with an accelerating effect on the flow, so that on the one hand there is a uniform speed profile along the suction gap1 and on the other hand the dust particles still present in the gas flow are concentrated in the dead water core around the cyclone axis as a result of pressure forces and are discharged into the secondary solids collection container with the aid of backflows, as a result of which the separated coarse material fraction of the feed material increases, which is a Improvement of the overall and fraction separation efficiency corresponds.
  • the immersion tube column is arranged around the cyclone axis in the vortex core of the conventional cyclone in such a way that it penetrates the outer cylindrical and conical deposition space, the cylindrical shielding container and the primary solids collecting container.
  • a tearing off of the cyclone inlet flow at the leading edge of the cylindrical cyclone jacket is thus prevented, whereby at the same time the starting positions of the particles suspended in the entering gas stream are more clearly defined.
  • the baffle thus enables a more uniform inflow into the gap channel of the gap dip tube.
  • the gap dip tube which is switched into the dip tube column between the conventional dip tube and the central dip tube, can be provided with four parallel-walled gap channels evenly distributed on the circumference of the dip tube, each with a straight entry edge, so that the common diagonal of the four recessed areas offset by 90 ° forms a catchy helical line around the gap immersion tube, and the respective curved gap channel in the gap immersion tube is provided as an inlet channel with accelerating flow effect for a swirl tube symmetrical to the cyclone axis, whereby a dead water area with axial backflows into the central immersion tube forms within the swirl tube correspondingly high swirl strength, which is determined by the geometrical design of the gap channel and the gap immersion tube, and whereby high negative pressure values on the cyclone axis and strong pressure changes in the axial direction result in the intensive backflow into the central immersion tube and subsequently in induce the secondary solids collection container.
  • the immersion tube column which fixes the separating surface between the vortex field and the vortex core or the static guide and separation devices of the rigid body vortex (cyclone eye) of the conventional cyclone, concentrates further inward about the cyclone axis or swirl tube axis becomes.
  • This rigid body vortex builds up a secondary swirl field, which is the prerequisite for maintaining the secondary separation process within the swirl tube.
  • the slotted gap dip tube acts as a guide device that the swirl generated in the cyclone inlet is reinforced in the center of the swirl tube.
  • This inner swirl flow around the swirl pipe axis results in a dead water core around the swirl pipe axis, the radius R of which increases as the swirl increases and in which the particles are “caught”.
  • R o therefore designates the boundary between lossless healthy flow in the area R ⁇ ⁇ r ⁇ R and lossy core flow in the area R o >r> 0.
  • There is a strong negative pressure in the dead water area so that the particles are transported in the direction of the pressure force to the cyclone axis and not flow in the direction of the centrifugal force to the swirl tube wall, as is the case in the outer separation chamber.
  • a large R o favors the secondary separation effect, since when a critical swirl flow is generated, no flow flow inside the dead water core drives upwards, which would entrain the particles, but there is a negative flow flow around the cyclone axis, especially within the gap dip tube.
  • the additionally separated solid collects, which is transported downwards as additional coarse material via the central immersion tube and otherwise in a conventional one Cyclone design as fine material would have flowed over the conventional dip tube.
  • the dip tube column that surrounds the swirl tube additionally stabilizes the three-dimensional flow field in the outer separation chamber, so that the cyclone axis is identical to the center of the outer swirl flow.
  • the center of the inner swirl flow is the swirl pipe axis which is congruent with the cyclone axis and which only coincides with the cyclone axis in the case of a symmetrical inflow from the gap immersion pipe.
  • the gap immersion tube with four gap channels distributed helically on the circumference of the immersion tube can be replaced by a gap immersion tube which either has several gap channels evenly distributed on the circumference of the dip tube at the same axial height, each with a straight leading edge is provided, or can be replaced by a gap immersion tube with a parallel-walled screw-shaped gap channel, which has a screw-shaped entry edge and a screw-shaped exit edge, whereby a supercritical swirl strength with backflows into the central immersion pipe is also generated if the respective gap channel as a curved deflection channel with accelerating Effect is formed and the respective gap channel is provided with an upper and lower cover plate, whereby the suction from the outer separation chamber exclusively via a helical gap channel or more edgewise gap channels evenly distributed around the circumference of the immersion tube.
  • the curved gap channels within the gap immersion tube serve as inlet channels for the swirl tube arranged symmetrically to the cyclone axis within the immersion tube column, the swirl tube in turn preferably being designed as a streamlined inlet guide device for an outlet spiral housing arranged above the cyclone cover and having recesses.
