EP0214255A1 - Brennkraftmaschine. - Google Patents

Brennkraftmaschine.

Info

Publication number
EP0214255A1
EP0214255A1 EP86901847A EP86901847A EP0214255A1 EP 0214255 A1 EP0214255 A1 EP 0214255A1 EP 86901847 A EP86901847 A EP 86901847A EP 86901847 A EP86901847 A EP 86901847A EP 0214255 A1 EP0214255 A1 EP 0214255A1
Authority
EP
European Patent Office
Prior art keywords
piston
internal combustion
combustion engine
combustion chamber
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86901847A
Other languages
English (en)
French (fr)
Other versions
EP0214255B1 (de
Inventor
Rabbe Dr Med Nordstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86901847T priority Critical patent/ATE42603T1/de
Publication of EP0214255A1 publication Critical patent/EP0214255A1/de
Application granted granted Critical
Publication of EP0214255B1 publication Critical patent/EP0214255B1/de
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to an internal combustion engine having at least one cylinder and a reciprocating piston defining the combustion chamber with the cylinder and having an inlet and outlet valve arrangement, the inlet valve of which supplies the fresh gases to the combustion chamber and the outlet valve of which removes the exhaust gases from the combustion chamber are controlled so that the combustion chamber cycles through a compression phase, a work phase and a charge change phase in succession, the charge change phase starting during the same piston stroke following the work phase and for this purpose opening the exhaust valve and subsequently the intake valve.
  • the charge change usually takes place more or less symmetrically to the bottom dead center of the piston movement close to the crankshaft.
  • the work phase following the ignition at top dead center is ended by opening the exhaust valve and starting the exhaust phase.
  • the outlet valve is still open, the inlet valve is opened for flushing the combustion chamber and introducing the fresh charge.
  • the inlet valve closes first after passing through the bottom dead center and then the outlet valve.
  • Fresh charge either charged via an additional charge pump or from the crankcase via overflow channels. In both cases, the fresh charge is introduced into the combustion chamber with overpressure.
  • a sufficiently high degree of filling can, however, only be achieved with conventional two-stroke internal combustion engines by accepting valve overlap times and flushing losses. Because of the open time of the exhaust valve symmetrical to the bottom dead center, the compression phase is shortened in accordance with the working phase, which is particularly undesirable in a diesel internal combustion engine. Details of internal combustion engines that operate according to the two-stroke process are known from German patents 245 592 and 472 564 and British patent 193 838.
  • this object is achieved according to the invention in that the outlet valve is closed again before the end of the piston stroke including the working phase and the inlet valve remains open beyond the outlet end of this piston stroke.
  • the piston sucks in the fresh charge after the exhaust phase with the exhaust valve closed via the opened intake valve.
  • the inlet valve closes in the area of the bottom dead center, with additional charging if necessary also afterwards.
  • the one stroke movement is divided into the working phase, the exhaust hare and the charging phase, the opposite stroke of the Piston essentially completely available for the compression phase.
  • the fresh charge is compressed higher than in conventional two-stroke internal combustion engines, which leads to a smaller ignition delay, particularly in diesel engines.
  • the internal combustion engine can operate on the stratified charger principle. Due to the comparatively long stroke, smaller piston diameters can be used.
  • the inlet valve and the outlet valve can be controlled in such a way that no valve overlaps occur, with the result that flushing losses are avoided.
  • the exhaust gas volume remaining in the combustion chamber when the exhaust valve is closed subsequently mixes with the fresh charge drawn in via the intake valve.
  • the proportion of oxygen is reduced in a predetermined manner, which counteracts the head tilt when the fuel is directly injected.
  • the piston divides the cylinder into two combustion chambers lying next to one another in the stroke direction.
  • Each of the combustion chambers cycles through the combustion cycle explained above in succession, in such a way that during the compression phase of the respective one combustion chamber, the other combustion chamber successively passes through its working phase and its gas exchange phase.
  • the advantage of this arrangement is that the piston accelerated towards the other combustion chamber during the working phase of the one combustion chamber works against the pressure increasing in the other combustion chamber during the compression phase and the kinetic energy of the piston is used.
  • the valves can be designed conventionally, for example as plate valves or the like.
  • the valves can be controlled in the usual way, for example via Camshafts or the like take place.
  • the arrangement of the valves in the combustion chambers is largely arbitrary and can be chosen according to the desired control times of the intake and exhaust valves.
  • the charge flow in the combustion chamber and the mixing ratio of fresh gas to residual exhaust gas can be varied by the position of the inlet valve relative to the outlet valve.
  • the valves are preferably not located on the end face of the cylinder in its cylinder head, but rather on its peripheral wall in an opening covered by the piston during its stroke movement. This ensures that the valves are not subjected to the full combustion pressure during ignition.
  • ring slide valves can also be provided which control slots provided in the peripheral wall of the cylinder.
  • the use of ring slide valves is particularly advantageous if the piston, as will be explained in more detail below, does not work on a crankshaft but a cam mechanism and the input shaft of this cam mechanism rotates. The rotational movement can be used to control the ring slide.
  • Valves opening into the peripheral wall of the cylinder are particularly advantageous in the preferred embodiment with two combustion chambers separated by the piston.
  • the exhaust valves can be arranged symmetrically to an inlet valve common to both combustion chambers, which simplifies the valve construction.
  • cylinders can be used . of a unit are connected to one another, the pistons being coupled to one another via an output gear, for example a crankshaft, and the combustion chamber cycles being phase-shifted to compensate for mass vibrations.
  • the piston can be conventionally connected to a crankshaft via a connecting rod to convert the stroke movement into a rotary movement.
  • the piston divides two combustion chambers in the cylinder, it is movable linearly with one in the direction of displacement of the piston
  • Piston rod firmly connected axially.
  • the piston rod exits in a sealed manner through a cylinder end wall serving as a cylinder head and is connected outside the cylinder to the output gear which converts the linear movement into the rotary movement, for example the connecting rod acting on the crankshaft.
  • a transmission output shaft is coupled to a first gear part, which is rotatably mounted in a housing that is fixed to the internal combustion engine, that is to say connected to the cylinder.
  • a second, linearly displaceable gear part is also rotatably mounted in the housing, coaxially with the first gear part, which is coupled to the piston or its piston rod on the one hand and, on the other hand, rotatably coupled to the first gear part in the direction of the axis of rotation.
  • a cam mechanism is provided, the cam track of which surrounds the axis of rotation of the first gear part is arranged on the housing and has thrust surfaces that rise and fall in the direction of the axis of rotation.
  • a cam follower connected to the second gear part in a rotationally fixed manner with respect to the axis of rotation controls the rotary movement depending on the thrust surfaces.
  • the rotary movement of the second gear part can be used to control inlet and outlet valves designed as rotary valves, in particular annular rotary valves.
  • the rotational movement of the second gear part can be transmitted to the piston and used to generate swirl.
  • Figure la to f are schematic representations of an internal combustion engine according to the invention at different crankshaft angles
  • FIG. 2 shows a control diagram of the internal combustion engine according to FIG. 1;
  • FIG. 3 shows a schematic illustration of another embodiment of an internal combustion engine according to the invention with two combustion chambers separated from one another by the piston;
  • 4a to f show schematic representations of the internal combustion engine according to FIG. 3 for several points in time of a combustion cycle
  • FIG. 5 shows a control diagram of the internal combustion engine according to FIG. 3;
  • FIG. 6 shows a schematic longitudinal section through a preferred embodiment of a cam mechanism which can be used instead of the crankshaft of the internal combustion engine of FIG. 1 and for the internal combustion engine of FIG. 3;
  • Figure 7 shows a cross section through the cam mechanism of Figure 6, seen along a line VII-VII;
  • FIG. 8 shows a schematic development of the thrust surface course of the transmission of FIG. 6;
  • FIG. 9 shows a schematic illustration of a multi-cylinder internal combustion engine constructed using the cylinder of FIG. 3 and the transmission of FIG. 6;
  • Figure 10 is a schematic, perspective view of another embodiment of a cam mechanism similar to the transmission of Figures 6 and
  • Figure 11 is a schematic representation of a further embodiment of the cam mechanism.
