EP0215034A1 - Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil. - Google Patents

Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil.

Info

Publication number
EP0215034A1
EP0215034A1 EP86901329A EP86901329A EP0215034A1 EP 0215034 A1 EP0215034 A1 EP 0215034A1 EP 86901329 A EP86901329 A EP 86901329A EP 86901329 A EP86901329 A EP 86901329A EP 0215034 A1 EP0215034 A1 EP 0215034A1
Authority
EP
European Patent Office
Prior art keywords
ceramic insulator
ray tube
ceramic
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86901329A
Other languages
English (en)
French (fr)
Other versions
EP0215034B1 (de
Inventor
Engelbert Berger
Dieter-W Zickert
Peter Gutknecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GESELLSCHAFT fur ELEKTRONISCHE ROHREN COMET BERN
Original Assignee
GESELLSCHAFT fur ELEKTRONISCHE ROHREN COMET BERN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GESELLSCHAFT fur ELEKTRONISCHE ROHREN COMET BERN filed Critical GESELLSCHAFT fur ELEKTRONISCHE ROHREN COMET BERN
Priority to AT86901329T priority Critical patent/ATE40767T1/de
Publication of EP0215034A1 publication Critical patent/EP0215034A1/de
Application granted granted Critical
Publication of EP0215034B1 publication Critical patent/EP0215034B1/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith

