EP0211423A2 - Scheibenförmiges, rotierendes Werkzeug - Google Patents

Scheibenförmiges, rotierendes Werkzeug Download PDF

Info

Publication number
EP0211423A2
EP0211423A2 EP86110691A EP86110691A EP0211423A2 EP 0211423 A2 EP0211423 A2 EP 0211423A2 EP 86110691 A EP86110691 A EP 86110691A EP 86110691 A EP86110691 A EP 86110691A EP 0211423 A2 EP0211423 A2 EP 0211423A2
Authority
EP
European Patent Office
Prior art keywords
tool according
tool
segments
pressure force
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86110691A
Other languages
English (en)
French (fr)
Other versions
EP0211423B1 (de
EP0211423A3 (en
Inventor
Berthold Fries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853542364 external-priority patent/DE3542364A1/de
Priority claimed from DE19858534533 external-priority patent/DE8534533U1/de
Application filed by Individual filed Critical Individual
Priority to AT86110691T priority Critical patent/ATE59799T1/de
Publication of EP0211423A2 publication Critical patent/EP0211423A2/de
Publication of EP0211423A3 publication Critical patent/EP0211423A3/de
Application granted granted Critical
Publication of EP0211423B1 publication Critical patent/EP0211423B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/02Circular saw blades
    • B23D61/025Details of saw blade body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B1/00Methods for subdividing trunks or logs essentially involving sawing