  • FIG. 1 schematically shows a cylinder 1 of an internal combustion engine, in which a piston 3 can be displaced linearly.
  • the piston 3 delimits a combustion chamber 5 with the cylinder 1 and is conventionally connected via a connecting rod 7 to a crankshaft 9, which converts the stroke movement of the piston 3 into an output rotary movement.
  • an inlet valve E and an outlet valve A open at a point swept by the piston 3 in the course of the stroke movement.
  • the inlet valve E and the outlet valve A are controlled by conventional valve controls, for example camshafts or the like, so that the internal combustion engine cycles through a working phase, an exhaust phase, a charging phase and a compression phase in succession.
  • FIG. 1 schematically shows a cylinder 1 of an internal combustion engine, in which a piston 3 can be displaced linearly.
  • the piston 3 delimits a combustion chamber 5 with the cylinder 1 and is conventionally connected via a connecting rod 7 to a crankshaft 9, which converts the stroke movement of the piston 3 into an output
  • FIG. 1 a shows the piston in its top dead center position (TDC in FIG. 2), in which the compressed charge is ignited in the combustion chamber 5.
  • TDC in FIG. 2 the piston 3 moves with the valves E and A closed to the bottom dead center (UT in Fig.2).
  • exhaust valve A opens at time A .. (FIG. 2).
  • the exhaust phase shown in FIG. 1 c ends when exhaust valve A closes at time A.
  • the inlet valve E opens at the time E ', which can coincide with the outlet port A.
  • FIG. 1d shows the loading phase in which the piston via the inlet valve fresh air - Sucking fertilizer into the expanding combustion chamber.
  • Fig. 1 e shows the piston in the bottom dead center position at inlet closing E. During the opposite, from Valves E and A are closed and the fresh charge is compressed (Fig. If).
  • the internal combustion engine explained above carries out a complete combustion cycle during two piston strokes.
  • the work phase and the charge exchange phase are run through during one piston stroke; the other piston stroke is essentially completely available for the compression phase.
  • the internal combustion engine is particularly suitable as a diesel engine and allows stratified-charge operation.
  • the fresh charge can be supplied as a mixture, but the fuel can also be injected into a fresh air charge.
  • Valves E and A are preferably designed as poppet valves or rotary slide valves. Valves E and A are preferably arranged at a distance from the cylinder roof, but can also be provided in the cylinder head.
  • FIG. 3 shows a variant of the internal combustion engine with a cylinder 11 which is essentially closed on all sides and in which a piston 13 is arranged displaceably.
  • the piston 13 is connected to a piston rod 15 which is coaxial with the cylinder axis and exits in a sealed manner through an end wall 17 of the cylinder 11.
  • the piston 13 divides the cylinder 11 into two combustion chambers 19, 21 located next to one another in the axial direction.
  • Both combustion chambers 19, 21 are assigned a common inlet valve E, which is arranged approximately in the axial center of the cylinder peripheral wall, shown here in the form of a poppet valve.
  • Exhaust valves A 1 and A 2 are provided in the circumferential wall of the cylinder and are axially opposed to one another and to the center of the cylinder 11.
  • the piston rod 15 can, as indicated by dashed lines in FIG. 3, also extend in a sealed manner through the end wall opposite the end wall 11. In this way, the combustion chambers 19, 21 receive the same maximum volumes.
  • the outlet valves A- j _ and A 2 are Ab ⁇ stood from the end faces of the cylinder 11 is provided so as not directly exposed to the combustion pressure of the initiating charge. Instead of the poppet valves, in particular ring-shaped rotary slide valves enclosing the cylinder circumference can be provided.
  • valves E, A-, and A 2 are controlled so that each of the combustion chambers 19, 21 passes through the combustion cycle explained with reference to FIGS. 1 and 2. However, the combustion cycles are staggered in time. During the compression cycle of one combustion chamber, the other combustion chamber runs through the working phase and the charge exchange phase one after the other.
  • the combustion cycle of the combustion chamber 19 is designated I and the combustion cycle of the combustion chamber 21 is designated II.
  • the phase shift of the two combustion cycles of the working spaces 19, 21 is readily apparent from the control diagram of FIG. 5, the opening times of the valves E, A, and A_ being marked with .. and the closing times being marked with. 4a shows the piston 13 in a dead center position, in which the compressed charge of the combustion chamber 19 ignites and the working phase I of the combustion chamber 19 and the compression phase II of the combustion chamber 21 begin.
  • Working phase I is shown in Fig. 4b.
  • FIG. 4c shows the piston during the exhaust phase I, that is to say at a point in time at which the piston has moved past the exhaust valve A- and the exhaust valve A has opened (A, .. in FIG. 5).
  • the piston rod 15 can be connected to a crankshaft via a connecting rod in order to convert the stroke movement of the piston 13 into a rotary movement.
  • 6 to 8 show details of a transmission 51 which can be used instead of the connecting rod crankshaft transmission.
  • a transmission 51 which can be used instead of the connecting rod crankshaft transmission.
  • a housing 55 to be connected to the cylinder 1 or 11 an output shaft 57 is rotatably mounted, on which a pinion 59 sits in a rotationally fixed manner.
  • the pinion -59 meshes with a gear 61, which is mounted on the ball bearings 63 axially on both sides rotatably about an axis of rotation 65 in the housing 55.
  • Rolling elements 73 of a linear roller bearing guide the rod 67 in a rotationally fixed but axially displaceable manner in the gear 61
  • the rolling elements 73 are arranged eccentrically to the longitudinal plane of symmetry of each polygon surface 69 in order to ensure the transmission of torque.
  • the linear roller bearing can be a roller bearing in the manner of a ball bushing with endless rows of roller bodies or a plain bearing.
  • the rolling elements 73 can also be designed as axially mounted rollers or the like.
  • the rod 67 is non-rotatably connected to a cam follower 75 of a cam gear 77.
  • the cam follower 75 non-positively follows one on the inner jacket of one - 11 -
  • Hollow cylindrical housing part 79 provided as a groove cam 81.
  • the cam track 81 coaxially surrounds the axis of rotation 65 of the gear 61 and thus the rod 67 and the cam follower 75.
  • the cam tracks exist 81 of alternating pairs of successively increasing thrust surface sections 83 and falling thrust surface sections 85 in the circumferential direction. The number of thrust surface section pairs determines the number of reciprocating movements of the curve follower 75 and thus the rod 67 per revolution of the gear 61.
  • the increasing ones Thrust surface sections 83 and the sloping thrust surface sections 85 point towards one another in the direction of the axis of rotation 65, so that both the forward movement and the forward movement of the curve follower 75 are non-positively.
  • the cam track 81 can have a sinusoidal shape, for example. In the illustrated embodiment, two pairs of thrust surface sections are provided. Other pairs are possible.
  • the cam follower 75 has two diametrically opposed follower arms 87 which, at their radially outer ends, carry rollers 89 which can be rotated about the radial axis of rotation and engage in the cam track 81. If necessary, a single follower arm can be provided.
  • FIG. 9 shows a multi-cylinder variant of the internal combustion engine, in which two cylinders 91 corresponding to the cylinders 11 in FIG. 3 are connected to a unit, each with a cam mechanism 93 corresponding to the gear 51 in FIG. 6.
  • the cam mechanisms 93 are provided between the axially parallel cylinders 91 and are coupled to one another via a gear mechanism 95.
  • the cam mechanisms 93 are designed such that the pistons 97 in the two cylinders 91 move in phase opposition to compensate for mass imbalance forces, that is to say they move towards and away from each other.
  • the cylinders 91 can be radially spaced from one another to have; however, they can also run coaxially, in particular if the parts corresponding to the rods 67 engage in one another coaxially to reduce the axial space requirement.
  • FIGS. 6 to 8 shows a variant of the cam mechanism shown in FIGS. 6 to 8, which is particularly suitable for the internal combustion engines explained above. 10 shows only the thrust surface area of the transmission.
  • two identical, self-contained cam tracks 103, 105 are fixedly arranged, which are angularly offset from one another in the circumferential direction.
  • Each of the cam tracks 103, 105 controls one of two curve followers 107, 109, which are fixedly connected to this rod with respect to the axis of rotation of a rod 111 corresponding to the rod 67.
  • the cam tracks 103, 105 intersect and are designed so that the rod executes a reciprocating double stroke with each full revolution. A movement of this type can be used particularly advantageously to control the valves of the internal combustion engine.
  • FIG. 11 shows a further variant of the inclined surface part of a cam mechanism which differs from the cam mechanisms of FIGS. 6 to 8 and 10 essentially in that a cam path 115 corresponding to the cam tracks 81 and 103, 105 does not stationary on the housing 117 of the cam mechanism, but on the outer jacket of a cylinder 119 which is rotatably and longitudinally displaceable in the hollow cylindrical interior of the housing 117.
  • Curve followers 121 corresponding to curve followers 87 and 107, 109 project inwards from the inner casing of housing 117.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Description