Definitions

  • the present invention relates to an X-ray tube with a cylindrical metal part surrounding the anode and the cathode, of which at least one of the electrodes anode and cathode is electrically insulated by means of a disk-shaped ceramic insulator which is attached to an axial end of the metal is partially arranged.
  • Known x-ray tubes of this type have shields in the interior of the cylindrical metal part, which are shaped and arranged in such a way that the electrical field resulting on the inner surfaces of the ceramic insulators points in its direction away from the insulator surface against the interior of the x-ray tube. This largely prevents the inside surfaces of the ceramic insulators, which are hit by unavoidable field emission electrons, from becoming electrically charged as a result of secondary electron emission and thereby reducing the dielectric strength of the X-ray tube.
  • the disk-shaped ceramic insulator is designed in a stepped or ramp-shaped manner in radial directions on its axial end surface facing away from the interior of the X-ray tube in order to form an annular axial recess which is filled with an insulating material whose dielectric constant is less than that of the ceramic material and that in the case of a ceramic insulator that insulates the anode from the metal part, the recess is arranged radially on the inside and in the case of a ceramic insulator that insulates the cathode of the metal part, the recess is arranged radially on the outside.
  • This configuration of the X-ray tube ensures, in a surprisingly simple manner, that the direction of the electric field on the inner insulator surface points away from the insulator surface into the interior of the tube.
  • the electrical field strength is reduced at the locations where the field emission primarily occurs, namely at the so-called triple points.
  • the triple point is located on the cathode side in the soldering-technical connection between the ceramic insulator and the high-voltage supply in the center of the insulator.
  • the triple point lies in the soldering connection between the outer circumference of the ceramic insulator and the cylindrical metal part.
  • the insulating material filling the recess of the ceramic insulator can be a part of a rubber-elastic disc which is pressed in the axial direction onto the step-shaped or ramp-shaped end face of the ceramic insulator.
  • FIG. 1 shows an axial longitudinal section through an X-ray tube designed according to the invention with associated connecting parts
  • 4 and 5 are analog sectional views of two further exemplary embodiments of the anode-side ceramic insulator.
  • the X-ray tube shown has a cylindrical metal part 11 which is provided with a window 12 inserted in a vacuum-tight manner for the exit of the X-ray radiation.
  • a window 12 inserted in a vacuum-tight manner for the exit of the X-ray radiation.
  • annular disk-shaped ceramic insulator 13 At the upper axial end of the metal part 11 in FIG. 1 there is an annular disk-shaped ceramic insulator 13, the outer periphery of which is connected to the metal part 11 in a vacuum-tight manner.
  • the axial end face 16 of the ceramic insulator 13 facing away from the interior of the metal part 11 is offset radially outwards by a step 17 running in the circumferential direction, so that an annular axial recess 18 is formed on the ceramic insulator 13 adjacent to its outer circumference.
  • This depression 18 is filled by a part 19 of a rubber-elastic washer 20 which is pressed onto the ceramic insulator 13 in a manner known per se by means of a connecting part 21.
  • the rubber-elastic washer 20 has a smaller dielectric constant than the ceramic insulator 13.
  • there is a layer of insulation grease (not shown in FIG.
  • the interior of the metal part 11 facing axial end surface 26 of the ab ⁇ 'ceramic insulator 23 is deposited by a Windier extending in the circumferential direction stage 27 ein ⁇ radially, so that the ceramic insulator 23 adjacent its inner periphery an annular axial recess
  • This recess 28 is formed. This recess 28 is by a lot
  • the rubber-elastic washer 30 is pressed onto the ceramic insulator 23 in a manner not known per se by means of a connecting part 31.
  • the rubber-elastic washer 30 has a smaller dielectric constant than the ceramic insulator 23.
  • the metal part 11 is connected to earth potential, while a voltage which is negative with respect to the earth potential is applied to the cathode 1 through the connection part 21 and a voltage which is positive with respect to the earth potential is applied through the connection part 31 to the anode 25.