Definitions

  • Expansion slots or corresponding fields and spoke-like, segment-defining shapes can reduce the plane blade plane deformations to a limited extent by the use of tension compensation options, but they solve them also at the same time on the internal tension mode and they lead to poor center fixation via general instabilities or they are fundamentally not a means to bring about the always desirable and so important tensile stresses in the outer rim area.
  • Flangeless drives through a type of spline shaft and without conventional flanges that take over the axial fixation, also have the disadvantage that the classic mode of operation of internal stresses is disturbed.
  • the periphery is stabilized by guides with the aim of leveling out the vibrations in the loose, flangeless center.
  • the guides cause additional peripheral heating and thus lead to all the known disadvantages.
  • a number of guide arrangements attempt to dampen vibrations, in general the flangeless technology is considered to be a system with relatively high inaccuracies in work.
  • Re f) and g) A number of composite designs are known, but in which no systems for permanent and permanent external ring tensile stresses are integrated. Only the composite construction is aimed at a more favorable vibration behavior. This is certainly advantageous, but there are no means that influence vibration behavior more positively than targeted tensile stresses in the periphery.
  • Re h It is known that the internal tension (e.g. by rolling, hammering) cannot be reproduced in operation.
  • the so-called thermal stress method wants to solve this disadvantage by the temperature differences between the periphery and the center being determined by measuring devices and, from this, the interior being heated up by a heat coil.
  • the thermal expansions lead to a certain pressure to the outside, but they cannot be defined in the necessary way (depending on the rotation data and the size of the heat zone actually achieved) and the heat coil effect also leads to the dissolution of the constantly necessary center fixation.
  • the invention has for its object to design a tool so that the expansion and deformation resulting from temperature differences and centrifugal forces do not lead to any disadvantages, that tensile stresses prevail in the peripheral area and that a good vibration behavior means that smooth working procedures with thin disks and long service lives are to be practiced and this can ultimately also be carried out with lower tool costs and energy savings, without assemblies in the sheet-disk plane stressing the tool shapes.
  • a pressure transducer is thus arranged in the central opening, which acts on the individual segments (spokes) of the tool with a controllable pressure force.
  • the tool advantageously has a closed outer rim on which, for example, the teeth for a saw blade can be placed.
  • the recesses are arranged in the tool, which divide the blade level into individual segments up to a certain rim area, similar to a spoked wheel.
  • the tool can be axially fixed on the drive shaft in a known manner by means of flanges be.
  • a disk-shaped tool according to the invention consists of an outer ring, on which a plurality of segments are arranged, which are connected to one another only by the outer ring. This creates a loose, fan-shaped center, with the stiffness of the disc only being restored by the pressure transducer.
  • the pressure transmitter In addition to the rotary drive and the radial pressure force, the pressure transmitter also has the task of axially and centrally fixing the rotating tool.
  • the pressure force can be applied to the individual segments / spokes via strips, bolts or pistons which are acted upon by spring action or hydraulic or pneumatic systems.
  • a differentiated application of the individual segments with different compressive forces is always necessary when the tool is subject to high shape irregularities.
  • a pressure transducer is sufficient that makes a uniform stroke change and thus stroke-dependent pressurization over 360 °.
  • the application of the compressive force to the individual sheet / disc segments does not necessarily have to be carried out with individual pistons and guide elements, but, since the expansion and necessary lifting movements are relatively small, can also be carried out by elastic material deformations within the compressive force design.
  • the solution according to the invention can be used in all areas in which disk-shaped tools - primarily high-speed running and with large diameters - are used.
  • the solution according to the invention and the pressure force effect also leads to the sawing in wood saws that the disk-shaped tools do not usually have to be shaped in their blade thickness below the kerf width, but can have an extreme strength dimensioning of a carrier part receiving the working collar.
  • the extremely strong design of the support structure with the conical contours, from what An overall tool thickness that exceeds the kerf width several times results in loads, particularly through side pressures and temperature influences, which would result in a complete loss of function after a few minutes (seconds) with any conventional circular saw blade - and without a pressure transducer.
  • the circular saw blade 1 and 2 show a circular saw blade 1 with a closed outer ring 2, on which the saw teeth 3 are molded or attached. Segments 4 are connected to the ring gear 2, which are separated from one another by cutouts 5 and which open into the central opening 6.
  • the circular saw blade 1 thus consists of a closed ring gear, on which segments in the form of spokes are arranged, which end in the central center 6 without being connected to one another.
  • the segment 7 is rectangular in side view formed, while the segment 8 has its greatest width in the central center 6, as a modification, while it then tapers continuously towards the ring gear 2.
  • the two segments 9 shown are separated from one another by cutouts 5, which initially run essentially radially and then bend tangentially, so that the connecting surface of the segment 9 on the outer ring 2 is designed to be relatively small, so that the latter is not significantly impeded by the web 9 can expand according to the warming.
  • the segment 10 is likewise delimited by cutouts 5, which initially run approximately radially and are then tangentially angled in the same direction, so that here again a small connection width is obtained on the outer ring 2.
  • a saw blade 1 is shown, in which the segments 4 are formed uniformly.
  • a pressure force generator 11 is arranged in the central opening 6 and is provided with displaceable pistons 12 which press on the end faces 13 of the segments 4.
  • the compressive force for displacing the pistons 12 can be generated either by spring assemblies or by hydraulic or pneumatic systems.
  • the circular saw blade 1 is held laterally on the drive shaft 14, not shown, by means of a flange 15 in a known manner.
  • the pressure transducer and flange can be designed separately. However, the pressure transducer is advantageously integrated into the flange 15.
  • the circular saw blade 1 can be due to the constantly existing Preload, which is maintained even when the periphery of the circular saw blade 1 is strongly heated, is made substantially thinner in cross section than has been the case up to now.
  • the outer ring 2, which carries the saw teeth 3, is advantageously made thinner than the segments 4, which considerably facilitates the flow of the chips to be discharged.
  • the application of pressure to the individual pistons 12 of the pressure transducers, which act on the segments 4 of the circular saw blade 1, permits an independent lifting movement. In the case of circular saw blades in which no local warping is to be feared, the same lifting movement can also act on all segments, which significantly reduces the manufacturing effort of the pressure force generator.
  • material expansions can also be used to apply the compressive force, since the changes in length that must be compensated for by the compressive force are only in the range of a few tenths of a millimeter.
  • support or round guide-like slides or guide surfaces can be provided in the pressure force generator.
  • the force exerted on each spoke 7 or segment 8 by the pressure force transducer 11 in the exactly radial direction leads to a lifting movement which is carried out in accordance with the division and without tension, in that the expansion region 23 leading to the lifting movement is arranged under the spoke / segmentation center 24.
  • the lifting movement, the outward stretching, is carried out without changing the central fixation.
  • the center seat through the hub part 25 is retained.
  • the 11 shows, as an example, the side view of one of many possible forms of pressure transducers (with the 11 division shown - piston pin only drawn 1 ⁇ ).
  • the radial force exerted by the piston 12 executes the necessary stroke movement (H) by elastic deformation of the blade receiving parts 26, the strength of the pressure force generator 11 being shaped and dimensioned differently.
  • the sheet receiving parts 26 show fastening holes 27 for receiving the segments 4.
  • Piston bolts 28 are screwed in, which axially stabilize the blade receiving part 26, which has been released, for example by wire erosion 30, and at the same time exert a spreading force (H) through oil supply (bore channel system in the inner housing) due to penetration into the inner housing 29 of the pressure force generator 11.
  • the task of a pressure transducer 11 lies in the conversion of the rotational energy (E d ), in the extensibility (D p ), which is adapted to the division of the blade in accordance with the division, and in the center fixation achieved in a positive manner in the example via the inner housing extension 31.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Die Erfindung betrifft scheibenförmige, rotierende Werkzeuge - z.B. Kreissägen, Schlitz-, Trenn-, Schleifscheiben, Kreismesser, Schneidscheiben usw. (Schwinger) -, die zur Verbesserung des Schwingungsverhaltens - außer dem Drehantrieb - durch eine weitere Kraft beeinflußt werden. Diese zweite Energie wirkt radial und wird ausgelöst durch einen im Zentrum placierten Druckkraftgeber. Zur Erreichung der Zugspannungen in der Peripherie sind die Werkzeug-Blatt-Scheibenebenen segmentartig geschlitzt.