Brennkraftmaschine
Die Erfindung betrifft eine Brennkraftmaschine mit wenigstens einem Zylinder und einem mit dem Zylinder einen Brennraum- be¬ grenzenden Hubkolben und mit einer Einlaß- und Auslaßventilan¬ ordnung, deren die Frischgase dem Brennraum zuführendes Ein- laßventil und deren die Abgase aus dem Brennraum abführende's Auslaßventil so gesteuert werden, daß der Brennraum zyklisch aufeinanderfolgend eine Verdichtungsphase, eine Arbeitsphase und eine Ladungswechselphase durchläuft, wobei die Ladungs- wechselphase während desselben Kolbenhubs auf die Arbeits- phase folgend beginnt und hierzu das Auslaßventil und nach¬ folgend das Einlaßventil öffne .
Bei Zweitakt-Brennkraf maschinen erfolgt der Ladungswechsel üblicherweise mehr oder weniger symmetrisch zum kurbelwellen¬ nahen unteren Totpunkt der Kolbenbewegung. Die auf die Zündung im oberen Totpunkt folgende Arbeitsphase wird durch das öffnen des Auslaßventils und den Beginn der Auspuffphase beendet. Das Einlaßventil wird bei noch geöffnetem Ausla߬ ventil zum Spülen des Brennraums und Einführen der Frisch¬ ladung geöffnet. Bei schlitzgesteuerten Zweitakt-Brennkraft- aschinen schließt nach Durchlaufen des unteren Totpunkts zuerst das Einlaßventil und dann das Auslaßventil. Bei herkömmlichen Zweitakt-Brennkraftmaschinen wird die
Frischladung entweder über eine zusätzliche Ladepumpe oder vom Kurbelkasten her über Überströmkanäle geladen. In beiden Fällen wird die Frischladung mit Überdruck in den Brennraum eingeführt. Ein ausreichend hoher Füllgrad läßt sich jedoch bei herkömmlichen Zweitakt-Brennkraftmaschinen lediglich unter Inkaufnahme von Ventilüberschneidungszeiten und Spülverlusten erreichen. Aufgrund der symmetrisch zum unteren Totpunkt lie¬ genden Offenzeit des Auslaßventils wird die Verdichtunσs- phase entsprechend der Arbeitsphase verkürzt, was speziell bei einer Diesel-Brennkraftmaschine unerwünscht ist. Einzel¬ heiten von Brennkraftmaschinen, die nach dem Zweitaktverfahren arbeiten, sind aus den deutschen Patenten 245 592 sowie 472 564 und dem britischen Patent 193 838 bekannt.
Es ist Aufgabe der Erfindung, eine Brennkraftmaschine, insbe¬ sondere eine Diesel-Brennkraftmaschine, anzugeben, welche die Frischladung ahnlich 'einer Viertakt-Brennkraftmaschine von selbst in den Br.ennraum saugt, -jedoch einen vollständigen Verbrennungszyklus ähnlich einer Zweitakt-Brennkraftmaschine im Verlauf von zwei Hüben ausführt.
Ausgehend von der eingangs näher erläuterten Brennkraft¬ maschine wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß das Auslaßventil vor dem Ende des die Arbeitsphase einschließenden Kolbenhubs wieder geschlossen wird und das Einlaßventil über den Auslaßschluß dieses Kolbenhubs hinaus geöffnet bleibt.
Auf diese Weise saugt der Kolben anschließend an die Auspuffphase bei geschlossenem Auslaßventil über das ge¬ öffnete Einlaßventil die Frischladung an. Das Einlaßventil schließt im Bereich des unteren Totpunkts, bei zusätzlicher Aufladung ggf. auch danach. Während die eine Hubbewegung in die Arbeitsphase, die Auspuff hase und die Ladephase aufgeteilt ist, steht der entgegengerichtete Hub des Kolbens im wesentlichen vollständig für die Verdichtungs¬ phase zur Verfügung. Die Frischladung wird höher als bei herkömmlichen Zweitakt-Brennkraftmaschinen komprimiert, was insbesondere bei Dieselmaschinen zu einem kleineren Zündverzug führt. Insbesondere kann die Brennkraftmaschine nach dem Schichtladerprinzip arbeiten. Aufgrund des ver¬ gleichsweise langen Hubs können geringere Kolbendurchmes¬ ser verwendet werde.n. Das Einlaßventil und das Auslaßven¬ til kann so gesteuert werden, daß keine Ventilzeitüber- schneidungen auftreten, womit Spülverluste vermieden wer¬ den. Das beim Schließen des Auslaßventils im Brennraum verbleibende Abgasvolumen vermischt sich nachfolgend mit der über das Einlaßventil angesaugten Frischladung. Hier- durch wird der Sauerstoffanteil in vorbestimmter Weise verringert, womit bei Direkteinspritzung des Kraftstoffs der Kopfneigung entgegengewirkt wird. Ferner erübrigt sich eine gesonderte Abgasrückführung zur Schadstoff¬ emissionsminderung.
In einer bevorzugten Ausführungsform der Brennkraftma¬ schine unterteilt der Kolben den Zylinder in zwei in Hub¬ richtung nebeneinanderliegende Brennräume. Jeder der Brennräume durchläuft zyklisch aufeinanderfolgend den vorstehend erläuterten Verbrennungszyklus und zwar so, daß während der Verdichtungsphase des jeweils einen Brennraums der jeweils andere Brennraum nacheinander seine Arbeitsphase und seine Ladungswechselphase durch¬ läuft. Von Vorteil ist bei dieser Anordnungsweise, daß der während der Arbeitsphase des einen Brennraums zum anderen Brennraum hin beschleunigte Kolben gegen den in dem anderen Brennraum während der Verdichtungsphase wachsenden Druck arbeitet und die kinetische Energie des Kolbens ausgenutzt wird.