  • Potential lines then appear in the interior of the tube, as indicated, for example, by the dashed lines 32 and 33 in FIG. 1.
  • the potential lines 32 in the region of the ceramic insulator 13 assume a diverging profile that deviates from the axis-parallel direction, in such a way that on the flat inner end face 3 ⁇ of the ceramic insulator 13, the electrical field vectors 35, which are always at right angles to the potential lines 32, have directions pointing away from the ceramic insulator 13 towards the interior of the X-ray tube.
  • the depression 28 of the other ceramic insulator 23, which is filled with insulating material 29 with a lower dielectric constant, has the result that the potential lines 33 in the area of the ceramic insulator 23 assume a converging course and therefore the electric field vectors 36 on the flat inner end surface 37 of the ceramic insulator 23 have directions facing away from the inside of the X-ray tube.
  • the angle between the field vectors 35 and 36 on the one hand and the inner end surface 34 and 37 of the ceramic insulator 13 and 23 on the other hand is due to the difference in the dielectric constant of the ceramic material and the rubber-elastic insulating material due to the radial width and the axial depth of the Indentation 18 and 28 and determined by the dimensions of the ceramic insulator 13 and 23 respectively.
  • the X-ray tube according to FIG. 1 has a noticeably higher joint dielectric strength.
  • the advantages described were checked and confirmed using a test X-ray tube.
  • the experimental X-ray tube with the structure shown in FIG. 1 had ceramic insulators 13 and 23 with an outside diameter of 107 mm and an inside diameter of 45 mm.
  • the axial thickness dimension of the ceramic insulators was 10 mm and was reduced to 7 mm at the location of the recess 18 or 28, so that the steps 17 and 27 had a height of 3 mm.
  • the rubber-elastic washers 20 and 30 consisted of silicone rubber with a dielectric constant of 3.2 and a Shore hardness of 28.
  • each rubber-elastic washer 20 and 30 were flat and parallel, and the outside - The knife was 100 mm, the inside diameter was 45 mm and the axial thickness was 10 mm.
  • the X-ray tube could easily be operated with a voltage of up to 340 kV between the anode and cathode.
  • the ceramic insulator 113 shown in FIG. 2 for the cathode side of the X-ray tube has, on its axial end face 116 to be turned outwards, two steps 117 running in the circumferential direction, by means of which an axial recess 118 adjacent to the outer circumference of the ceramic insulator is formed.
  • the example of a ceramic insulator 213 shown in FIG. 3 for the cathode side of the X-ray tube has a ramp-shaped step 217 on its axial end face 216 to be turned outwards, by means of which an axial depression 218 adjoining the outer circumference of the ceramic insulator is formed.
  • the ceramic insulator 123 shown in FIG. 4 for the anode side of the X-ray tube has on its outward-facing axial end face 126 two steps 117 running in the circumferential direction, by means of which an axial depression 128 adjacent to the inner circumference of the ceramic isolator is formed.
  • the ceramic insulator 223 for the anode side of the X-ray tube can also have a ramp-shaped step 227 on the axial end surface to be turned outwards, so that an axial recess 228 adjacent to the inner circumference of the ceramic insulator is formed .
  • the depressions 118, 218, 128 and 228 of the ceramic insulators 113, 213, 123 and 223 according to FIGS. 2 to 5 are each made with rubber-elastic insulating material when the X-ray tube is assembled or installed, the dielectric constant of which is smaller than that of the ceramic material, completely filled out. '
  • X-ray tubes in which the cathode or the anode is electrically conductively connected to the cylindrical metal part.
  • the cathode or the anode is electrically conductively connected to the cylindrical metal part.
  • only the other anode or cathode is insulated from the cylindrical metal part by a ceramic insulator.
  • the invention can also be used with such X-ray tubes in that the then only existing ceramic insulator in the manner described above is provided on its axial end surface facing away from the inside of the X-ray tube with a depression which is completely filled with an insulating material whose dielectric constant is smaller than that of the ceramic material.