  • the kinetic energy of the outer swirl flow and the inner swirl flow which is in the same direction can be recovered through a wide outlet spiral to be designed in a known manner, the outlet connection of which flows into the clean gas channel and the hub dead water area can be filled out by a corresponding recess in an expanded conventional immersion tube.
  • the inlet opening of the parallel-walled gap channel is designed as a slotted opening within the gap immersion tube jacket in such a way that In the inlet area of the gap channel, the required flow velocity at the interface corresponds to the existing rotary sink flow, which in turn is tapped at the interface as a logarithmic spiral due to the course of the gap immersion tube, so that the curved streamlines of the gas flow entering the swirl tube through the gap channel run along the outer and inner gap channel contour and in the same direction as the cyclone inlet flow.
  • a cylindrical shielding container is interposed between the conical part of the outer separating space and the conventional solid collecting container in such a way that the external swirl flow runs out on an outer section of the central immersion tube designed as a shielding cone within the primary solid collecting container, so that the separated solid does not cause any disturbance can penetrate into the primary solids collection container in the annular gap between the cylindrical shielding container and the central immersion tube and the solid cannot be whirled back into the outer separator space by the arrangement of a conical deflector shield underneath the cylindrical shielding container and around the shielding cone.
  • the central immersion tube additionally enables a pressure-side separation of the swirl flow in the outer separation chamber from the easily circulating flow in the first solids collection container by installing the shielding cone within the solids collection container in such a way that the separated solids are prevented from escaping back into the separation chamber and at the same time preventing penetration of the separated solid is guaranteed by an annular gap-shaped discharge opening between the cylindrical shielding container and the central immersion tube.
  • This discharge device according to the invention accordingly prevents both re-whirling and entrainment of already separated particles.
  • the new development of the solids discharge device has the effect that the undesired solids transport of already separated particles from the first dust collection container into the conical outer separating space is completely avoided and the particles sliding down the conical outer surface of the outer separating space without problems in the first Solids collection containers are transported without penetrating turbulent flow areas with backflows that would cause a re-whirling.
  • the design of the cyclone separator according to the invention brings about an increase in the total separation degree and the fraction separation degree with a simultaneous reduction in the pressure loss compared to the conventional cyclone design.
  • the diameter of the smallest particles, which are separated by 99% is shifted to the 5 gm limit, which corresponds to a selectivity of the cyclone according to the invention which has not previously been achieved in practice by cyclone separators.
  • the average diameter of the particles, which are separated by 50%, is 1 ⁇ m.
  • a spiral cyclone inlet duct according to the described embodiment is not absolutely necessary, but a tangential or helical inlet duct of the cyclone can also be used.
  • a conventional cyclone serves as the basic construction of the cyclone separator according to the invention with two separation spaces and static guide devices.
  • the four basic components shown in FIGS. 1 and 3, namely the cyclone housing 12a, 12b, the spiral inlet channel 11, the cylindrical immersion tube 5 and the solids collection container 2a are accordingly also used as components of the cyclone separator according to the invention.
  • the cyclone housing consists, in a manner known per se, of an upper cylindrical outer casing 12a and an axially downwardly tapering lower conical outer casing 12b, although the height of the cylindrical housing is greater than the height of the conical housing. Both jacket parts 12a and 12b enclose the outer separation chamber 3a.
  • the cylindrical immersion tube 5 which is centered around the cyclone axis 1 and which serves to discharge the dedusted two-phase flow (gas + fine material), projects into the cylindrical outer separating space.
  • the tangential or spiral inlet channel 11 is intended to supply the accelerated two-phase flow (gas + feed material) entering the cyclone to the outer separation chamber 3a.
  • the lower conical Zyktonenmantei 12b ends in FIG. 3 on a cylindrical shielding container 20 with an annular gap-shaped outlet opening 22 for the separated coarse material, which is deposited in the conventional solid collection container 2a below the shielding container 20.
  • the conventional dip tube 5 is first axially extended by a slotted gap dip tube 6, the helical leading edge 9a (FIG. 1) or straight leading edges 9b (FIG. 3) of which extend over the suction height h , stretch out.
  • a slotted gap immersion tube is known (DE-A-3 223 374)
  • the invention lies in the fact that the gap immersion tube 6 is open on its lower end face and has a gap channel 10 which acts as an inlet channel for one Immersion tube column is used, the axis of which is to be regarded as the center of the vortex core (cyclone eye).