Die Ventile können herkömmlich, beispielsweise als Teller¬ ventile oder dergleichen ausgebildet sein. Die Steuerung der Ventile kann in üblicher Weise, beispielsweise über Nockenwellen oder dergleichen erfolgen. Die Anordnung der Ventile in den Brennräumen ist weitgehend beliebig und kann den gewünschten Steuerzeiten des Einlaß- bzw. Aus¬ laßventils entsprechend gewählt sein. Insbesondere kann durch die relative Lage des Einlaßventils zum Auslaßven¬ til die LadungsStrömung in dem Brennraum und das Mischungs¬ verhältnis Frischgas zu Rest-Abgas variiert werden. Vor¬ zugsweise sitzen die Ventile nicht an der Stirnseite des Zylinders in dessen Zylinderkopf, sondern an dessen Umfangswand in einer vom Kolben während seiner Hubbewegung überdeckten Öffnung. Hierdurch wird erreicht, daß die Ventile nicht vom vollen Verbrennungsdruck während der Zündung bean¬ sprucht werden. Eventuelle^Kompressionsminderungen durch Verbindungskanäle und dergleichen können aufgrund des verlängerten Verdichtungshubs vernachlässigt werden. Alternativ zu Tellerventilen oder dergleichen können auch Ringschieberventile vorgesehen sein, die in der Um¬ fangswand des Zylinders vorgesehene Schlitze steuern. Die Verwendung von Ringschieberventilen ist insbesondere von Vorteil, wenn der Kolben, wie nachfolgend noch näher erläutert wird, nicht auf eine Kurbelwelle, sondern ein Kurvengetriebe arbeitet und die Eingangswelle dieses Kurvengetriebes rotiert. Die Rotationsbewegung kann zur Steuerung der Ringschieber ausgenutzt werden.
In der Umfangswand des Zylinders mündende Ventile sind insbesondere in der bevorzugten Ausführungsform mit zwei durch den Kolben voneinander getrennten Brennräumen von Vorteil. Die Auslaßventile können hierbei symmetrisch zu einem für beide Brennräume gemeinsamen Einlaßventil angeordnet werden, was die Ventilkonstruktion vereinfacht.
Entsprechend herkömmlichen Brennkraftmaschinen können mehrere Zylinder zu. einer Einheit miteinander verbunden werden, wobei die Kolben über ein Abtriebsgetriebe, bei¬ spielsweise eine Kurbelwelle, miteinander gekuppelt sind und die Brennraumzyklen zum Massenschwingungsaus¬ gleich zeitlich phasenverschoben sind. Der Kolben kann zur Umsetzung der Hubbewegung in eine Drehbewegung herkömmlich über eine Pleuelstange mit einer Kurbelwelle verbunden sein. Soweit der Kolben in dem Zylinder zwei Brennräume abteilt, ist er mit einer in Verschieberichtung des Kolbens linear beweglichen
'Kolbenstange axial fest verbunden. Die Kolbenstange tritt abgedichtet durch eine als Zylinderkopf dienende Zylinder¬ stirnwand aus und ist außerhalb des Zylinders mit dem die Linearbewegung in die Drehbewegung umsetzenden Ab- triebsgetriebe, beispielsweise der auf die Kurbelwelle wirkenden Pleuelstange verbunden.
In einer bevorzugten Ausfuhrugnsform des Abtriebsgetriebes ist dessen Getriebeabtriebswelle mit einem ersten Ge- triebeteil gekuppelt, welches in einem brennkraf maschi- nenfesten, das heißt mit dem Zylinder verbundenen Gehäuse, drehbar gelagert ist. In dem Gehäuse ist ferner gleich- achsig zu dem ersten Getriebeteil drehbar ein zweites, linear .verschiebbares Getriebeteil -gelagert, welches einerseits mit dem Kolben oder dessen Kolbenstange und andererseits drehfest aber in Richtung der Drehachse des ersten Getriebeteils verschiebbar mit diesem gekuppelt ist. Zur Umsetzung der linearen Verschiebung in eine Drehbewegung ist ein Kurvengetriebe vorgesehen, dessen die Drehachse des ersten Getriebeteils umschließende Kurvenbahn am Gehäuse angeordnet ist und in Richtung der Drehachse ansteigende und abfallende Schubflächen hat. Ein bezüglich der Drehachse des zweiten Getriebeteils drehfest mit diesem verbundener Kurvenfolger steuert abhängig von den Schubflächen die Drehbewegung. Die Drehbewegung des zweiten Getriebeteils läßt sich zur Steuerung von als Drehschieber, insbesondere ringförmige Drehschieber ausgebildeten Einlaß- und Auslaßventilen ausnutzen. Darüber hinaus kann die Drehbewegung des zweiten Getriebeteils auf den Kolben übertragen und zur Drallerzeugung ausgenutzt werden. Im folgenden soll die Erfindung anhand von Zeichnungen näher erläutert werden. Es zeigt:
Figur la bis f schematische Darstellungen einer erfin- dungsgemäßen Brennkraftmaschine bei verschiedenen Kurbel¬ wellenwinkeln;
Figur 2 ein Steuerdiagramm der Brennkraftmaschine .nach Figur 1;
Figur 3 eine schematische Darstellung einer anderen Aus¬ führungsform einer erfindungsgemäßen Brennkraftmaschine mit zwei durch den Kolben voneinander getrennten Brenn¬ räumen;
Figur 4a bis f schematische Darstellungen der Brennkraft¬ maschine nach Figur 3 für mehrere Zeitpunkte eines Ver¬ brennungszyklus;
Figur 5 ein Steuerdiagramm der Brennkraftmaschine nach Figur 3;
Figur 6 einen schematischen Längsschnitt durch eine be¬ vorzugte Ausführungsform eines anstelle der Kurbelwelle der Brennkraftmaschine der Figur 1 sowie für die Brenn¬ kraftmaschine der Figur 3 verwendbaren Kurvengetriebes;
Figur 7 einen Querschnitt durch das Kurvengetriebe der Figur 6, gesehen entlang einer Linie VII-VII;
Figur 8 eine schematische Abwicklung des Schubflächenver¬ laufs des Getriebes der Figur 6 ;
Figur 9 eine schematische Darstellung einer unter Verwen- düng des Zylinders der Figur 3 und des Getriebes der Figur 6 aufgebauten mehrzylindrigen Brennkraftmaschine; Figur 10 eine schematische, perspektivische Darstellung einer anderen Ausführungsform eines Kurvengetriebes ähnlich dem Getriebe der Figur 6 und
Figur 11 eine schematische Darstellung einer weiteren Ausführungsform des Kurvengetriebes.