Landscapes

  • X-Ray Techniques (AREA)
  • Microwave Tubes (AREA)

Description

Röntgenröhre mit einem die Anode und die Kathode umgebenden zylindrischen Metallteil
Die vorliegende Erfindung betrifft eine Röntgenröhre mit ei¬ nem die Anode und die Kathode umgebenden zylindrischen Metall¬ teil, von welchem zumindest eine der Elektroden Anode und Ka¬ thode mittels eines scheibenförmigen Keramikisolators elek¬ trisch isoliert ist, der an einem achsialen Ende des Metall¬ teils angeordnet ist.
Bekannte Röntgenröhren dieser Art weisen im Innenraum des zylindrischen Metallteils Abschirmungen auf, die derart ge¬ formt und angeordnet sind, dass das sich auf den inneriliegen- den Flächen der Keramikisolatoren ergebende elektrische Feld seiner Richtung nach von der Isolatorfläche weg gegen den Innenraum der Röntgenröhre weist. Hierdurch lässt sich weit¬ gehend verhüten, dass die von unvermeidbaren Feldemissions- Ξlektronen getroffenen Innenflächen der Keramikisolatoren sich infolge von Sekundärelektronen-Emission elektrisch aufladen und dadurch die Spannungsfestigkeit der Röntgenröhre herabge¬ setzt wird.
Aufgabe der vorliegenden Erfindung ist es, eine Röntgenröhre der eingangs genannten Art zu schaffen, bei welcher die er¬ wähnten Abschirmungen entbehrlich sind und dennoch an der Innenfläche des oder jedes Keramikisolators das elektrische Feld seiner Richtung nach von der Isolatorfläche weg gegen das Röhreninnere weist.
Diese Aufgabe ist erfindungsgemäss dadurch gelöst, dass der scheibenförmige Keramikisolator an seiner vom Innenraum der Röntgenröhre abgewandten achsialen Endfläche in radialen Richtungen stufen- oder rampenförmig ausgebildet ist zur Bildung einer ringförmig verlaufenden achsialen Vertiefung, die mit einem Isoliermaterial ausgefüllt ist, dessen Dielek¬ trizitätskonstante kleiner als diejenige des Keramikmaterials ist, und dass im Falle eines die Anode vom Metallteil iso¬ lierenden Keramikisolators die Vertiefung radial innen und im Fall eines die Kathode vom Metallteil isolierenden Kera¬ mikisolators die Vertiefung radial aussen angeordnet ist.
Durch diese Ausbildung der Röntgenröhre wird auf überraschend einfache Weise erreicht, dass an der innenliegenden Isola¬ torfläche das elektrische Feld seiner Richtung nach von der Isolatorfläche weg in das Röhreninnere weist. Zusätzlich er¬ gibt sich die vorteilhafte Wirkung, dass die elektrische Feldstärke an den Orten, an denen die Feldemmission vornehm¬ lich einsetzt, nämlich an den sogenannten Triple-Punkten, reduziert ist. Auf der Kathodenseite befindet sich der Triple- Punkt in der löttechnisehen Verbindung zwischen dem Keramik¬ isolator und der Hochspannungszuführung im Zentrum des Iso¬ lators. Auf der Anodenseite hingegen liegt der Triple-Punkt in der löttechnischen Verbindung zwischen dem Aussenumfang des Keramikisolators und dem zylindrischen Metallteil. Die beiden durch die erfindungsgemässe Ausbildung erzielten Effekte tra¬ gen zu einer-merklichen Erhöhung der Spannungsfestigkeit der Röntgenröhre bei.
In zweckmässiger Ausgestaltung der erfindungsgemässen Röntgen¬ röhre kann das die Vertiefung des Keramikisolators ausfüllen¬ de Isoliermaterial eine Partie einer gummielastischen Scheibe sein, die in achsialer Richtung an die stufen- oder rampen- förmig ausgebildete Endfläche des Keramikisolators angepresst ist.
Weitere Einzelheiten und Vorteile ergeben sich aus der nun folgenden Beschreibung von Ausführungsbeispielen der Röntgen¬ röhre gemäss der Erfindung sowie aus der zugehörigen Zeich¬ nung, anhand welcher die Erfindung rein beispielsweise erläu¬ tert wird. Fig. 1 zeigt einen achsialen Längsschnitt durch eine nach der Erfindung ausgebildete Röntgenröhre mit zuge¬ hörigen Anschlussteilen;
Fig. 2 und 3 zeigen je einen achsialen Schnitt durch zwei andere Ausführungsbeispiele des kathodenseitigen Ke¬ ramikisolators;
Fig. 4 und 5 sind analoge Schnittdarstellungen von zwei weiteren Ausführungsbeispielen des anodenseitigen Keramikisolators.