Description

  • Bei scheibenförmigen, kreisenden Werkzeugen, z.B. Kreissägeblättern, Schlitz-, Trenn-, Schleifscheiben, Kreismessern usw., entstehen durch die allgemein zu leistenden Arbeiten immer und teils gravierende Peripherieerwärmungen. Die dadurch zwischen Außenkranz und Zentrum entstehenden Temperaturdifferenzen erzeugen Spannungen sowie Plandeformierungen bis hin zu Wellenformbildungen. Diese wiederum begünstigen ein negatives Schwingungsverhalten mit der Folge von Peripherieauslenkungen bzw. Verlaufungen und der weiteren Nachteiligkeit unnatürlicher Arbeitskranzbelastungen, sowie geringer Standzeiten. Die Rotationsdaten bzw. die Fliehkräfte unterstützen den Prozeß zur Instabilität.
  • Für die Anwender kommt als gravierender Nachteil hinzu, daß Handwerker zur individuellen Behandlung der Werkzeuge nicht (oder nur ganz selten) zur Verfügung stehen. Weil die Handwerker dazu fehlen, praktiziert man den Einsatz entsprecnend starker Werzeuge. Rein physikalisch vollzieht sich zwar bei starken bzw. dicken Scheiben genau derselbe Vorgang wie bei dünnen Blättern, allerdings mit dem praktischen Vorteil, daß die prozentuale Auslenkung (Verformung, Planabweichung), bezogen auf die Scheibendicke, für die Schneiden- bzw. Zerspankinematik etwas bessere Voraussetzungen bietet. Diese Zusammenhänge führten zu einem Stand der Technik in Form von
    • a) Innenspannungseinbringungen -
    • b) Dehnungsschlitzen/Dehnungslöchern usw. -
    • c) flanschlosen Antrieben mit Blattführungen -
    • d) strukturierten Zentrumsbohrungen und Wellenprofilierungen
    • e) Zentrierung auf hydraulischen Spannbüchsen -
    • f) Verbundbauweisen im Stahlbereich -
    • g) Verbundbauweisen mit Faserwerkstoffen - und
    • h) sogenannten Thermostreßverfahren.
  • Zu a): Diese Innenspannung wird durch Walzen oder Hämmern (oder auch Wärmeschrumpfprozesse) vor dem Werkzeugeinsatz eingebracht; sie ist, in Orientierung an Rotationsdaten und unterstellter bzw. angenommener Peripherieerwärmung, eine konstante Größe. Diese Innenspannung ist in Betrieb nicht reproduzierbar, d.h. geht die Innenspannung (Materialermüdungen, konzentrierte Erhitzungen, "Brandflecken", Verbeulungen etc.) verloren oder erhöht sich die angenommene Peripherieerwärmung, so ist ein ordentlicher Werkzeugeinsatz nicht mehr möglich.
  • Zu b): Dehnungsschlitze oder entsprechende Felder und speichenartige, segmentbestimmende Formen können zwar die Plan-Blattebenenverformungen durch Ansätze von Spannungsausgleichsmöglichkeiten bedingt herabmindern, sie lösen aber auch gleichzeitig die Innenspannungswirkweise auf und sie führen über allgemeine Labilitäten zu einer schlechten Zentrumsfixierung bzw. sie sind grundsätzlich kein Mittel zur Herbeiführung der stets anzustrebenden und so wichtigen Zugspannungen im Außenkranzbereich.
  • Zu c): Flanschlose Antriebe, durch eine Art von Vielkeilwelle und ohne übliche und die Axialfixierung übernehmende Flansche, haben ebenfalls den Nachteil, daß die klassische Wirkweise von Innenspannungen gestört ist. Bei dieser Technik wird die Peripherie durch Führungen stabilisiert mit dem Ziel, die Schwingungen im losen, flanschlosen Zentrum auszupendeln. Die Führungen bewirken aber zusätzliche Peripherieerwärmungen und führen somit wieder zum Aufschaukeln all der bekannten Nachteile. Durch eine Reihe von Führungsanordnungen werden zwar Schwingungsdämpfungen versucht, im allgemeinen gilt aber die flanschlose Technik als ein System mit relativ hohen Arbeitsungenauigkeiten.
  • Zu d): Bei dieser Technik soll zur Vermeidung all der aus Temperaturen und Rotation entstehenden Nachteile erreicht werden, daß auf die Blattzentrumsbohrung bzw. deren strukturierte Randzonen durch den Drehsinn der Antriebswelle Schiebekräfte ausgeübt werden. Die Antriebswelle hat dabei zu den Zentrumsstrukturie rungen analog geformte Erhebungen. Diese Systeme haben aber grundsätzliche Nachteile insofern, daß erstens die Schiebekräfte (tangential) nicht exakt in radiale Drücke umzuwandeln sind, daß zweitens die Schiebe/Druckkraft nicht definierbar ist und weitestgehend von der Drehenergie abhängig bleibt, und daß drittens die gesamte lenerhebungen und den Zentrumsbereichsstrukturierungen abhängig ist. Gleichmäßig verteilte Drücke nach außen sind über diese Systeme nicht zu praktizieren.
  • Zu e): Segmentbezogene, in Richtung absolut angepaßte und definierbare Drücke nach außen (in radialer Richtung) sind auch über hydraulische Spannbüchsen mit einem auf 360° gleichwirkenden System nicht zu erreichen.
