EP0212512A1 - Verfahren zur Herstellung von Carbamidsäureestern - Google Patents

Verfahren zur Herstellung von Carbamidsäureestern Download PDF

Info

Publication number
EP0212512A1
EP0212512A1 EP86111022A EP86111022A EP0212512A1 EP 0212512 A1 EP0212512 A1 EP 0212512A1 EP 86111022 A EP86111022 A EP 86111022A EP 86111022 A EP86111022 A EP 86111022A EP 0212512 A1 EP0212512 A1 EP 0212512A1
Authority
EP
European Patent Office
Prior art keywords
acid esters
electrolysis
carbamic
alkyl
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86111022A
Other languages
English (en)
French (fr)
Other versions
EP0212512B1 (de
Inventor
Dieter Dr. Degner
Heinz Hannebaum
Michael Dr. Steiniger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0212512A1 publication Critical patent/EP0212512A1/de
Application granted granted Critical
Publication of EP0212512B1 publication Critical patent/EP0212512B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the present invention relates to a new process for the preparation of carbamic acid esters.
  • Carbamic acid esters as is generally known, have been prepared from phosgene by reaction with alcohols to form chloroformic acid esters and subsequent aminolysis. Dealing with the highly toxic and corrosive preliminary and intermediate products requires considerable technical effort. HCl or halogen-containing waste salts are also obtained in these processes, the separation of which is often technically very complex (cf. Ullmann, Enzyklopadie der techn. Chemie, Vol. 9, p. 118 ff.).
  • the invention was based on the object of finding a process for the preparation of carbamic esters which is technically simple and economical and is distinguished by particular environmental friendliness.
  • carbamic acid esters of the general formula (I) R1NHCOOR2 (I), in which R1 is hydrogen or an alkyl, cycloalkyl or alkaryl radical and R2 is a low molecular weight alkyl radical, can be prepared particularly advantageously if formamides of the general formula (II) R1NHCHO (II) electrochemically oxidized in the presence of alcohols of the formula R2OH and in the presence of an ionogenic halide.
  • Suitable cycloalkyl radicals are those having 3 to 8, in particular 5 and 6, carbon atoms.
  • R1 can be alkylaryl radicals having 7 to 12, in particular 7 to 8, carbon atoms, e.g. represent benzyl or phenylethyl radicals.
  • radicals mentioned can still carry substituents which are inert under the reaction conditions, e.g. C1-C4 alkyl or alkoxy groups, halogen or nitrile groups.
  • the following formamides can be implemented: methylformamide, ethylformamide, n- and iso-propylformamide, n-butylformamide, n-octylformamide, cyclohexyl- or cyclopentylformamide, benzylformamide and the unsubstituted formamide.
  • R2 represents a low molecular weight alkyl radical, in particular an alkyl radical having 1 to 5 carbon atoms, preferably a methyl or ethyl radical.
  • R2 represents a low molecular weight alkyl radical, in particular an alkyl radical having 1 to 5 carbon atoms, preferably a methyl or ethyl radical.
  • n- or iso-propanol, n-butanol, n-propanol and in particular methanol, ethanol can be used.
  • Suitable ionogenic halides are salts of hydrogen iodide, hydrobromic acid and hydrochloric acid. Salts of hydrobromic acid, such as alkali, alkaline earth bromides and quaternary ammonium, especially tetraalkylammonium bromides are particularly preferred.
  • the cation does not play an essential role in the invention, therefore other ionic metal halides can also be used, but one becomes advantageous choose cheap halides. Examples include sodium, potassium, calcium and ammonium bromide, and di-, tri- and tetramethyl- or tetraethylammonium bromide.