  • the arrangement of the central immersion tube 7 arranged below in the axial extension of the gap immersion tube (6) leads to the fact that the complete immersion tube column 5, 6, 7 surrounds the entire height of the separating chamber h and is therefore additionally regarded as a stabilizer of the external swirl flow in the separating chamber 3a can be.
  • the generation of an inner swirl flow and thus a subsequent separation in the inner separation space 3b of the central immersion tube 7 (FIG. 4) or of the swirl tube 17 (FIG. 3) enable several parallel-walled gap channels 10 (FIGS. 3 and 4) evenly distributed on the circumference of the immersion tube. , a gap channel 10 designed as a curved diffuser (FIG.
  • each parallel-wall channel producing a flow-accelerating effect and being able to generate a supercritical swirl flow.
  • the outer swirl flow runs out on an outer section of the central immersion tube 8 designed as a shielding cone 4, and the inner swirl flow is centered about the swirl tube axis 1.
  • the central immersion pipe 7 penetrates the conventional solids collection container 2a and is connected to a second solids collection container 2b in a gas-tight manner below the first, so that no gas flow is possible between the two containers.
  • a guide plate 27 is provided below the tangential inlet channel 11 in the plane parallel to the cyclone cover 15 in such a way that an axially uniform inflow into the gap channel 10 is ensured without short-circuit currents.
  • the outer opening of the gap channel lies under the latter section of the guide plate 27.
  • the ring collar formed by the guide plate prevents the particles from entering a solid flow near the wall (boundary layer flow) at the cyclone cover 13 and en tlang be transported directly into the gap channel along the outer peripheral surface of the dip tube 5.
  • the gap dip tube 6 is provided with two gap channels at the same axial height according to FIG. 7 or with a helically rising one 8, the cyclone axis 1 and the swirl tube axis are also identical, since the inflow into the swirl tube 17 is symmetrical to the cyclone axis 1, with a dead water region 16 being formed as a result of the swirl flow with each execution of the gap immersion tube 6 in which there are backflows 18.
  • FIG. 3 The embodiment of a cyclone separator according to the invention shown in FIG. 3 works with the following two-stage separation process:
  • the dust-containing gas drawn in by a compressor flows in a manner known per se into the swirl-generating inlet channel 11 of the cyclone and, via this, into the cylindrical outer separation chamber 3a.
  • the inflowing gas in the sense of the invention is evenly above the suction heights h; sucked out.
  • the flow in the cylindrical separation chamber is a vertebral sink.
  • the gas flows on spiral tracks from outside to inside with increasing speed.
  • the generated three-dimensional swirl flow enables the tangential velocity component to generate the centrifugal acceleration required for separation and the axial component of the velocity to transport the solid spirally along the outer cyclone jacket 12 into the primary solid collection container 2a, since even fine dust particles do not follow the streamlines of the gas. because they are carried out of the curved path against the cyclone jacket under the effect of high centrifugal accelerations.
  • the same secondary currents are observed on the separator wall as in a tea cup.
  • This secondary flow along the wall of the conical separating space 12b is useful, however, since it likewise detects the solid carried on the wall and leads down to the solid collecting container 2a.
  • a strand of solid material on concave walls arises due to the disturbed balance of pressure and centrifugal forces.
  • the static pressure drops sharply from the outside to the inside.
  • the lowest pressure of the vortex prevails in the swirl tube axis or cyclone axis 1.
  • the compressive force that acts on the particles is substantially greater than the centrifugal force, so that strong secondary flows inward to the cyclone axis 1 favor the secondary separation effect.
  • the solid layers initially bound by the swirl tube inner wall are displaced in the direction of the radial pressure drop, while the cleaned flow stream 23 flows along the inner swirl tube walls.
  • a gap immersion tube 6, which causes this phenomenon of backflow, is basically suitable for exploiting the secondary separation effect for the dust separation from a flowing fluid.
  • the kinetic energy of the swirl flow is recovered by an outlet spiral 8a with recess cores arranged above the cyclone cover 13 and dimensioned in a known manner, so that both the axial component and the tangential component of the inner swirl flow are decelerated in such a way that the cyclone entry speed and the cyclone exit speed assume the same values at the same Cross sections of raw gas and clean gas channels.
  • the field of application of cyclone separators is significantly expanded.
  • the cyclone according to the invention could be used as a future application example for the dedusting from the pressure-operated fluidized bed combustion in a combined gas / steam turbine plant.
  • the gas turbine blades are subject to both erosive and corrosive wear, with the erosion force having a strong effect from a particle diameter of size d k 10 ⁇ m.
  • the air / flue gas-side pressure loss of the combined process influences the process efficiency to a considerable extent.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)