  • Zu f) und g): Es sind eine Reihe von Verbundbauweisen bekannt, bei denen aber keine Systeme für dauerhafte und permanente Außenkranz-Zugspannungen integriert sind. Es wird lediglich durch die Verbundbauweise ein günstigeres Schwingungsverhalten angestrebt. Dies ist sicherlich vorteilhaft, aber es gibt keine Mittel, welche Schwingungsverhalten positiver beeinflussen als dies gezielte Zugspannungen in der Peripherie bewirken.
  • Zu h): Handwerklich eingebrachte Innenspannung (z.B. durch Walzen, Hämmern) ist bekanntlich in Betrieb nicht reproduzierbar. Das sogenannte Thermostreßverfahren will diesen Nachteil auflösen, indem die Temperaturdifferenzen zwischen Peripherie und Zentrum durch Meßgeräte zur Feststellung kommen und davon ableitend durch eine Wärmespule der Innenbereich aufgeheizt wird. Die Wärmeausdehnungen führen zwar zu einem bestimmten Druck nach außen, sie sind aber nicht in der notwendigen Weise (in Abhängigkeit von den Rotationsdaten und der wirklich erreichten Wärmezonengröße) definierbar und die Wärmespulenwirkung führt auch wieder zur Auflösung der konstant notwendigen Zentrumsfixierung.
  • Bei all den oben geschilderten Ausführungen ist es somit nicht möglich, gezielte und dauerhafte Zugspannungen in der Peripherie, in dem Arbeitskranz zu erzeugen und es gibt keine Lösungen, bei denen die unvermeidlichen Temperaturdifferenzen ohne negative Auswirkungen bleiben. Die Probleme aus all den widrigen radialen-tangentialen Zug-/Druckspannungen sind bei den vorstehend geschilderten Ausführungen nicht gelöst.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Werkzeug so auszubilden, daß die aus Temperaturdiferenzen und Fliehkräften entstehenden Dehnungen sowie Deformierungen zu keinen Nachteilen führen, daß im Peripheriebereich Zugspannungen vorherrschen und daß über ein gutes Schwingungsverhalten verlaufungsfreie Arbeitsweisen bei dünnen Scheiben und langen Standzeiten zu praktizieren sind und dies letztlich auch bei niedrigeren Werkzeugkosten und Energieeinsparungen durchführbar ist, ohne daß Bestückungen in der Blatt-Scheibenebene die Werkzeugformen belasten.
  • Gemäß der Erfindung ist somit in der zentrischen Öffnung ein Druckkraftgeber angeordnet, der die einzelnen Segmente (Speichen) des Werkzeugs mit einer steuerbaren Druckkraft beaufschlagt. Vorteilhaft weist das Werkzeug einen geschlossenen Außenkranz auf, auf dem z.B. die Zähne für ein Sägeblatt plaziert sein können. Im Werkzeug sind die Aussparungen angeordnet, welche die Blattebene bis hin zu einem gewissen Kranzbereich in einzelne Segmente unterteilen, ähnlich einem Speichenrad. Das Werkzeug kann in bekannter Weise mittels Flanschen axial auf der Antriebswelle fixiert sein.
  • Die Zusatzkräfte wirken radial. Es werden von einem Druckkraftgeber mit einer Vielzahl von Kraftelementen (z.B. Hydraulikkolben) auf unabhängig voneinander ragierende Blattebenensegmente (Speichen) bei absolut konstanter Scheiben-Zentrumsfixierung radiale Druckkräfte ausgeübt, die alle Verformungen aus Temperaturen sowie Fliehkräften ausgleichen und stetige Zugspannungen in der Peripherie auslösen. Außenkranzerwärmungen führen nicht mehr zu Auslenkungen und Verlaufungen. Da jedoch das Schrumpfungsverhalten bei Wiedererkalten der Peripherie durch die unter Druck gehaltene Geo metrieveränderung anderen Merkmalen als bei der Dehnung unterliegt, ist die Druckkraftgeberwirkung steuer- und reglbar. Bei den erfindungsgemäßen Lösungen ist die Einbringung üblicher Innenspannungen (a) nicht mehr notwendig. Aus der Druckkraftgeberwirkung resultiert ein besseres Schwingungsverhalten im allgemeinen. Der Vorteil daraus führt zur Desensibilisierung von scheibenförmigen Werkzeugen und zum Einsatz dünnerer Blatt- bzw. Scheibenstärken.
  • Ein scheibenförmiges Werkzeug gemäß der Erfindung besteht aus einem Außenkranz, an dem eine Vielzahl von Segmenten angeordnet ist, die nur durch den Außenkranz untereinander Verbindung haben. Es bildet sich so ein loses, fächerförmiges Zentrum, wobei die Steifigkeit der Scheibe erst wieder durch den Druckkraftgeber hergestellt wird. Der Druckkraftgeber hat somit neben dem Drehantrieb und der radialen Druckkraftgebung auch die Aufgabe, das rotierende Werkzeug axial und zentrisch zu fixieren.