  • the method according to the invention does not require a special electrolysis cell. It can advantageously be carried out in an undivided flow cell.
  • All anode materials which are customary per se and are stable under the electrolysis conditions, such as noble metal, for example gold or platinum or metal oxides such as NiO x, can be used as anodes.
  • the preferred anode material is graphite.
  • the cathode material consists, for example, of metals such as lead, iron, steel, nickel or precious metals such as platinum.
  • the preferred cathode material is also graphite.
  • the composition of the electrolyte can be chosen within wide limits.
  • the electrolyte consists of 10-80 wt% R1NHCHO 10 - 80% by weight. R2OH 0.1 - 10% by weight halide.
  • a solvent can be added to the electrolyte, for example to improve the solubility of the formamide or the halide.
  • examples include nitriles such as acetonitrile, carbonates such as dimethyl carbonates and ethers such as tetrahydrofuran.
  • the current density is not a limiting factor for the method according to the invention, it is e.g. 1 to 25 A / dm2, preferably 3 to 12 A / dm2.
  • the temperature is expediently chosen so that it is at least 5 to 10 ° C. below the boiling point of the electrolyte.
  • electrolysis is preferably carried out at temperatures of 20 to 30 ° C.
  • the process according to the invention offers the possibility of largely converting the formamides without there being any deterioration in yield.
  • the current yields are also unusually high in the process according to the invention.
  • the formamide is already fully converted in electrolysis with 2 to 2.5 F / mol formamide.
  • the electrolysis discharges can be worked up by methods known per se.
  • the electrolysis discharge is expediently worked up by distillation. Excess alkanol and any cosolvent used are first distilled off, the halides are separated in a known manner, for example by filtration or extraction, and the carbamic acid esters are distilled or recrystallized. Alkanol, possibly unreacted formamide and cosolvent as well as halides can advantageously be returned to electrolysis.
  • the process according to the invention can be carried out batchwise or continuously.
  • the carbamic acid esters produced by the process according to the invention are versatile intermediates for the synthesis of isocyanates, crop protection agents and auxiliaries, e.g. for finishing textiles.
  • the electrooxidation was carried out in an undivided electrolysis cell with graphite anodes and cathodes at temperatures of 20 to 25 ° C.
  • the electrolyte which contains sodium bromide as the conductive salt, was pumped through the cell at 200 l / h via a heat exchanger.
  • the composition of the electrolyte is shown in Table 1.
  • the work-up was carried out in such a way that the alcohol was distilled off at atmospheric pressure up to a bottom temperature of 120 to 130 ° C. and the remaining residue was distilled in at 5 to 40 mbar.
  • the purification was carried out by recrystallization from ethyl acetate.
  • the residue was filtered hot after separating the alcohol at 80-100 ° C. (separation of NaBr); the urethanes then crystallized from the filtrate at 20-30 ° C. in spectroscopic (1 H-NMR) pure form.
  • the carbamic acid esters were obtained at a conversion of 100% in yields of 57 to 88%, based on the starting material (II).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Herstellung von Carbamidsäureestern (I) R¹NHCOOR² (I) (mit R¹ = H, Alkyl, Cycloalkyl, Alkylaryl; R² = Alkyl) durch Elektrooxidation von Formamiden (II) R¹NHCHO (II) in Gegenwart von Alkoholen R²OH und in Anwesenheit eines ionogenen Halogenids.