Gemäss Fig. 1 weist die dargestellte Röntgenröhre einen zylindrischen Metallteil 11 auf, der mit einem vakuumdicht eingesetzten Fenster 12 für den Austritt der Röntgenstrah¬ lung versehen ist. An dem in Fig. 1 oberen achsialen Ende des Metallteils 11 befindet sich ein ringscheibenförmiger Kera¬ mikisolator 13, dessen äusserer Umfang mit dem Metallteil 11 vakuumdicht verbunden ist. In der zentralen Durchbrechung des Keramikisolators 13 sitzt ebenfalls vakuumdicht eine Hochspannungsdurchführung 1 , welche die Kathode 15 der Röntgenröhre trägt. Die vom Innenraum des Metallteils 11 ab¬ gewandte achsiale Endfläche 16 des Keramikisolators 13 ist durch eine in Umfangsrichtung verlaufende Stufe 17 radial auswärts abgesetzt, so dass am Keramikisolator 13 angrenzend an seinen äusseren Umfang eine ringförmige achsiale Vertie¬ fung 18 gebildet ist. Diese Vertiefung 18 ist durch eine Par¬ tie 19 einer gummielastischen Ringscheibe 20 ausgefüllt, die mittels eines Anschlussteiles 21 auf nicht dargestellte, an sich bekannte Weise an den Keramikisolator 13 angepresst ist. Die gummielastische Ringscheibe 20 weist eine kleinere Di¬ elektrizitätskonstante als der Keramikisolator 13 auf. Zweck- massig befinden sich in den Fugen zwischen dem Keramikisola¬ tor 13 und der gummielastischen Ringscheibe 20 wie auch zwi¬ schen dem Anschlussteil 21 und der gummielastischen Ring¬ scheibe 20 je eine (in Fig. 1 nicht dargestellte) Schicht Isolationsfett. An dem in Fig. 1 unteren achsialen Ende des zylindrischen Metallteils 11 befindet sich ebenfalls ein ringscheibenförmi¬ ger Keramikisolator 23, dessen äusserer Umfang mit dem Metall¬ teil 11 vakuumdicht verbunden ist. In der zentralen Durch¬ brechung des Keramikisolators 23 sitzt ebenfalls vakuumdicht eine Hochspannungsdurchführung 24, welche die Anode 25 der Röntgenröhre trägt. Die vom Innenraum des Metallteils 11 ab¬ gewandte achsiale Endfläche 26 des'Keramikisolators 23 ist durch eine in Umfangsrichtung verlaufende Stufe 27 radial ein¬ wärts abgesetzt, so dass am Keramikisolator 23 angrenzend an seinen inneren Umfang eine ringförmige achsiale Vertiefung
28 gebildet ist. Diese Vertiefung 28 ist durch eine Partie
29 einer gummielastischen Ringscheibe 30 vollständig ausge¬ füllt. Mittels eines Anschlussteiles 31 ist die gummielasti¬ sche Ringscheibe 30 auf nicht dargestellte, an sich bekannte Weise an den Keramikisolator 23 angepresst. Die gummielasti¬ sche Ringscheibe 30 weist eine kleinere Dielektrizitätskon¬ stante als der Keramikisolator 23 auf. In den Fugen zwischen dem Keramikisolator 23 und der gummielastischen Ringscheibe
30 wie auch zwischen dem Anschlussteil 31 und der gummielasti¬ schen Ringscheibe 30 befindet sich zweckmässig je eine (nicht dargestellte) Schicht Isolationsfett.
Zum Betrieb der beschriebenen Röntgenröhre wird der Metallteil 11 auf Erdpotential gelegt, während an die Kathode 1 eine gegenüber dem Erdpotential negative Spannung durch den An¬ schlussteil 21 hindurch und an die Anode 25 eine gegenüber dem Erdpotential positive Spannung durch den Anschlussteil 31 hindurch angelegt wird. Im Innenraum der Röhre stellen sich dann Potentiallinien ein, wie sie z.B. durch die gestrichel¬ ten Linien 32 und 33 in Fig. 1 angedeutet sind. Infolge der Vertiefung 18 des Keramikisolators 13, welche mit Isolier¬ material 19 mit niedrigerer Dielektrizitätskonstante ausge¬ füllt ist, nehmen die Potentiallinien 32 im Bereich des Ke¬ ramikisolators 13 einen von der achsparallelen Richtung abweichenden,divergierenden Verlauf an, und zwar derart, dass an der ebenen inneren Endfläche 3^ des Keramikisolators 13 die zu den Potentiallinien 32 stets rechtwinklig stehenden elektrischen Feldvektoren 35 vom Keramikisolator 13 weg gegen den Innenraum der Röntgenröhre weisende Richtungen haben. Aehnlich hat die Vertiefung 28 des andern Keramikisolators 23, welche mit Isoliermaterial 29 mit niedrigerer Dielektrizitäts¬ konstante ausgefüllt ist, zur Folge, dass die Potentiallinien 33 im Bereich des Keramikisolators 23 einen konvergierenden Verlauf annehmen und deshalb die elektrischen Feldvektoren 36 an der ebenen inneren Endfläche 37 des Keramikisolators 23 von diesem weg gegen das Innere der Röntgenröhre weisende Richtungen haben. Der Winkel zwischen den Feldvektoren 35 bzw. 36 einerseits und der inneren Endfläche 34 bzw. 37 des Keramik¬ isolators 13 bzw. 23 anderseits ist durch den Unterschied