Figur 1 zeigt schematisch einen Zylinder 1 einer Brenn¬ kraftmaschine, in welchem ein Kolben 3 linear verschieb- bar ist. Der Kolben 3 begrenzt mit dem Zylinder 1 einen Brennraum 5 und ist über eine Pleuelstange 7 herkömm¬ lich mit einer Kurbelwelle 9 verbunden, die die Hubbewe¬ gung des Kolbens 3 in eine Abtriebsdrehbewegung über¬ führt. In der Umfangswand des Zylinders 1 münden an einer von dem Kolben 3 im Verlauf der Hubbewegung uberstrichenen Stelle ein Einlaßventil E und ein Auslaßventil A. Das Einlaßventil E und das Auslaßventil A werden durch her¬ kömmliche -Ventilsteuerungen, beispielsweise Nockenwellen oder dergleichen so gesteuert, daß die Brennkraftma- schine aufeinanderfolgend zyklisch eine Arbeitsphase, eine Auspuffphase, eine Ladephase und eine Verdichtungs¬ phase durchläuft. Fig. la zeigt den Kolben in seiner oberen Totpunktstellung (OT in Fig. 2), in der die verdich¬ tete Ladung in dem Brennraum 5 gezündet wird. In Fig. lb bewegt sich der Kolben 3 bei geschlossenen Ventilen E und A auf den unteren Totpunkt (UT in Fig.2) zu. Während des auf den unteren Totpunkt UT zu gerichteten Hubs öffnet zum Zeit¬ punkt A.. (Fig. 2) das Auslaßventil A. Die in Fig. 1c darge¬ stellte Auspuffphase endet mit dem Schließen des Auslaß- ventils A zum Zeitpunkt A . Während sich der Kolben 3 noch weiter zum unteren Totpunkt UT hin bewegt, öffnet zum Zeitpunkt E», der mit dem Auslaßschluß A zusammenfal¬ len kann, das Einlaßventil E. Fig. ld zeigt die Ladephase, in der der Kolben über das Einlaßventil die Frischla- düng in den sich weiter vergrößernden Brennraum einsaugt. Fig. 1 e zeigt den Kolben in der unteren Totpunktstellung bei Einlaßschluß E . Während der entgegengesetzten, vom unteren zum oberen Totpunkt gerichteten Hubbewegung sind die Ventile E und A geschlossen und die Frischladung wird verdichtet (Fig. If) .
Die vorstehend erläuterte Brennkraftmaschine führt einen vollständigen Verbrennungszyklus während zwei Kolben¬ hüben aus. Während des einen Kolbenhubs wird die Arbeits¬ phase und die Ladungswechselphase durchlaufen; der andere Kolbenhub steht im wesentlichen vollständig für die Ver- dichtungsphase zur Verfügung. Aufgrund des langen Ver¬ dichtungshubs eignet sich die Brennkraftmaschine insbe¬ sondere als Dieselmotor und erlaubt eine Schichtladerbe- triebsweise. Die Frischladung kann als Gemisch zugeführt werden, der Brennstoff kann jedoch auch in eine Frisch- luftladung eingespritzt werden. Die Ventile E und A sind bevorzugt als Tellerventile oder Drehschieberventile aus¬ gebildet. Die Ventile E und A sind bevorzugt im Ab¬ stand vom Zylinderdach angeordnet, können jedoch auch im Zylinde-rkopf vorgesehen sein.
Fig. 3 zeigt eine Variante der Brennkraftmaschine mit einem im wesentlichen allseitig geschlossenen Zylinder 11, in welchem ein Kolben 13 verschiebbar angeordnet ist. Der Kolben 13 ist mit einer zur Zylinderachse koaxialen Kolbenstange 15 verbunden, die durch eine Stirnwand 17 des Zylinders 11 abgedichtet austritt. Der Kolben 13 unterteilt den Zylinder 11 in zwei in axialer Richtung nebeneinanderliegende Brennräume 19, 21. Beiden Brenn¬ räumen 19, 21 ist ein gemeinsames, etwa in der axialen Mitte der Zylinderumfangswand angeordnetes Einlaßventil E, hier in Form eines Tellerventils dargestellt, zugeordnet. Axial gegeneinander und zur Mitte des Zylinders 11 ver¬ setzt sind in der Umfangswand des Zylinders als Teller¬ ventile ausgebildete Auslaßventile A-^ und A2 vorgesehen. Bei 23, 25 sind Zündkerzen für jeden der Brennräume 19, 21 dargestellt; diese entfallen bei selbstzündenden Brennkraftmaschinen. Die Kolbenstange 15 kann sich wie in Fig. 3 gestrichelt angedeutet, auch durch die der Stirnwand 11 gegenüber¬ liegende Stirnwand abgedichtet hindurcherstrecken. Die Brennräume 19, 21 erhalten auf diese Weise gleiche maxi- malen Volumina. Die Auslaßventile A-j_ und A2 sind im Ab¬ stand von den Stirnflächen des Zylinders 11 vorgesehen, um sie nicht direkt dem Verbrennungsdruck der zündenden ladung auszusetzen. Anstelle der Tellerventile können wiederum insbesondere ringförmige, den Zylinderumfang umschließende Drehschieberventile vorgesehen sein.
Die Ventile E, A-, und A2 werden so gesteuert, daß jeder der Brennräume 19, 21 den anhand der Fig. 1 und 2 erläu¬ terten Verbrennungszyklus durchläuft. Die Verbrennungs- zyklen sind jedoch gegeneinander zeitlich versetzt. Wäh¬ rend des Verdichtungszyklus des einen Brennraums durch¬ läuft der andere Brennraum nacheinander die Arbeitsphase und die Ladungswechselphase.
In den Fig. 4 und 5 ist der Verbrennungszyklus des Brenn¬ raums 19 mit I und der Verbrennungszyklus des Brennraums 21 mit II bezeichnet. Die Phasenverschiebung der beiden Verbrennungszyklen der Arbeitsräume 19, 21 ist aus dem Steuerdiagramm der Fig. 5 ohne weiteres ersichtlich, wobei die Öffnungszeitpunkte der Ventile E, A, und A_ mit .. und die Schließzeitpunkte mit gekennzeichnet sind. Fig. 4a zeigt den Kolben 13 in einer Totpunktstellung, in welcher die verdichtete Ladung des Brennraums 19 zündet und die Arbeitsphase I des Brennraums 19 sowie die Verdichtungsphase II des Brennraums 21 beginnt. Die Arbeitsphase I ist in Fig. 4b dargestellt. Fig. 4c zeigt den Kolben während der Auspuffphase I, das heißt zu einem Zeitpunkt, zu dem sich der Kolben am Auslaßventil A-, vorbeibewegt und das Auslaßventil A, geöffnet hat (A, .. in Fig. 5) . In Fig. 4d wurde das Auslaßventil A, wieder ge¬ schlossen (Als in Fig. 5) und der sich weiterhin auf seine andere Totpunktlage zu bewegende Kolben saugt über das gleichzeitig mit dem Schließen des Auslaßventils A, öff¬ nende Einlaßventil E Frischladung in den Brennraum 19. Der Brennraum 21 durchläuft nach wie vor seine Verdich¬ tungsphase II. In Fig. 4e hat der Kolben seine andere Totpunktlage erreicht, in der die im Brennraum 21 ver¬ dichtete Ladung zündet. Gleichzeitig schließt das Ein¬ laßventil (E in Fig. 5) . Fig. 4f zeigt den Kolben in entgegengesetzter Bewegungsrichtung während der Arbeits¬ phase II des Brennraums 21 und der Verdichtungsphase I des Brennraums 19.