Description

  • Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Carbamidsäureestern.
  • Carbamidsäureester wurden bisher, wie allgemein bekannt, ist aus Phosgen durch Umsetzung mit Alkoholen zu Chlorameisensäureestern und anschließen­de Aminolyse hergestellt. Der Umgang mit den hochtoxischen und korrosiven Vor- und Zwischenprodukten erfordert technisch einen erheblichen Aufwand. Weiterhin fallen bei diesen Verfahren HCl oder halogenhaltige Abfallsalze an, deren Abtrennung häufig technisch sehr aufwendig ist (vgl. Ullmann, Enzyklopädie der techn. Chemie, Bd. 9, S. 118 ff.).
  • In phosgenfreien Alternativverfahren wird Harnstoff mit Alkanolen umge­setzt. Nachteilig hierbei sind hohe Reaktionstemperaturen und lange Reaktionszeiten sowie der technisch aufwendige Umgang mit Feststoffen (vgl. z.B. Houben-Weyl, Methoden d. org. Chemie, Bd. 8, S. 111 ff.).
  • Der Erfindung lag nun die Aufgabe zugrunde, ein Verfahren zur Herstellung von Carbamidsäurestern zu finden, das technisch einfach und ökonomisch ist und sich durch besondere Umweltfreundlichkeit auszeichnet.
  • Demgemäß wurde gefunden, daß man Carbamidsäureester der allgemeinen Formel (I),
    R¹NHCOOR² (I),
    in der R¹ Wasserstoff oder einen Alkyl-, Cycloalkyl- oder Alkarylrest bedeutet und R² für einen niedermolekularen Alkylrest steht, besonders vorteilhaft herstellen kann, wenn man Formamide der allgemeinen Formel (II)
    R¹NHCHO (II)
    in Gegenwart von Alkoholen der Formel R²OH und in Anwesenheit eines ionogenen Halogenids elektrochemisch oxidiert.
  • Der Erfolg des Verfahrens ist überraschend, da seit langem bekannt ist, daß die elektrochemische Umsetzung von Formamiden in Alkoholen in Gegen­wart von Leitsalzen wie Tetraalkylammoniumtetrafluoroborat stets zu Alkoxiformamiden führt (vgl. z.B. L. Eberson und K. Nyberg; Tetrahedron 32 (1976), 2185-2206), wie folgende Reaktionsgleichung verdeutlicht:
    Figure imgb0001
    Die erfindungsgemäße Umsetzung wird durch folgende Reaktionsgleichung wiedergegeben:
    Figure imgb0002
    In den Ausgangsstoffen der Formel (II) steht R¹ für Wasserstoff oder für einen Alkyl-, Cycloalkyl- oder Alkylarylrest.
  • Bevorzugt werden Alkylreste mit 1 bis 12, insbesondere 1 bis 8, vorzugs­weise 1 bis 4 Kohlenstoffatomen, z.B. Methyl-, Ethyl-, n- und iso-­-Propyl-, n-Butyl- oder tert. Butylreste.
  • Als Cycloalkylreste kommen solche mit 3 bis 8, insbesondere 5 und 6 Kohlenstoffatomen in Betracht. Weiterhin kann R¹ für Alkylarylreste mit 7 bis 12, insbesondere 7 bis 8 Kohlenstoffatomen, z.B. für Benzyl- oder Phenylethylreste stehen.
  • Die genannten Reste können noch unter den Reaktionsbedingungen inerte Substituenten tragen, z.B. C₁-C₄-Alkyl- oder Alkoxigruppen, Halogen oder Nitrilgruppen.
  • Beispielsweise können folgende Formamide umgesetzt werden: Methylform­amid, Ethylformamid, n- und iso-Propylformamid, n-Butylformamid, n-Octyl­formamid, Cyclohexyl- oder Cyclopentylformamid, Benzylformamid sowie das unsubstituierte Formamid.
  • In den Alkoholen der Formel R²OH steht R² für einen niedermolekularen Alkylrest, insbesondere für einen Alkylrest mit 1 bis 5 Kohlenstoff­atomen, vorzugsweise für einen Methyl- oder Ethylrest. Beispielsweise können n- oder iso-Propanol, n-Butanol, n-Propanol und insbesondere Methanol, Ethanol verwendet werden.
  • Als ionogene Halogenide kommen Salze der Iodwasserstoff-, Bromwasser­stoff- und Chlorwasserstoffsäure in Betracht. Besonders bevorzugt sind Salze der Bromwasserstoffsäure, wie Alkali-, Erdalkalibromide sowie quaternäre Ammonium-, insbesondere Tetraalkylammoniumbromide. Das Kation spielt keine erfindungswesentliche Rolle, es können daher auch andere ionogene Metallhalogenide verwendet werden, vorteilhaft wird man jedoch billige Halogenide wählen. Beispielsweise seien Natrium-, Kalium-, Calcium- und Ammoniumbromid sowie Di-, Tri- und Tetramethyl- oder Tetra­ethylammoniumbromid genannt.