  • Die Aufbringung der Druckkraft auf die einzelnen Segmente/Speichen kann über Leisten, Bolzen oder Kolben erfolgen, die über Federwirkung oder hydraulische bzw. pneumatische Systeme beaufschlagt sind. Eine differenzierte Beaufschlagung der einzelnen Segmente mit unterschiedlichen Druckkräften ist immer dann erforderlich, wenn das Werkzeug hohen Formunbeständigkeiten unterliegt. Bei Werkzeugen, die keine oder nur eine geringe Geometrieveränderung und somit eine hohe Formbeständigkeit aufweisen, kann auf eine voneinander unabhängige Druckkraftbeaufschlagung verzichtet werden. In diesen Fällen ist ein Druckkraftgeber ausreichend, der über 360° eine gleichmäßige Hubveränderung und damit hubabhängige Druckbeaufschlagung vornimmt.
  • Die Aufbringung der Druckkraft auf die einzelnen Blatt-/Scheibensegmente muß nicht notwendigerweise mit einzelnen Kolben und Führungselementen erfolgen, sondern kann, da die Dehnungs- und notwendigen Hubbewegungen doch relativ klein sind, auch durch elastische Materialverformungen innerhalb der Druckkraftgeberkonstruktion vollzogen werden. Die erfindungsgemäße Lösung läßt sich in allen Bereichen einsetzen, in denen scheibenförmige Werkzeuge - vornehmlich hochtourig laufend und mit großen Durchmessern - zum Einsatz kommen.
  • Die erfindungsgemäße Lösung und die Druckkraftgeberwirkung führt auch beim Holzsägen dazu, daß die scheibenförmigen Werkzeuge nicht üblicherweise in ihrer Blattstärke unterhalb der Schnittfugenbreite geformt sein müssen, sondern eine extreme Stärkenauslegung eines den Arbeitskranz aufnehmenden Trägerteiles aufweisen können. Die extrem starke Gestaltung der Trägerkonstruktion mit den konischen Konturen, woraus eine die Schnittfugenbreite mehrfach übersteigende Gesamtwerkzeugstärke resultiert, führt insbesondere durch Seitendrücke und Temperatureinflüsse zu Belastungen, die bei jedem herkömmlichen Kreissägeblatt - und ohne Druckkraftgeber - nach wenigen Minuten (Sekunden) einen gänzlichen Funktionseinbruch zur Folge hätten. Mit dem Druckkraftgebersystem, welches die Segmente vom Zentrum her belastet, lassen sich jedoch die aus Rotation und Erwärmung entstehenden Plandeformierungen ausgleichen und die nachgelagerten Spalt-/Führungskeile sorgen dafür, daß Seitendrücke und Reibungen in ihren Konzentrationen geschwächt werden. Der sich gegenüber einer Minimal-Schnittfugenbreite als Überstärke darstellende Trägerteil führt zur Schrägabweisung der abgetrennten Holzteile. Aus diesem Grund ist ein solches von einem Druckkraftgeber beeinflußtes Werkzeug nur innerhalb von Anlagen geeignet, bei denen die einzelnen Werkzeugstationen hintereinander angeordnet sind (und nicht für Vielblattbestückungen auf einer Welle).
  • Mehrere Ausführungsbeispiele der Erfindung - auf Kreissägen bezogen - sind im folgenden anhand der Zeichnungen näher beschrieben, in dieser zeigen:
    • Fig. 1 eine Seitenansicht eines erfindungsgemäß ausgebildeten Schnittwerkzeugs,
    • Fig. 2 einen Längsschnitt durch das in Fig. 1 gezeigte Sägeblatt,
    • Fig. 3 eine Seitenan sicht eines weiteren Ausführungsbeispiels gemäß der Erfindung,
    • Fig. 4 bis 6 Beispiele von Werkzeug-Kreissägeblattanordnungen und die daraus resultierenden Schnittbahnen- und Brettaustragungsverläufe,
    • Fig. 7 eine Seitenansicht eines erfindungsgemäßen Werkzeugs,
    • Fig. 8 einen Querschnitt eines erfindungsgemäßen Werkzeugs,
    • Fig. 9 eine Seitenansicht eines zweiten erfindungsgemäßen Werkzeugs,
    • Fig.10 einen Querschnitt eines zweiten erfindungsgemäßen Werkzeugs und
    • Fig.11 eine Ansicht eines Ausführungsbeispiels eines Druckkraftgebers.
  • Fig. 1 und 2 zeigen ein Kreissägeblatt 1 mit einem geschlossenen Außenkranz 2, an dem die Sägezähne 3 angeformt oder befestigt sind. Mit dem Zahnkranz 2 sind Segmente 4 verbunden, die durch Aussparungen 5 voneinander getrennt sind und die in der zentrischen Öffnung 6 münden. Das Kreissägeblatt 1 besteht somit aus einem geschlossenen Zahnkranz, an dem Segmente in Form von Speichen angeordnet sind, die ohne Verbindung miteinander in der zentrischen Mitte 6 enden.
  • Was das Ausführungsbeispiel nach Fig. 1 betrifft, so sind hier vier unterschiedliche Formen möglicher Segmente dargestellt. Das Segment 7 ist in Seitenansicht rechteckförmig ausgebildet, während das Segment 8 in Abwandlung hierzu seine größte Breite in der zentrischen Mitte 6 aufweist, während es sich anschließend zum Zahnkranz 2 hin stetig verjüngt. Die beiden dargestellten Segmente 9 sind durch Aussparungen 5 voneinander getrennt, die zunächst im wesentlichen radial verlaufen und dann tangential abknicken, so daß die Anschlußfläche des Segmentes 9 an dem Außenkranz 2 realtiv klein ausgebildet ist, so daß dieser sich ohne wesentliche Behinderung durch den Steg 9 entsprechend der Erwärmung ausdehnen kann. Das Segment 10 wird gleichfalls durch Aussparungen 5 begrenzt, die zunächst in etwa radial verlaufen und dann gleichsinnig tangential abgewinkelt sind, so daß hier wiederum eine kleine Anschlußbreite am Außenkranz 2 erhalten wird.