Die Kolbenstange 15 kann, ähnlich der Brennkraf maschine der Fig. 1 über eine Pleuelstange mit einer Kurbelwelle verbunden sein, um die Hubbewegung des Kolbens 13 in eine Drehbewegung umzusetzen. Die Fig. 6 bis 8 zeigen Einzel¬ heiten eines .Getriebes 51, welches anstelle des Pleuel¬ stangen-Kurbelwellen-Getriebes verwendet werden kann. In einem mit dem Zylinder 1 bzw. 11 zu verbindenden Gehäuse 55 ist drehbar eine Abtriebswelle 57 gelagert, auf der drehfest ein Ritzel 59 sitzt. Das Ritzel -59 kämmt mit einem Zahnrad 61, welches axial beiderseits an Kugel¬ lagern 63 um eine Drehachse 65 drehbar in dem Gehäuse 55 gelagert ist. Eine langgestreckte Stange 67 mit dreieck- fδrmigem Querschnitt und ebenflächigen Polygonflächen 69 durchsetzt, wie am besten Fig. 7 zeigt, eine zentrische Öffnung 71 des Zahnrads 61. Wälzkörper 73 eines Linear- wälzlagers führen die Stange 67 drehfest, aber axial verschiebbar in dem Zahnrad 61. Die Wälzkörper 73 sind hierzu exzentrisch zur Längssymmetrieebene jeder Polygon- fläche 69 angeordnet, um die Drehmomentübertragung sicher¬ zustellen. Bei dem Linearwälzlager kann es sich um ein Wälzlager nach Art einer Kugelbüchse mit endlosen Wälz¬ körperreihen oder um ein Gleitlager handeln. Die Wälzkörper 73 können aber auch als achsgelagerte Rollen oder dergleichen ausgebildet sein. Die Stange 67 ist mit einem Kurvenfolger 75 eines Kurvengetriebes 77 drehfest verbunden. Der Kurvenfolger 75 verfolgt kraftschlüssig eine am Innenmantel eines - 11 -
hohlzylindrischen Gehäuseteils 79 als Nut vorgesehene Kurvenba n 81. Die Kurvenbahn 81 umschließt gleichachsig die Drehachse 65 des Zahnrads 61 und damit die Stange 67 sowie den Kurvenfolger 75. Wie am besten die Abwicklung des Innenmantels des Gehäuseteils 79 in Fig. 8 zeigt, bestehen die Kurvenbahnen 81 aus in Umfangsrichtung ab¬ wechselnd paarweise aufeinanderfolgende, ansteigenden Schubflächenabschnitten 83 und abfallenden Schubflächen- abschnitten 85. Die Anzahl der Schubflachenabschnittpaare bestimmt die Zahl der Hin- und Herbewegungen des Kurven- folgers 75 und damit der Stange 67 pro Umdrehung des Zahnrads 61. Die ansteigenden Schubflächenabschnitte 83 und die abfallenden Schubflächenabschnitte 85 weisen in Richtung der Drehachse 65 gegeneinander, so daß sowohl die Hinbewegung als auch die Herbewegung des Kurvenfolgers 75 kraftschlüssig erfolgt. Die Kurvenbahn 81 kann bei¬ spielsweise Sinoidenform haben. Im dargestellten Ausfüh- -rungsbeispiel sind- zwei Schubflächenabschnittspaare vor¬ gesehen. Andere Paarzahlen sind möglich. Desgleichen weist der Kurvenfolger 75, wie Fig. 6 zeigt, zwei dia¬ metral gegenüberliegende Folgerarme 87 auf, die an ihren radial äußeren Enden um radiale Drehachse drehbare, in die Kurvenbahn -81 eingreifende Rollen 89 tragen. Gege¬ benenfalls kann ein einziger Folgerarm vorgesehen sein.
Fig. 9 zeigt eine mehrzylindrische Variante der Brenn¬ kraftmaschine, bei welcher zwei den Zylindern 11 der Fig. 3 entsprechende Zylinder 91 mit jeweils einem dem Getriebe 51 der Fig. 6 entsprechenden Kurvengetriebe 93 zu einer Einheit verbunden sind. Die Kurvengetriebe 93 sind zwischen den achsparallel angeordneten Zylindern 91 vorgesehen und über ein Zahnradgetriebe 95 miteinander gekuppelt. Die Kurvengetriebe 93 sind so ausgelegt, daß sich die Kolben 97 in den beiden Zylindern 91 zum Aus- gleich von Massenunwuchtkräften gegenphasig, das heißt jeweils aufeinander zu und jeweils voneinander weg bewe¬ gen. Die Zylinder 91 können radialen Abstand voneinander haben; sie können aber auch gleichachsig verlaufen, ins¬ besondere dann, wenn die den Stangen 67 entsprechenden Teile zur Verringerung des axialen Platzbedarfs koaxial ineinander greifen.
Fig. 10 zeigt eine Variante des in den Fig. 6 bis 8 dar¬ gestellten Kurvengetriebes, die sich insbesondere für die vorstehend erläuterten Brennkraftmaschinen eignet. Fig. 10 zeigt hierbei lediglich den Schubflächenbereich des Ge- triebes. Am Innenmantel eines Gehäuses 101 des Getriebes sind zwei gleiche, in Umfangsrichtung jedoch um 180° gegeneinander winkelversetzte, in sich geschlossene Kur¬ venbahnen 103, 105 feststehend angeordnet. Jede der Kur¬ venbahnen 103, 105 steuert einen von zwei Kurvenfolgern 107, 109, die bezogen auf die Drehachse einer der Stange 67 entsprechenden Stange 111 fest mit dieser Stange ver¬ bunden sind. Die Kurvenbahnen 103, 105 kreuzen sich und sind so gestaltet, daß die Stange mit jeder vollen- Um¬ drehung einen hin- und hergehenden Doppelhub ausführt. Eine Bewegung dieser Art läßt sich besonders vorteilhaft zur Steuerung der Ventile der Brennkraftmaschine ausnutzen.
Fig. 11 zeigt eine weitere Variante des Schrägflächenteils eines Kurvengetriebes, welches sich von den Kurvengetrie- ben der Fig. 6 bis 8 und 10 im wesentlichen dadurch unter¬ scheidet, daß eine die Kurvenbahnen 81 bzw. 103, 105 ent¬ sprechende Kurvenbahn 115 nicht feststehend am Gehäuse 117 des Kurvengetriebes, sondern am Außenmantel eines im hohl- zylindrischen Innenraum des Gehäuses 117 drehbar und längs verschiebbar angeordneten Zylinders 119 vorgesehen ist. Den Kurvenfolgern 87 bzw. 107, 109 entsprechende Kurven¬ folger 121 stehen vom Innenmantel des Gehäuses 117 nach innen ab.