  • Das erfindungsgemäße Verfahren erfordert keine besondere Elektrolyse­zelle. Vorteilhaft kann man es in einer ungeteilten Durchflußzelle durch­führen. Als Anoden können alle an sich üblichen Anodenmaterialien ver­wendet werden, die unter den Elektrolysebedingungen stabil sind, wie Edelmetall, z.B. Gold oder Platin oder Metalloxide wie NiOx. Bevorzugtes Anodenmaterial ist Graphit. Das Kathodenmaterial besteht z.B. aus Metallen wie Blei, Eisen, Stahl, Nickel oder Edelmetallen wie Platin. Bevorzugtes Kathodenmaterial ist ebenfalls Graphit.
  • Die Zusammensetzung des Elektrolyten kann in weiten Grenzen gewählt werden. So besteht der Elektrolyt beispielsweise aus
    10 - 80 Gew.% R¹NHCHO
    10 - 80 Gew%. R²OH
    0,1 - 1O Gew.% Halogenid.
  • Dem Elektrolyten kann so gewünscht ein Lösungsmittel, etwa zur Verbes­serung der Löslichkeit des Formamids oder des Halogenids zugesetzt werden. Beispiele hierfür sind Nitrile, wie Acetonitril, Carbonate, wie Dimethylcarbonate und Ether, wie Tetrahydrofuran. Die Stromdichte ist kein begrenzender Faktor für das erfindungsgemäße Verfahren, sie beträgt z.B. 1 bis 25 A/dm², vorzugsweise wird mit 3 bis 12 A/dm² elektrolysiert. Die Temperatur wird bei druckloser Fahrweise der Elektrolyse zweckmäßiger­weise so gewählt, daß sie zumindest 5 bis 10°C unter dem Siedepunkt des Elektrolyten liegt. Bei Verwendung von Methanol oder Ethanol wird vorzugs­weise bei Temperaturen von 20 bis 30°C elektrolysiert. Es wurde über­raschend festgestellt, daß das erfindungsgemäße Verfahren die Möglichkeit bietet die Formamide weitgehend umzusetzen, ohne daß es zu Ausbeutever­schlechterungen kommt. Auch die Stromausbeuten sind bei dem erfindungsge­mäßen Verfahren ungewöhnlich hoch. So ist das Formamid bei Elektrolyse mit 2 bis 2,5 F/Mol Formamid bereits vollständig umgesetzt.
  • Die Aufarbeitung der Elektrolyseausträge kann man nach an sich bekannten Methoden vornehmen. Zweckmäßigerweise wird der Elektrolyseaustrag destillativ aufgearbeitet. Überschüssiges Alkanol und evtl. eingesetztes Kolösungsmittel werden zunächst abdestilliert, die Halogenide werden in bekannter Weise z.B. durch Filtration oder Extraktion abgetrennt, und die Carbamidsäureester werden reindestilliert bzw. umkristallisiert. Alkanol, evtl. unumgesetztes Formamid und Kolösungsmittel sowie Halogenide können vorteilhaft zur Elektrolyse zurückgeführt werden. Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durch­geführt werden.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten Carbamidsäureester sind vielfältig einsetzbare Zwischenprodukte für die Synthese von Iso­cyanaten, Pflanzenschutzmitteln und Hilfsmitteln, z.B. für die Ausrüstung von Textilien.
  • Beispiele
  • Die Elektrooxidation wurde in einer ungeteilten Elektrolysezelle mit Graphitanoden und -kathoden bei Temperaturen von 20 bis 25°C durchge­führt. Während der Elektrolyse wurde der Elektrolyt, der als Leitsalz Natriumbromid enthält, mit 200 l/h über einen Wärmeaustauscher durch die Zelle gepumpt. Die Zusammensetzung des Elektrolyten ist Tabelle 1 zu entnehmen.
  • Nach Beendigung der Elektrolyse erfolgte die Aufarbeitung in der Weise, daß man den Alkohol bei Normaldruck bis zu einer Sumpftemperatur von 120 bis 130°C abdestillierte und den verbleibenden Rückstand bei 5 bis 40 mbar reindestillierte. Im Fall des unsubstituierten Carbamidsäure­methylesters (Beispiel 7) erfolgte die Reinigung durch Umkristallisieren aus Essigester. In den Beispielen 8 und 9 wurde der Rückstand nach Ab­trennung des Alkohols bei 80-100°C heiß filtriert (Abtrennung von NaBr); die Urethane kristallisierten dann bei 20-30°C in spektroskopisch (¹H-NMR) reiner Form aus dem Filtrat aus. Die Carbamidsäureester wurden bei einem Umsatz von 100 % in Ausbeuten von 57 bis 88 %, bezogen auf den Ausgangsstoff (II), erhalten.
  • Die Beispiele 1 bis 9 sind in Tabelle 1 zusammengefaßt.
    Figure imgb0003