der Dielektrizitätskonstanten des Keramikmaterials und des gummi- elastischen Isoliermaterials durch die radiale Breite und die achsiale Tiefe der Vertiefung 18 bzw. 28 und durch die Abmes¬ sungen des Keramikisolators 13 bzw. 23 bestimmt. Weil sowohl auf der Kathodenseite als auch der Anodenseite die elektrische Feldstärke ihrer Richtung nach von der dortigen inneren End¬ fläche des Keramikisolators 13 bzw. 23 weg ins Innere der Röntgenröhre weist, sind Aufladungen an den Keramikisolatoren 13 und 23 wie auch damit verbundene Feldstärkenüberhöhungen wirksam vermieden. Im Vergleich zu ähnlichen bekannten Rönt¬ genröhren, bei denen die Keramikisolatoren jeweils ebene äussere Endflächen ohne die Stufen 17 und 27 aufweisen, hat die Röntgenröhre gemäss Fig. 1 eine merklich höhere Fugen- Spannungsfestigkeit.
Die geschilderten Vorteile wurden anhand einer Versuchs- Röntgenröhre überprüft und bestätigt gefunden. Die Versuchs- Röntgenrδhre mit dem in Fig. 1 gezeigten Aufbau wies Keramik¬ isolatoren 13 und 23 mit einem Aussendurchmesser von 107 mm, einem Innendurchmesser von 45 mm auf. Die achsiale Dicken¬ abmessung der Keramikisolatoren betrug 10 mm und war an der Stelle der Vertiefung 18 bzw. 28 auf 7 mm reduziert, so dass die Stufe 17 bzw. 27 eine Höhe von 3 mm hatte. Die gummi- elastischen Ringscheiben 20 und 30 bestanden aus Silikon¬ kautschuk mit einer Dielektrizitätskonstante von 3,2 und einer Shorehärte von 28. In unbelastetem Zustand waren die beiden achsialen Endflächen jeder gummielastischen Ring¬ scheibe 20 bzw. 30 eben und parallel, und der Aussendurch- messer betrug 100 mm, der Innendurchmesser 45 mm und die achsiale Dicke 10 mm. Die Röntgenröhre liess sich problemlos mit einer Spannung bis zu 340 kV zwischen Anode und Kathode betreiben.
Praktisch gleich gute Ergebnisse lassen sich erzielen, wenn die Keramikisolatoren etwa gemäss den in den Fig. 2 bis 5 ge¬ zeigten Ausführungsbeispielen geformt sind.
Der in Fig. 2 dargestellte Keramikisolator 113 für die Ka¬ thodenseite der Röntgenröhre weist an seiner nach aussen zu wendenden achsialen Endfläche 116 zwei in Umfangsrichtung verlaufende Stufen 117 auf, durch welche eine an den Aussen¬ umfang des Keramikisolators angrenzende achsiale Vertiefung 118 gebildet ist.
Das in Fig. 3 gezeigte Beispiel eines Keramikisolators 213 für die Kathodenseite der Röntgenröhre weist an seiner nach aussen zu wendenden achsialen Endfläche 216 eine rampenförmi- ge Abstufung 217 auf, durch die eine an den Aussenumfang des Keramikisolators angrenzende achsiale Vertiefung 218 gebil¬ det ist.
Der in Fig. 4 gezeigte Keramikisolator 123 für die Anodensei¬ te der Röntgenröhre weist an seiner nach aussen zu wendenden achsialen Endfläche 126 zwei in Umfangsrichtung verlaufende Stufen 117 auf, durch die eine an den Innenumfang des Kera¬ mikisolators angrenzende achsiale Vertiefung 128 gebildet ist. Gemäss Fig. 5 kann der Keramikisolator 223 für die Anoden¬ seite der Röntgenröhre aber auch eine rampenförmige Abstu¬ fung 227 an der nach aussen zu wendenden achsialen Endfläche aufweisen, so dass eine an den inneren Umfang des Keramik¬ isolators angrenzende achsiale Vertiefung 228 gebildet ist.
Die Vertiefungen 118, 218, 128 und 228 der Keramikisolatoren 113, 213, 123 und 223 gemäss den Fig. 2 bis 5 werden beim Zusammenbau oder Einbau der Röntgenröhre jeweils mit gummi¬ elastischem Isoliermaterial, dessen Dielektrizitätskonstan¬ ten kleiner als diejenige des Keramikmaterials ist, voll¬ ständig ausgefüllt.'
Bekanntlich gibt es Röntgenröhren, bei denen die Kathode oder die Anode mit dem zylindrischen Metallteil elektrisch leitend verbunden ist. In einem solchen Fall ist jeweils nur die an¬ dere Elektrode Anode oder Kathode durch einen Keramikisolator von dem zylindrischen Metallteil isoliert. Die Erfindung ist auch bei solchen Röntgenröhren anwendbar, indem der dann ein¬ zige vorhandene Keramikisolator in der vorstehend beschriebe¬ nen Weise an seiner vom Innern der Röntgenröhre abgewandten achsialen Endfläche mit einer Vertiefung versehen ist, die vollständig ausgefüllt ist mit einem Isoliermaterial, dessen Dielektrizitätskonstante kleiner als diejenige des Keramik¬ materials ist.