Abstract

Dans un séparateur à cyclone avec deux chambres de séparation et des dispositifs statiques de guidage, une colonne à tube plongeur (5, 6, 7), agencée au centre du tourbillon du cyclone conventionnel, entoure l'axe (1) du cyclone sur toute la hauteur h de la chambre de séparation et traverse le récipient collecteur conventionnel (2a) de solides. Cette colonne, en combinaison avec un dispositif (4) d'évacuation de solides sans reflux, stabilise le tourbillonnement intérieur concentré à l'intérieur de la colonne à tube plongeur, dans la deuxième chambre de séparation (3b). En cas de fort tourbillonnement, il se produit ainsi un processus subsidiaire de séparation avec des reflux axiaux (18) allant du tube de tourbillonnement (17) à un deuxième récipient collecteur (2b) de solides. Les composants de la colonne à tube plongeur sont le tube plongeur conventionnel (5), prolongé axialement vers le bas par un tube plongeur de séparation (6) à fentes, et un tube plongeur central (6) monté sous le tube plongeur de séparation (6) et fixé par des flasques au deuxième récipient collecteur de solides. Le tube plongeur de séparation (6) a un effet aspirateur, sert de dispositif de guidage de l'alimentation du tube de tourbillonnement (17) et présente quatre conduites d'admission (10) recourbées, à parois parallèles, uniformément distribuées autour de la circonférence du tube plongeur, ayant chacune un bord droit d'admission (9) et qui exercent un effet accélérateur sur le courant. La récupération de l'énergie cinétique du tourbillonnement se fait par une spirale de décharge (8) en haut du couvercle (13) du cyclone.

Claims (8)