Claims (4)

1. Verfahren zur Herstellung von Carbamidsäureestern der allgemeinen Formel (I)
R¹NHCOOR² (I),
in der R¹ Wasserstoff oder eine Alkyl-, Cycloalkyl- oder Alkarylrest bedeutet und R² für einen niedermolekularen Alkylrest steht, dadurch gekennzeichnet, daß man Formamide der allgemeinen Formel (II)
R¹NHCHO (II)
in Gegenwart von Alkoholen der Formel R²OH und in Anwesenheit eines ionogenen Halogenids elektrochemisch oxidiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Halogenid ein Salz der Bromwasserstoffsäure verwendet wird.
3. Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß für die Elektrolyse Graphitanoden verwendet werden.
4. Verfahren Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Alkohol Methanol oder Ethanol verwendet wird.
EP86111022A 1985-08-17 1986-08-09 Verfahren zur Herstellung von Carbamidsäureestern Expired EP0212512B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853529531 DE3529531A1 (de) 1985-08-17 1985-08-17 Verfahren zur herstellung von carbamidsaeureestern
DE3529531 1985-08-17

Publications (2)

Publication Number Publication Date
EP0212512A1 true EP0212512A1 (de) 1987-03-04
EP0212512B1 EP0212512B1 (de) 1988-11-17

Family

ID=6278769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86111022A Expired EP0212512B1 (de) 1985-08-17 1986-08-09 Verfahren zur Herstellung von Carbamidsäureestern

Country Status (13)

Country Link
US (1) US4661217A (de)
EP (1) EP0212512B1 (de)
JP (1) JPH076075B2 (de)
CN (1) CN1013887B (de)
AU (1) AU587849B2 (de)
CA (1) CA1275066A (de)
DE (2) DE3529531A1 (de)
DK (1) DK388786A (de)
FI (1) FI86715C (de)
HU (1) HU199109B (de)
IL (1) IL79645A (de)
NO (1) NO163965C (de)
ZA (1) ZA866150B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308744A1 (de) * 1987-09-12 1989-03-29 BASF Aktiengesellschaft Verfahren zur Herstellung von Imidazolidinonen und Oxazolidinonen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3606478A1 (de) * 1986-02-28 1987-09-03 Basf Ag Verfahren zur herstellung von biscarbamaten und neue biscarbamate
US5214169A (en) * 1988-04-25 1993-05-25 Merrell Dow Pharmaceuticals Inc. N-(2,3-epoxycyclopentyl) carbamate derivatives
JP3168031B2 (ja) * 1990-11-16 2001-05-21 トヨタ自動車株式会社 耐熱性ヘラパタイト及びその製造方法
CN107964668B (zh) * 2016-10-19 2019-08-16 中国科学院上海有机化学研究所 化合物中C(sp3)-H键转化为C(sp3)-O键方法及制备得到的化合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE676746A (de) * 1965-02-19 1966-08-18
FR2298614A1 (fr) * 1975-01-25 1976-08-20 Hoechst Ag Procede de preparation de n-(a-alcoxyethyl)-carboxamides
EP0067463A1 (de) * 1981-06-05 1982-12-22 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Isocyanaten und/oder deren Derivaten

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459643A (en) * 1967-02-03 1969-08-05 Sprague Electric Co Alkoxylation of n-methyl-n-hydrocarbylamides
US3464960A (en) * 1967-12-15 1969-09-02 Us Army Mixture for rapid polymerization
DE2336976A1 (de) * 1973-07-20 1975-02-13 Hoechst Ag Verfahren zur herstellung von n-(alphaalkoxyaethyl)-carbonsaeureamiden
US4138408A (en) * 1975-12-20 1979-02-06 Hoechst Aktiengesellschaft ω-Alkoxy derivatives of lactams and process for their manufacture
DE2655741A1 (de) * 1976-12-09 1978-06-15 Hoechst Ag Verfahren zur herstellung von carbamidsaeureestern hoehersiedender alkohole
DE2919756A1 (de) * 1979-05-16 1980-11-27 Hoechst Ag Verfahren zur herstellung von n- alpha -alkoxyethyl-carbonsaeureamiden
DE3233309A1 (de) * 1982-09-08 1984-03-08 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von n-substituierten carbamaten
DE3380065D1 (en) * 1982-10-19 1989-07-20 Mitsubishi Rayon Co Novel polymer composition
US4457813A (en) * 1983-03-04 1984-07-03 Monsanto Company Electrolysis cells and electrolytic processes
DE3435388A1 (de) * 1984-09-27 1986-04-03 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von aromatischen carbonsaeureestern
US4588482A (en) * 1985-06-10 1986-05-13 Basf Aktiengesellschaft Preparation of phthalaldehyde acetals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE676746A (de) * 1965-02-19 1966-08-18
FR2298614A1 (fr) * 1975-01-25 1976-08-20 Hoechst Ag Procede de preparation de n-(a-alcoxyethyl)-carboxamides
EP0067463A1 (de) * 1981-06-05 1982-12-22 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Isocyanaten und/oder deren Derivaten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308744A1 (de) * 1987-09-12 1989-03-29 BASF Aktiengesellschaft Verfahren zur Herstellung von Imidazolidinonen und Oxazolidinonen