Claims

P a t e n t a n s p r ü c h e
. Röntgenröhre mit einem die Anode und die Kathode um¬ gebenden zylindrischen Metallteil, von welchem zumindest eine der Elektroden Anode und Kathode mittels eines scheibenförmi¬ gen Keramikisolators elektrische isoliert ist, der an einem achsialen Ende des Metallteils angeordnet ist, dadurch ge¬ kennzeichnet, dass der scheibenförmige Keramikisolator (13; 23; 113; 123; 213; 223) an seiner vom Innenraum der Röntgen¬ röhre abgewandten achsialen Endfläche (16; 26; 116; 126; 216; 226) in radialen Richtungen stufen- oder rampenförmig ausge¬ bildet ist zur Bildung einer ringförmig verlaufenden achsialen Vertiefung (18; 28; 118; 128; 218; 228), die mit einem Iso¬ liermaterial (19; 29) ausgefüllt ist, dessen Dielektrizitäts¬ konstante kleiner als diejenige des Keramikmaterials ist, und dass im Falle eines die Anode (25) vom Metallteil (11 ) isolierenden Keramikisolators (13; 113; 213) die Vertiefung radial innen und im Falle eines die Kathode (15) vom Metall¬ teil (11) isolierenden Keramikisolators (23; 123; 223) die Vertiefung radial aussen angeordnet ist.
2. Röntgenröhre nach Anspruch 1, dadurch gekennzeich¬ net, dass das die Vertiefung (18; 28; 118; 128; 218; 228) des Keramikisolators (13; 23; 113; 123; 213; 223) ausfüllende Isoliermaterial eine Partie (19; 29) einer gummielastischen Scheibe (20; 30) ist, die in achsialer Richtung an die stu¬ fen- oder rampenförmig ausgebildete Endfläche (16; 26;,116; 126; 216; 226) des Keramikisolators angepresst ist.
3. Röntgenröhre nach Anspruch 2, dadurch gekennzeichnet, dass die gummielastische Scheibe (20; 30) in entspanntem Zustand stufenfreie achsiale Endflächen aufweist, die etwa die gleiche Grosse wie jene des Keramikisolators (13; 23; 113; 123; 213; 223) aufweisen.
4. Röntgenröhre nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das die Vertiefung (18; 28; 118; 128; 218; 228) auffüllende Isoliermaterial (19; 29) Silikonkaut¬ schuk mit einer Shore-Härte von vorzugsweise etwa 28 und einer Dielektrizitätskonstante von etwa 3,2 ist.
5. Röntgenröhre nach einem der Ansprüche 1 bis 4, bei welcher die Anode und die Kathode je mittels eines scheiben¬ förmigen Keramikisolators vom zylindrischen Metallteil elek¬ trisch isoliert sind, dadurch gekennzeichnet, dass jeder der scheibenförmigen Keramikisolatoren (13; 23; 113; 123; 213; 223) an seiner vom Innenraum der Röntgenröhre abgewandten achsialen Endfläche (16; 26; 116; 126; 216; 226) in radialer Richtung stufen- oder rampenförmig ausgebildet ist zur Bildung einer ringförmig verlaufenden achsialen Vertiefung (18; 28; 118; 128; 218; 228), die mit einem Isoliermaterial (19, 29) ausgefüllt ist, dessen Dielektrizitätskonstante kleiner als diejenige des Keramikmaterials ist, und dass die Vertiefung (28; 128; 228) des die Anode (25) tragenden Keramikisolators (23; 123; 223) radial innen und die Vertiefung (18; 118; 218) des die Kathode (15) tragenden Keramikisolators (13; 113; 213) radial aussen angeordnet ist.
EP86901329A 1985-03-28 1986-03-13 Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil Expired EP0215034B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86901329T ATE40767T1 (de) 1985-03-28 1986-03-13 Roentgenroehre mit einem die anode und die kathode umgebenden zylindrischen metallteil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1363/85A CH665920A5 (de) 1985-03-28 1985-03-28 Roentgenroehre mit einem die anode und die kathode umgebenden zylindrischen metallteil.
CH1363/85 1985-03-28

Publications (2)

Publication Number Publication Date
EP0215034A1 true EP0215034A1 (de) 1987-03-25
EP0215034B1 EP0215034B1 (de) 1989-02-08

Family

ID=4208683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901329A Expired EP0215034B1 (de) 1985-03-28 1986-03-13 Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil

Country Status (6)