1. Séparateur à cyclone comportant deux chambres de séparation (3a, 3b) et des dispositifs statiques de guidage pour l'amélioration de la capacité de séparation lors de la séparation de particules dispersées très finement d'avec des gaz en écoulement rapide, et pour la réduction de la perte de pression, comportant un canal d'entrée (11) tangentiel en forme de spirale ou d'hélice, un corps de cyclone cylindrique dans sa partie supérieure (12a) et conique dans sa partie inférieure (12b1, ainsi qu'un collecteur (2a) de matière solide disposé en-dessous, un tube plongeur cylindrique (5) destiné à l'évacuation du courant de gaz épuré dépassant du dessus à l'intérieur du corps de cyclone dans la chambre de séparation cylindrique, et un tube plongeur (6) à fente, situé dans le bas, dans la surface de séparation cylindrique du séparateur à cyclone, comportant une fente de passage (10), muni d'un bord d'entrée hélicoïdal ou droit (9a, 9b) donnant accès à un tube à tourbillonnement (17), caractérisé en ce que le tube plongeur (5), le tube plongeur (6) à fente et un tube plongeur central (7) qui se raccorde à celui-ci vers le bas dans la surface de séparation cylindrique du séparateur à cyclone, forment une colonne de tubes plongeurs qui entoure l'axe (1) du cyclone sur toute la hauteur (h) de la chambre de séparation, traverse le collecteur (2a) de matière solide et est raccordée de façon étanche aux gaz à un deuxième collecteur (2b) de matière solide, le tube plongeur (6) à fente étant le seul tube qui aspire.
2. Séparateur à cyclone selon la revendication 1, caractérisé en ce que entre le canal d'entrée (11 ) et le tube plongeur (6) à fente, on prévoit une tôle de guidage (27) protégeant celui-ci des courants formant court-circuit.
3. Séparateur à cyclone selon la revendication 2, caractérisé en ce que la tôle de guidage (27) est installée dans la chambre de séparation extérieure (3a) sur le tube plongeur (5) en dessous du canal d'entrée (11) du cyclone, dans le plan horizontal parallèle au couvercle (13) du cyclone, de manière à ce que soit empêchée la formation de courants dans le courant tourbillonnaire, qui formeraient un court-circuit en pénétrant directement dans le passage d'aspiration (10) du tube plongeur (6) à fente.
4. Séparateur à cyclone selon une des revendications 1 à 3, caractérisé en ce que le tube plongeur (6) à fente, qui est le seul à aspirer, est conformé de façon à constituer un dispositif de guidage d'amenée à écoulement rapide préférentiel donnent sur un corps d'évacuation (8a) en forme de spirale disposé au-dessus du couvercle (13) de cyclone et comportant un noyau évidé (8b).
5. Séparateur à cyclone selon une des revendications 1 à 4, caractérisé en ce que la surface d'entrée de la fente de passage (10) à parois parallèles du tube plongeur (6) à fente est une fente pratiquée dans l'enveloppe extérieure du tube plongeur à fente, de manière telle que, dans la zone d'entrée de la fente, se crée la vitesse d'écoulement rapide nécessaire sur la surface de séparation, en correspondance avec le courant descendant rotatif existant qui, de son côté, est capté à la surface de séparation de façon aérodynamique en raison du profil de spirale logarithmique de la périphérie du tube plongeut à fente, de telie sorte que les filets d'écoulement courbes du courant de gaz pénétrant dans le tube à tourbillonnement (17) par la fente (10), s'étendent le long du contour intérieur et du contour extérieur de la fente et ce, dans le même sens que le courant d'entrée dans le cyclone.