Claims

BrennkraftmaschinePatentansprüche
Brennkraftmaschine, insbesondere Diesel-Brennkraft¬ maschine, mit wenigstens einem Zylinder (1;11) und einem mit dem Zylinder (1;11) einen Brennraum (5;19,21) begren¬ zenden Hubkolben (3;13) und mit einer Einlaß- und Auslaß- ventilanordnung, deren die Frischgase dem Brennraum (5; 19,21) zuführendes Einlaßventil (E) und deren die Abgase aus dem Brennraum (5;19,21) abführendes Auslaßventil (A; A.. ,A ) so gesteuert werden, daß der Brennraum (5;19,21) zyklisch aufeinanderfolgend eine Verdichtungsphase, eine Arbeitsphase und eine Ladungswechselphase durchläuft, wobei die Ladungswechselphase während desselben Kolben¬ hubs auf die Arbeitsphase folgend beginnt und hierzu das Auslaßventil (A;A.. ,A_) und nachfolgend das Einlaßventil (E) öffnet, d a d u r c h g e k e n n z e i c h n e t , daß das Auslaßventil (A;A ,A ) vor dem Ende des die Arbeits¬ phase einschließenden Kolbenhubs wieder geschlossen wird und das Einlaßventil (E) über dem Auslaßschluß dieses Kolbenhubs hinaus geöffnet bleibt.
2. Brennkraftmaschine nach Anspruch 1, dadurch gekenn¬ zeichnet, daß der Kolben (13) den Zylinder (11) in zwei in Hubrichtung nebeneinander liegende Brennräume (19, 21) unterteilt, von denen jeder zyklisch aufeinanderfol- gend eine Verdichtungsphase, eine Arbeitsphase und eine Ladungswechselphase durchläuft und daß die Einlaß- und Auslaßventilanordnungen (E, A, , A_) der beiden Brennräume (19, 21) so gesteuert werden, daß während der Verdichtungsphase des jeweils einen Brennraums (19, 21) das Auslaßventil (A,, A_) 'und nachfolgend das Einlaßventil (E) des jeweils anderen Brennraums (19, 21) geöffnet und das Auslaßventil (A, , A2) dieses an¬ deren Brennraums (19, 21) vor dem Ende des die Arbeits¬ phase dieses anderen Brennraums (19, 21) einschließen- den Kolbenhubs wieder geschlossen wird, wobei das Ein¬ laßventil (E) dieses anderen Brennraums (19, 21) über den Auslaßschluß dieses Kolbenhubs hinaus geöffnet' bleibt. - - .
3. Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Einlaßventil (E) und das Aus¬ laßventil (A; A, , A-) jedes Brennraums über eine vom Kolben (3; 13) während seiner Hubbewegung überdeckten Öffnung der Zylinderumfangswand mit- dem Brennraum (5; 19, 21) verbunden ist.
4. Brennkraftmaschine nach Anspruch 2 und 3, dadurch ge¬ kennzeichnet, daß das Einlaßventil (E) beiden Brenn¬ räumen (19, 21) gemeinsam zugeordnet ist und daß die Auslaßventile (A. , A„) bezogen auf die Zylinderachse symmetrisch zur Zylindermitte angeordnet sind.
5. Brennkraftmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Einlaßventil (E) im wesentlichen beim oder nach dem Schließen des Ausla߬ ventils (A; A-, A_) öffnet.
6. Brennkraftmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mehrere Zylinder (91) zu einer Einheit miteinander verbunden sind, wobei die Kolben (97) über ein Abtriebsgetriebe (93, 95) mit- einander gekuppelt sind und die Brennraumzyklen zum Massenschwingungsausgleich zeitlich phasenverschoben sind.
7. Brennkraftmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Zylinder (1; 11) fest mit einem Gehäuse (55) eines Getriebes (51) verbunden ist, daß in dem Gehäuse (55) um eine zur Kolbenver¬ schieberichtung parallele Drehachse (65) drehbar ein erstes Getriebeteil (61) und sowohl linear verschieb- bar als auch gleichachsig zum ersten Getriebeteil (61) drehbar ein zweites Getriebeteil (67) gelagert ist, daß das zweite Getriebeteil (67) mit einer mit dem Kolben (3; 13) oder einer mit den Kolben verbundenen Kolbenstange (15) und drehfest aber in Richtung der Drehachse (65) verschiebbar mit dem ersten Getriebe¬ teil (61) gekuppelt ist, daß mit dem zweiten Getriebeteil (67) ein Kurvengetriebe (77) gekuppelt ist, dessen die Drehachse (65) des ersten Getriebeteils (61) umschließende Kurvenb.ahn (81) fest an dem Gehäuse (55) oder dan zweiten Getriebeteil (67) angeordnet ist und in Richtung der Drehachse (65) ansteigende bzw. abfallende Schubflä¬ chen (83, 85) hat und dessen Kurvenfolger (75) bezüglich der Dreh¬ achse (65) des zweiten Getriebeteils (67) drehfest mit diesem bzw. dem Gehäuse (55) verbunden ist, derart, daß das zweite Getriebeteil (67) bei mit gleichbleibender Drehrichtung rotierendem ersten Getriebeteil (61) eine hin- und her¬ gehende Verschiebebewegung ausführt.
8. Brennkraftmaschine nach Anspruch 7, dadurch gekenn¬ zeichnet, daß das erste Getriebeteil als in dem Ge- häuse drehbar aber axial fest gelagertes Zahnrad (61) ausgebildet ist, daß das zweite Getriebeteil eine in Verschieberichtung langgestreckte Stange (67) mit Polygonquerschnitt umfaßt, die eine dem Polygonquer¬ schnitt formschlüssig angepaßte Öffnung des Zahnrads (61) verschiebbar durchsetzt.
05 9. Brennkraf maschine nach Anspruch 8, dadurch gekenn¬ zeichnet, daß in der Öffnung des Zahnrads (61) ein die Stange (67) drehfest, aber axial verschiebbar führen¬ des Linearwälzl-ager (73) angeordnet ist.
10 10. Brennkraftmaschine nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Kurvenbahn (81) um die Drehachse herum sich erstreckende, in Verschiebe¬ richtung ansteigende Schubflächenabschnitte (83) und um die Drehachse (65) herum sich erstreckende, in
15 Verschieberichtung abfallende Schubflächenabschnitte (85) aufweist, daß die ansteigenden und die abfallen¬ den Schubflächenabschnitte (83-, 85) in wenigstens zwei Paaren paarweise vorgesehen sind und sich in Umfangs- •richtung abwechseln und daß die ansteigenden und die
20 abfallenden Schubflächenabschnitte (83, 85) in ent¬ gegengesetzte Richtungen weisen.
11. Brennkraftmaschine nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Kurvengetriebe mehrere
25 sich kreuzende Kurvenbahnen (103, 105) aufweist, wel¬ che jeweils wenigstens einen von mehreren Kurvenfolgern (107, 109) steuern.
12. Brennkraftmaschine nach Anspruch 11, dadurch gekenn- 30 zeichnet, daß die Kurvenbahnen (103, 105) für ein Ver¬ hältnis Umdrehungszahl/Hub von 1/2 bemessen sind.
13. Brennkraftmasohine nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß mehrere Zylinder (91) zu
35 einer Baueinheit verbunden sind und für jeden Zylinder
(91) ein gesondertes Kurvengetriebe (93) vorgesehen ist, wobei die Kurvengetriebe (93) ausgangsseitig mit einer gemeinsamen Abtriebswelle (95) gekuppelt sind.
EP86901847A 1985-03-05 1986-03-05 Brennkraftmaschine Expired EP0214255B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86901847T ATE42603T1 (de) 1985-03-05 1986-03-05 Brennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853507766 DE3507766A1 (de) 1985-03-05 1985-03-05 Brennkraftmaschine
DE3507766 1985-03-05