Country Link
EP (1) EP0215034B1 (de)
JP (1) JPS62502796A (de)
AT (1) ATE40767T1 (de)
CH (1) CH665920A5 (de)
DE (1) DE3662079D1 (de)
WO (1) WO1986005921A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137804A1 (de) * 1991-11-16 1993-05-19 Licentia Gmbh Hochspannungsroehre
DE19842467A1 (de) * 1998-09-16 2000-03-23 Siemens Ag Miniaturisierte Röntgenröhre
US7218707B2 (en) 2002-09-09 2007-05-15 Comet Holding Ag High-voltage vacuum tube
US7424095B2 (en) 2003-12-02 2008-09-09 Comet Holding Ag Modular X-ray tube and method of production thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6946926U (de) * 1969-12-03 1971-07-22 C H P Mueller Gmbh Roentgenroehre mit metallkolben.
GB1458027A (en) * 1973-01-08 1976-12-08 Philips Electronic Associated Electric discharge vacuum tube
DE2506841C2 (de) * 1975-02-18 1986-07-03 Philips Patentverwaltung Gmbh, 2000 Hamburg Hochspannungs-Vakuumröhre
DE2747486A1 (de) * 1977-10-22 1979-04-26 Licentia Gmbh Roentgenroehre
DE2855905A1 (de) * 1978-12-23 1980-06-26 Licentia Gmbh Vorrichtung mit einer roentgenroehre
DE3116169A1 (de) * 1981-04-23 1982-11-11 Philips Patentverwaltung Gmbh, 2000 Hamburg Hochspannungs-vakuumroehre, insbesondere roentgenroehre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605921A1 *

Also Published As

Publication number Publication date
JPH0570897B2 (de) 1993-10-06
CH665920A5 (de) 1988-06-15
WO1986005921A1 (en) 1986-10-09
EP0215034B1 (de) 1989-02-08
DE3662079D1 (en) 1989-03-16
JPS62502796A (ja) 1987-11-12
ATE40767T1 (de) 1989-02-15

Similar Documents

Publication Publication Date Title
DE19510850C1 (de) Vakuumschaltröhre
DE2346174A1 (de) Ueberspannungsableiter
DE2834088A1 (de) Gasentladungsroehre, insbesondere ueberspannungsableiter
DE3343918A1 (de) Vakuumschalter fuer den niederspannungsbereich, insbesondere niederspannungsschuetz
DE3142281A1 (de) Roentgenroehre mit einem metallteil und einer gegenueber dem metallteil positive hochspannung fuehrenden elektrode
DE1441243A1 (de)
DE2633543C3 (de) Vakuumschalter
EP0063840A1 (de) Hochspannungs-Vakuumröhre, insbesondere Röntgenröhre
EP1537594B1 (de) Hochspannungs-vakuumröhre
EP0215034B1 (de) Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil
EP3472847A1 (de) Isolatoranordnung für eine hoch- oder mittelspannungsschaltanlage
DE2316138C2 (de) Gekapselte, gasisolierte Hochspannungsleitung
DE1022325B (de) Elektrische Entladungsroehre mit einer Steuerelektrode und einer Gasatmosphaere
DE3640801A1 (de) Halbleiterbauelement
DE2416397A1 (de) Ueberspannungsableiter
CH621214A5 (de)
WO2003028789A1 (de) Variabler kondensator mit erhöhter stromfähigkeit
DE4125097C2 (de) Kontaktanordnung für einen Vakuum-Leistungsschalter
DE1441243C (de) Kreiszylindrische Elektronenrohre der Magnetronbauart
DE2652070C2 (de) Bildwandler
DE2757337A1 (de) Ueberspannungsableiter und verfahren zu dessen herstellung
DE102021207962A1 (de) Vakuumschaltröhre und Anordnung mit Vakuumschaltröhren sowie Verfahren zum Absteuern von Vakuumschaltröhren
DE2416945C3 (de) Zweistreckenüberspannungsablelter
AT232087B (de) Isolierkörper
DE7823295U1 (de) Gasentladungsroehre, insbesondere ueberspannungsableiter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19880510

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890208

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890208

Ref country code: BE

Effective date: 19890208

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890208

Ref country code: SE

Effective date: 19890208

Ref country code: NL

Effective date: 19890208

REF Corresponds to:

Ref document number: 40767

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890313

REF Corresponds to:

Ref document number: 3662079

Country of ref document: DE

Date of ref document: 19890316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

Ref country code: LI

Effective date: 19890331

Ref country code: CH

Effective date: 19890331

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960419

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202