  • In Fig. 3 ist ein Sägeblatt 1 dargestellt, bei dem die Segmente 4 gleichmäßig ausgebildet sind.
  • Wie aus den Fig. 1 und 2 hervorgeht, ist in der zentrischen Öffnung 6 ein Druckkraftgeber 11 angeordnet, der mit verschiebbaren Kolben 12 versehen ist, die auf die Stirnflächen 13 der Segmente 4 drücken. Die Druckkraft zur Verschiebung der Kolben 12 kann entweder durch Federpakete oder aber durch hydraulische oder pneumatische Systeme erzeugt werden. Das Kreissägeblatt 1 wird seitlich auf der nicht dargestellten Antriebswelle 14 mittels eines Flansches 15 in bekannter Weise gehalten. Druckkraftgeber und Flansch können getrennt voneinander aussgebildet werden. Vorteilhaft wird jedoch der Druckkraftgeber in den Flansch 15 integriert.
  • Das Kreissägeblatt 1 kann aufgrund der ständig vorhandenen Vorspannung, die auch bei starker Erwärmung der Peripherie des Kreissägeblattes 1 aufrechterhalten bleibt, im Querschnitt wesentlich dünner ausgebildet werden als dies bisher der Fall ist. Darüberhinaus wird vorteilhaft der Außenkranz 2, der die Sägezähne 3 trägt, dünner ausgebildet als die Segmente 4, was den Fluß der auszutragenden Späne wesentlich erleichtert. Die Beaufschlagung der einzelnen Kolben 12 der Druckkraftgeber, die auf die Segmente 4 des Kreissägeblattes 1 einwirken, läßt eine voneinander unabhängige Hubbewegung zu. Bei Kreissägeblättern, bei denen keine örtlichen Verwerfungen zu befürchten sind, kann auch auf sämtliche Segmente die gleiche Hubbewegung einwirken, was den Herstellungsaufwand des Druckkraftgebers wesentlich verringert. Im einfachsten Fall können auch Materialdehnungen für die Aufbringung der Druckkraft benutzt werden, da die Längenänderungen, die vom Druckkraftgeber ausgeglichen werden müssen, nur im Bereich weniger Zehntel Millimeter liegen.
  • Um auch bei allgemein großen Belastungen ungleichmäßige Verschiebungen oder Ausknickungen zu vermeiden, können im Druckkraftgeber support- oder rundführu ngsähnliche Schieber oder Führungsflächen vorgesehen werden.
  • In den Fig. 4 bis 6 ist dargestellt, wie die durch konische Trägerteile die Werkstücke (Holzbretter) schrägabweisenden Kreissägeblätter 1 angeordnet werden, wo die Spaltkeil-Führungsbette 16 placiert sind und wie sich die Brettauslaufvorgänge 17 gestalten.
  • Fig. 7 und 8 zeigen die Kreissägeblätter 1 mit auswechselbarem Außenkranz 2 und Druckkraftgeber 11, mit anschließender Trägerkonstruktion 4 in speichenartiger Form 7.
  • Fig. 9 und 10 zeigen die Kreissägeblätter mit geschlossener Trägerkonstruktionsebene, wobei sich die Segmentierungen 8 durch Querschnittstrennungen 18, z.B. durch Laser, ergeben.
  • Fig. 8 und 10 verdeutlichen in den Querschnitten die aus den konischen Konturen 19 enstehenden Dimensionierungen 20 und 21 im Verhältnis der von den Zähnen 3 ausgehenden Schnittfugenbreite 22.
  • Die auf jede Speiche 7 oder Segment 8 von dem Druckkraftgeber 11 in exakt radialer Richtung ausgeübte Kraft führt zu einer Hubbewegung, die teilungsgerecht und ohne Verspannungen dadurch vollzogen wird, daß der zur Hubbewegung führende Dehnungsbereich 23 unter der Speichen-/Segmentierungsmitte 24 angeordnet ist. Die Hubbewegung, die Dehnung nach außen, wird ohne Veränderung der zentrischen Fixierung vorgenommen. Der Zentrumssitz durch den Nabenteil 25 bleibt erhalten.
  • Fig. 11 zeigt als Beispiel die Seitenansicht einer von vielen möglichen Druckkraftgeberformen (mit dargestellter 11er Teilung - Kolbenbolzen nur 1 × gezeichnet). Die von dem Kolben 12 ausgehende radiale Krafteinwirkung vollzieht die notwendige Hubbewegung (H) durch elastische Verformung der Blattaufnahmeteile 26, wobei die Stärke des Druckkraftgebers 11 verschieden geformt und dimensioniert sein kann. Die Blattaufnahmeteile 26 zeigen Befestigungslöcher 27 zur Aufnahme der Segmente 4. In die Blattaufnahmeteile 26 sind Kolbenbolzen 28 eingeschraubt, die durch das Eindringen in das Innengehäuse 29 des Druckkraftgebers 11 den - z.B. durch Drahterodierung 30 - freigemachten Blattaufnahmeteil 26 axial stabilisieren und gleichzeitig durch Ölversorgung (Bohrungs-Kanalsystem im Innengehäuse) eine Spreizkraft (H) ausüben. Die Aufgabe eines Druckkraftgebers 11 liegt in der Umsetzung der Drehenergie (E d), in der den Blattsegmentierungen teilungsgerecht angepaßten Dehnbarkeit (D p) und der in dem Beispiel über die Innengehäuseerweiterung 31 formschlüssig erreichten Zentrumsfixierung.