6. Séparateur à cyclone selon la revendication 1, caractérisé en ce que le tube plongeur (6) à fente est muni de quatre passages d'entrée (10) comportant chacun un bord d'attaque droit (9), dont les parois sont parallèles et qui sont répartis régulièrement sur la périphérie du tube plongeur, de façon telle que la diagonale commune (14) des quatres surfaces (15) d'évidement décalées de 90° forme une hélice à une spire autour du tube plongeur (6) à fente, et soit prévue pour servir de passage d'entrée avec effet d'accélération de l'écoulement, vers un tube à tourbillonnement (17) symétrique à l'axe (1) de cyclone, une zone morte (16) se créant à l'intérieur du tube à tourbillonnement (17), avec des courants axiaux en sens inverse, lorsque le tourbillon à une intensité qui est déterminée par la conformation géométrique des fentes (10) et du tube plongeur (6) à fente; des valeurs élevées de dépression sur l'axe (1) de cyclone et d'importantes variations de pression aans le sens de l'axe provoquant un courant intense en sens inverse (18) dans le tube plongeur centrai (7: ensuite jusque dans le collecteur secondaire (2b) de matière solide.
7. Séparateur à cyclone selon les revendications 1 et 6, caractérisé en ce que pour augmenter ia symétrie de rotation et la force du tourbillon, le tube plongeur (6) à fente comportant quatre fentes (10) de passage hélicoïdal réparties sur la périphérie du tube plongeur est remplacé par un tube plongeur à fente qui est muni soit de plusieurs fentes (10) de passage réparties régulièrement sur la périphérie du tube plongeur à la même hauteur axiale et comportant chacunes un bord d'attaque (9b) droit, soit d'une fente de passage (10) hélicoïdal à parois parallèles, qui présente un bord d'attaque (9a) hélicoïdal et un bord de fuite hélicoïdal (9c), une intensité de tourbillon hypercritique étant alors produite, avec des courants en sens inverse (18) dans le tube plongeur central (7), lorsque la fente de passage (10) considérée a une forme de passage de déviation courbe doté d'un effet d'accélération et que la fente de passage (10) considérée est munie d'une plaque de couverture supérieure (19) et d'une plaque de couverture inférieure (19), grâce à quoi, l'aspiration en provenance de la chambre de séparation extérieure (3a) se fait exclusivement par l'intermédiaire d'une fente de passage hélicoïdal, ou par l'intermédiaire de plc- sieurs fentes de passage à bords éievés réparties régulièrement sur la périphérie du tube plongeur.
8. Séparateur à cyclone selon une des revendications 1 à 7, caractérisé en ce qu'un récipient déflec- tejr cylindriaue (20) est inséré entre la partie conique (12b) de la chambre de séparation extérieure (3a) et le premier collecteur (2a) de collecte de matière solide, de telle manière que le courant tourbillonnaire extérieur s'échappe à l'intérieur du premier collecteur de matière solide (2a) sur une pièce extérieure faisant partie du tube plongeur central (7) et ayant la forme d'un cône déflecteur (4), la matière solide qui a été séparée pouvant ainsi pénétrer sans perturbation et sans effet d'entraînement dans le premier collecteur (2a) de matière solide, par la fente annulaire (22) située entre le récipient déflecteur cylindrique (20) et le tube plongeur central (7), la matière solide ne pouvant alors pas retourner en tourbillonnant dans la chambre de séparation extérieure (3a), du fait de la mise en place d'un butoir conique (21 ) en dessous du récipient déflecteur cylindrique (20) et autour du cône déflecteur (4).
EP86901811A 1985-03-19 1986-03-19 Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage Expired EP0215075B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86901811T ATE43976T1 (de) 1985-03-19 1986-03-19 Zyklonabscheider mit zwei abscheideraeumen und statischen leitvorrichtungen.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3509789 1985-03-19
DE19853509789 DE3509789A1 (de) 1985-03-19 1985-03-19 Zyklonabscheider mit zwei abscheideraeumen und statischen leitvorrichtungen
DE3607023 1986-03-04
DE19863607023 DE3607023A1 (de) 1986-03-04 1986-03-04 Zyklonabscheider mit zwei abscheideraeumen und statischen leitvorrichtungen