Also Published As

Publication number Publication date
IL79645A0 (en) 1986-11-30
FI86715C (fi) 1992-10-12
IL79645A (en) 1990-07-12
JPH076075B2 (ja) 1995-01-25
DK388786D0 (da) 1986-08-15
ZA866150B (en) 1987-04-29
FI863246A (fi) 1987-02-18
NO863297L (no) 1987-02-18
CN86105208A (zh) 1987-02-18
NO163965B (no) 1990-05-07
HUT43032A (en) 1987-09-28
JPS6240389A (ja) 1987-02-21
DE3661202D1 (en) 1988-12-22
HU199109B (en) 1990-01-29
US4661217A (en) 1987-04-28
NO863297D0 (no) 1986-08-15
EP0212512B1 (de) 1988-11-17
AU587849B2 (en) 1989-08-31
FI863246A0 (fi) 1986-08-08
NO163965C (no) 1990-08-15
DE3529531A1 (de) 1987-02-26
FI86715B (fi) 1992-06-30
DK388786A (da) 1987-02-18
CN1013887B (zh) 1991-09-11
AU6150786A (en) 1987-02-19
CA1275066A (en) 1990-10-09

Similar Documents

Publication Publication Date Title
EP1619273B1 (de) Verfahren zur Herstellung von 2-Alkin-1-acetalen
EP0212512B1 (de) Verfahren zur Herstellung von Carbamidsäureestern
EP0129795B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen
EP0243607B1 (de) Verfahren zur Herstellung von Biscarbamaten
EP0339523B1 (de) Verfahren zur Herstellung von Hydroxicarbonsäureestern
EP0078004B1 (de) Elektrochemisches Verfahren zur Herstellung von 2,5-Dialkoxy-2,5-dihydrofuranen
EP0009697B1 (de) Verfahren zur Herstellung von N-(Alpha-Methoxy-alkyl)-urethanen und neue N-(Alpha-methoxy-alkyl)-urethane
EP0164705B1 (de) Verfahren zur Herstellung von Phthalaldehydacetalen
EP0308744B1 (de) Verfahren zur Herstellung von Imidazolidinonen und Oxazolidinonen
EP0326855B1 (de) Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten
EP0179377B1 (de) Verfahren zur Herstellung von 1-Alkoxyisochromanen und neue 1-Alkoxy-alkylisochromane
DE2710420C2 (de) Verfahren zur elektrolytischen Herstellung von 2,5-Dialkoxy-2,5-dihydrofuranen
EP0152801B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen
DE4031093A1 (de) Verfahren zur herstellung von o-alkyloximen
EP0252284B1 (de) 2,6-Dimethyl-p-benzochinontetraalkylketale
EP0237769B1 (de) Benzaldehyd-dialkylacetale
EP0283807A1 (de) Verfahren zur Herstellung von Methoxiacetaldehyddialkylacetalen
EP0355754A2 (de) Neue 2-Benzyloxibenzaldehyddialkylacetale, ihre Herstellung und Verwendung
EP0513577A1 (de) Verfahren zur Herstellung von 1-Alkoxyisochromanen
HU198680B (en) Process for production of biscarbamates
EP0384315A2 (de) Verfahren zur Herstellung von Lactonen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3661202

Country of ref document: DE

Date of ref document: 19881222

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86111022.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960724

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970810

EUG Se: european patent has lapsed

Ref document number: 86111022.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010713

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010719

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010801

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010811

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010912

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20020924

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050809