Claims (18)

1. Scheibenförmiges, rotierendes Werkzeug (1) mit am Umfang angeordneten Zähnen, Schneiden oder Schleifmitteln und mit einer zentrischen Öffnung (6) für die Aufnahme einer Antriebswelle, mit Aussparungen (5) in der Blattebene, die im Werkzeug (1) einzelne Segmente (4) (Speichen) erzeugen, dadurch gekennzeichnet, daß in der zentrischen Öffnung ein Druckkraftgeber (11) angeordnet ist, über den jedes Segment (4) vom Zentrum (6) her mit einer einstellbaren Druckkraft beaufschlagbar ist.
2. Werkzeug nach Anspruch 1, dadurch gekennzeichnet, daß das Werkzeug einen geschlossenen Außenkranz aufweist, an dem die Segmente (4) angeformt sind und daß die Segmente (4) in der zentrischen Öffnung (6) enden und diese begrenzen.
3. Werkzeug nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Breite der Anschlußfläche des Segmentes (4) am Außenkranz (2) kleiner oder höchstens gleich der maximalen Breite des Segmentes (4) ist.
4. Werkzeug nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Aussparungen (5), ausgehend von der zentrischen Öffnung (6), zunächst im wesentlichen radial verlaufen und anschließend in einer im wesentlichen tangential verlaufenden Richtung abgebogen sind.
5. Werkzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Druckkräfte auf die Segmente (4) mittels Federn aufgebracht werden.
6. Werkzeug nach einem der A nsprüche 1 bis 5, dadurch gekennzeichnet, daß die Druckkräfte mittels hydraulischer oder pneumatischer Systeme auf die Segmente (4) aufgebracht werden.
7. Werkzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die auf die Segmente (4) einwirkenden zentralen Druckkräfte einzeln regelbar sind.
8. Werkzeug nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Druckkraftgeber (11) die Segmente (4) in radialer, tangentialer und axialer Richtung fixiert und das Drehmoment von der Welle auf das Werkzeug (1) überträgt.
9. Werkzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Beaufschlagung der Segmente über den Druckkraftgeber (11) mit Druckkraft in Abhängigkeit der Erwärmung und/oder der Auslenkung des Werkzeuges (1) erfolgt.
10. Werkzeug nach einem der Ansprüche 1 bis 9, dadudrch gekennzeichnet, daß der Querschnitt des Werkzeuges (1) unterhalb der Schneiden (S 2) dünner ausgebildet ist als die übrige Stärke der Blattebene (S 1).
11. Werkzeug nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Breite des verdünnten Bereiches (B 1) etwa dreimal der Höhe der Zähne (B 2) beträgt.
12. Werkzeug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der radiale Druck durch Dehnung eines Gehäuses, an dem die Segmente (4) angreifen, übertragen wird.
13. Werkzeug nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Druckkraftgeber (11) support- oder rundführungsähnliche Schieber oder Führungsflächen aufweist.
14. Werkzeug nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Werkzeug eine stark konisch zulaufende Trägerkonstruktion aufweist, die im Zentrum in den Druckkraftgeber (11) und außen in den Außenkranz (2) ausläuft, wobei die Dimensionierungen (20, 21) der Trägerkonstruktion (4) größer als die Zahnbreite (22) ist.
15. Werkzeug nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Formgebung von Segmenten/Speichen (7, 8) bzw. die vom Druckkraftgeber (11) beaufschlagte Trägerkonstruktion (4) und der Außenkranz (2) einschließlich der Zähne (3) unterschiedliche Anzahlen und Breiten-/Stärken-/Längendimensionen aufweisen.
16. Werkzeug nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die konischen Konturen (19) ein- oder zweiseitig angelegt werden.
17. Werkzeug nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die von den konischen Konturen (19) geprägten Werkstück-/Brettauslaufvorgänge (17) durch ein Spaltkeil-Führungsbett (16) unterstützt werden.
18. Werkzeug nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Werkzeug (1) sowohl im Ober- als auch Unterschnitt bzw. im Gegen- oder Gleichlauf arbeitet.
EP86110691A 1985-08-09 1986-08-01 Scheibenförmiges, rotierendes Werkzeug Expired - Lifetime EP0211423B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110691T ATE59799T1 (de) 1985-08-09 1986-08-01 Scheibenfoermiges, rotierendes werkzeug.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE3528639 1985-08-09
DE3528639 1985-08-09
DE19853542364 DE3542364A1 (de) 1985-08-09 1985-11-30 Schnittwerkzeug, insbesondere kreissaegeblatt
DE3542364 1985-11-30
DE8534533U 1985-12-07
DE19858534533 DE8534533U1 (de) 1985-12-07 1985-12-07 Kreissäge mit Minimalschnittfuge