Publications (2)

Publication Number Publication Date
EP0215075A1 EP0215075A1 (fr) 1987-03-25
EP0215075B1 true EP0215075B1 (fr) 1989-06-14

Family

ID=25830466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901811A Expired EP0215075B1 (fr) 1985-03-19 1986-03-19 Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage

Country Status (4)

Country Link
US (1) US4789476A (fr)
EP (1) EP0215075B1 (fr)
DE (1) DE3663890D1 (fr)
WO (1) WO1986005417A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8807793U1 (de) * 1988-06-15 1988-12-15 Dozent Doppelzyklon-Entstaubungsanlagen GmbH, 4300 Essen Zyklonabscheider
GB2231372B (en) * 1989-05-12 1993-07-21 Bredport Limited Self-acting air bearing spindle for disk drive
US4960363A (en) * 1989-08-23 1990-10-02 Bergstein Frank D Fluid flow driven engine
GB9611692D0 (en) * 1996-06-05 1996-08-07 Kvaerner Process Systems As Separating vessel
US6049171A (en) 1998-09-18 2000-04-11 Gentex Corporation Continuously variable headlamp control
JP2002527223A (ja) 1998-10-14 2002-08-27 デルシス ファーマシューティカル コーポレーション 流動粉末分散装置
US6283301B1 (en) 1999-12-03 2001-09-04 Dantec Engineering, Inc. Separation device and method of use
DK1337346T3 (da) * 2000-08-29 2009-04-20 Eco Technology Internat 2000 L Male- og törreapparat med en cyklon
US20060035192A1 (en) * 2001-08-29 2006-02-16 Eco Technology International (2000) Limited Milling and drying apparatus incorporating a cyclone
US8578628B2 (en) * 2000-08-29 2013-11-12 Rich Technology Solutions Limited Milling and drying apparatus incorporating a cyclone
GB2411369B (en) * 2004-02-27 2007-02-14 Dynamic Proc Solutions Ltd Cyclone assembly and method for increasing or decreasing flow capacity of a cyclone separator in use
US7632324B2 (en) * 2006-05-18 2009-12-15 Royal Appliance Mfg. Co. Single stage cyclone vacuum cleaner
KR100784735B1 (ko) 2006-06-28 2007-12-13 고균희 사이클론
CN101147895B (zh) * 2006-09-22 2010-06-16 上海工程技术大学 一种旋风式除尘器的旋风子
CN101147896B (zh) * 2006-09-22 2010-06-09 上海工程技术大学 一种旋风式除尘器的芯管装置
US9433880B2 (en) * 2006-11-30 2016-09-06 Palo Alto Research Center Incorporated Particle separation and concentration system
JP5260034B2 (ja) * 2007-11-30 2013-08-14 三菱重工業株式会社 粉体分離装置及び固体燃料用バーナ
SE535115C2 (sv) * 2010-10-21 2012-04-17 3Nine Ab Anordning för centrifugalseparering av partiklar ur ett gasflöde där två eller flera rotorer är anordnade i ett gemensamt hus
CN102886316B (zh) * 2012-09-18 2014-07-02 东北石油大学 一种用于三相介质分离的水力旋流器
US10631697B2 (en) 2014-02-14 2020-04-28 Techtronic Industries Co. Ltd. Separator configuration
WO2016065148A2 (fr) 2014-10-22 2016-04-28 Techtronic Industries Co. Ltd. Aspirateur doté d'un séparateur cyclonique
CN107205603B (zh) 2014-10-22 2020-10-13 创科实业有限公司 具有旋风分离器的吸尘器
CN107072453B (zh) 2014-10-22 2019-08-30 创科实业有限公司 手持式真空吸尘器
FR3029192A1 (fr) * 2014-11-28 2016-06-03 Veolia Water Solutions & Tech Hydrocyclone anti-boudinage.
EP3184178B1 (fr) 2015-12-23 2018-10-17 J. Wagner AG Installation de revetement de pieces par poudre
US11110374B2 (en) 2017-03-28 2021-09-07 Chromatan Inc. Continuous countercurrent spiral chromatography
CN108373933A (zh) * 2018-03-30 2018-08-07 四川雷鸣环保装备有限公司 旋风式流化床气化炉
US11547257B2 (en) 2020-02-04 2023-01-10 Dustless Depot, Llc Vacuum bag with inlet gasket and closure seal
US20230012037A1 (en) * 2021-07-06 2023-01-12 Vortex Ecologic Technologies Ltd Apparatus and method for dry cleaning of polluted flue gases