Publications (2)

Publication Number Publication Date
EP0214255A1 true EP0214255A1 (de) 1987-03-18
EP0214255B1 EP0214255B1 (de) 1989-04-26

Family

ID=6264264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901847A Expired EP0214255B1 (de) 1985-03-05 1986-03-05 Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP0214255B1 (de)
DE (2) DE3507766A1 (de)
WO (1) WO1986005232A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3931702A1 (de) * 1989-09-22 1991-04-04 Rabbe Dr Med Nordstroem Brennkraftmaschine
DE19516031C1 (de) * 1995-05-04 1996-10-24 Gerd Dipl Ing Grass Hubkolbenbrennkraftmaschine
DE102005039609B4 (de) * 2004-08-25 2009-10-01 Iskakova, Kamila Motor mit einem oder mehreren Hubkolben
RU2528485C1 (ru) * 2013-07-16 2014-09-20 Григорий Никитович Авраменко Бескривошипный одноцилиндровый двигатель внутреннего сгорания

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE169966C (de) *
DE245592C (de) *
FR389030A (fr) * 1908-04-08 1908-08-28 Alfred Liebergeld Moteur à combustion interne et spécialement destiné aux véhicules automobiles
GB191502249A (en) * 1915-02-11 1915-11-18 William Robert Fasey Improvements in and connected with Internal Combustion Engines.
GB193838A (en) * 1922-02-22 1923-12-20 Roger Lemasson Improvements in two-stroke cycle engines
US1613136A (en) * 1925-06-11 1927-01-04 Schuyler Schieffelin Internal-combustion motor.
FR635902A (fr) * 1927-06-13 1928-03-28 Moteur semi-circulaire
US2532106A (en) * 1946-12-06 1950-11-28 Korsgren Theodore Yngve Multiple opposed piston engine
US2905098A (en) * 1956-05-30 1959-09-22 Monelli Lorenzo High-efficiency pump, more particularly for remote hydraulic power transmissions
CH598473A5 (de) * 1976-01-05 1978-04-28 Fritz Biberhofer
DE2936043C2 (de) * 1979-09-06 1982-12-16 Toyota Jidosha Kogyo K.K., Toyota, Aichi Zweitakt-Benzinmotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8605232A1 *

Also Published As

Publication number Publication date
DE3507766A1 (de) 1986-09-11
WO1986005232A1 (en) 1986-09-12
EP0214255B1 (de) 1989-04-26
DE3663058D1 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
DE69520956T2 (de) Axialkolbenmaschine
DE3224482C2 (de) Kolbenmaschine
DE68908047T2 (de) Maschine ohne Kurbel.
DE2500878C2 (de) Hubkolben-Brennkraftmaschine
DE3117707A1 (de) Verbrennungskraftmaschine
EP0187165A1 (de) Rotationskolben-Brennkraftmaschine
DE69406651T2 (de) Verbesserte viertaktbrennkraftmaschine mit variablem verdichtungsverhältnis
DE3736724A1 (de) Brennkraftmaschine
EP0021170A1 (de) Zweitaktbrennkraftmaschine
DE3331636C2 (de) Aggregat bestehend aus einer Hubkolbenmaschine und einem Getriebe
EP0214255B1 (de) Brennkraftmaschine
WO1993001395A1 (de) Schwenkkolbenmaschine
DE3347859A1 (de) Zweitakt-kolben-brennkraftmaschine
EP0637677A1 (de) Viertakt-Verbrennungsmotor
DE3920620A1 (de) Rotationsmaschine
DE19731974A1 (de) Hubkolbenbrennkraftmaschine
DE3419582A1 (de) Taumelscheiben-motor
DE2652228A1 (de) Rotationsmotor
DE4105960C2 (de) Radialkolbenmotor
DE3831878C2 (de) Brennkraftmaschine mit Kurvenmechanik
DE3041405A1 (en) Cam driven engine
WO1986005545A1 (en) Rotary piston machine with periodically variable rotation speeds
DE2439319A1 (de) Verbrennungskraftmaschine
DE1929403A1 (de) Kolbenkraftmaschine,vorzugsweise Pumpe oder Verbrennungsmotor
EP1485583A1 (de) Verbrennungsmotor mit rotationsventilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870223

17Q First examination report despatched

Effective date: 19871002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 42603

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3663058

Country of ref document: DE

Date of ref document: 19890601

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86901847.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010209

Year of fee payment: 16

Ref country code: GB

Payment date: 20010209

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010212

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010215

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010309

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010330

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020305

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020305

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

BERE Be: lapsed

Owner name: *NORDSTROM RABBE DR.MED

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

EUG Se: european patent has lapsed

Ref document number: 86901847.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050305