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE626382C (de) * 1935-02-28 1936-02-25 Babcock & Wilcox Dampfkessel W Fliehkraftstaubabscheider
FR810851A (fr) * 1935-07-24 1937-04-01 Franco British Electrical Co Système de production de lumière artificielle décorative
FR810815A (fr) * 1936-08-09 1937-03-31 Prep Ind Combustibles Cyclone pour séparation de poussières de leur air d'entraînement
US2604956A (en) * 1948-12-04 1952-07-29 Aaron Kantrow Cyclone separator
BE507582A (fr) * 1951-03-22
FR1134443A (fr) * 1954-06-30 1957-04-11 Bataafsche Petroleum Cyclone ou chambre de tourbillonnement avec diffuseur
US2967618A (en) * 1960-03-28 1961-01-10 Vane Zdenek Vortical separator
FR1350838A (fr) * 1962-12-20 1964-01-31 Appareil de dépoussiérage à sec d'un courant gazeux
SU956028A1 (ru) * 1980-12-04 1982-09-07 Проектно-Конструкторский Технологический Институт Циклон
DE3223374A1 (de) * 1982-06-23 1983-12-29 Paul Prof. Dr.-Ing. 4300 Essen Schmidt Tauchrohr fuer zyklon

Also Published As

Publication number Publication date
EP0215075A1 (fr) 1987-03-25
US4789476A (en) 1988-12-06
DE3663890D1 (en) 1989-07-20
WO1986005417A1 (fr) 1986-09-25

Similar Documents

Publication Publication Date Title
EP0215075B1 (fr) Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage
EP0249023B1 (fr) Séparateur à chambre de tourbillonnement
EP0207927B1 (fr) Dispositif pour la séparation de la poussière des gaz
DE68917990T2 (de) Wirbelrohr-Abscheider.
DE68920912T2 (de) Wirbelrohr-Abscheider.
EP0041106A2 (fr) Cyclone pour dépoussiérage, en particulier à double action séparatrice
DE2036433A1 (de) Fliehkraftabscheider
DE2137128A1 (de) Vorrichtung zur drallerzeugung in einem drehstroemungswirbler
DE2341789C3 (de) Anordnung zur Energierückgewinnung im Reingasauslaß eines Drehströmungswirbler«
DE2610031B2 (de) Stofftrennung mittels auf das betreffende Medium einwirkender Fliehkräfte
DE3624086C2 (fr)
CH642278A5 (de) Zyklonabscheider zum abscheiden von schwer- und staubteilen aus fasermaterial.
DD300816A5 (de) Verfahren und vorrichtung zum abtrennen von stoffen aus einem medium
DE3040603C2 (de) Zentrifugalabscheider
DE2250841A1 (de) Fliehkraftabscheider fuer feste und fluessige stoffe aus gasstroemen
DE3509789A1 (de) Zyklonabscheider mit zwei abscheideraeumen und statischen leitvorrichtungen
AT383052B (de) Einrichtung zum abscheiden von feststoffen aus gasen
DE2220534C3 (de) Drehströmungswirbler zur Sichtung und Abscheidung feinkörniger Partikel
DE3607023A1 (de) Zyklonabscheider mit zwei abscheideraeumen und statischen leitvorrichtungen
DE3248039A1 (de) Wirbelsichter zum abscheiden von verunreinigungen aus stoffsuspensionen
DE3524084A1 (de) Zyklonabscheider
AT254156B (de) Einrichtung für die Trennung von Medien verschiedener Massenträgheit
DE4234172A1 (de) Verfahren zum Trennen von Partikeln aus einem fluidischen Förderstrom
DE720168C (de) Schornstein mit Flugascheabscheidevorrichtung
DE1407992C (de) Drehströmungswirbler fur Feststoff oder Flüssigkeitsaerosol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861231

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19871210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 43976

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3663890

Country of ref document: DE

Date of ref document: 19890720

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900331

Ref country code: LI

Effective date: 19900331

Ref country code: CH

Effective date: 19900331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940310

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86901811.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950929

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950930

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951002

Year of fee payment: 10

Ref country code: SE

Payment date: 19951002

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950319

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: SCHULZ SIEGBERT

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

EUG Se: european patent has lapsed

Ref document number: 86901811.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981127

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050319