Publications (3)

Publication Number Publication Date
EP0211423A2 true EP0211423A2 (de) 1987-02-25
EP0211423A3 EP0211423A3 (en) 1988-04-27
EP0211423B1 EP0211423B1 (de) 1991-01-09

Family

ID=27193377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110691A Expired - Lifetime EP0211423B1 (de) 1985-08-09 1986-08-01 Scheibenförmiges, rotierendes Werkzeug

Country Status (2)

Country Link
EP (1) EP0211423B1 (de)
DE (1) DE3676754D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804400A1 (de) * 1988-02-12 1989-08-24 Fritz Seeber Vorrichtung zum erzeugen einer mehrzahl von parallelen schnittfugen
EP0378189A1 (de) * 1989-01-13 1990-07-18 Michael J. Pappas Abgesetztes chirurgisches Sägeblatt
EP1380376A1 (de) * 2001-03-30 2004-01-14 Kanefusa Kabushiki Kaisha Kreissäge und verfahren zur befestigung ihrer hauptspindel
EP1872918A1 (de) * 2006-06-30 2008-01-02 Nordpan Rubner Holzbauelemente GmbH Sägen von Brettern aus Holz mit einer Kreissäge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328482C2 (de) * 1993-08-24 1998-01-29 Fgw Forsch Werkzeuge Werkstoff Kreissägeblatt

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1262737B (de) * 1961-07-31 1968-03-07 Ingersoll Milling Machine Co Spanndorn
DE2625995A1 (de) * 1976-06-10 1977-12-22 Wurster & Dietz Maschinenfabri Kreissaegeblatt
DE2654625A1 (de) * 1976-12-02 1978-06-08 Jansen Fa R Kreis- bzw. spiralsaegeblatt
DE2717935A1 (de) * 1977-04-22 1978-10-26 Koenig J Gmbh & Co Werkzeugfab Kreissaegeblatt mit aussparungen zum spannungsausgleich
DE2824213A1 (de) * 1977-06-13 1978-12-14 Ahlstroem Oy Kreisfoermiges saegeblatt
EP0102626A2 (de) * 1982-09-03 1984-03-14 Firma Röttger Jansen-Herfeld Spannungsausgleichsschlitze in Kreissägeblättern
DE8533710U1 (de) * 1985-11-30 1986-03-06 Fries, Berthold, 5920 Bad Berleburg Schnittwerkzeug, insbesondere Kreissägeblatt
DE8534533U1 (de) * 1985-12-07 1986-03-13 Fries, Berthold, 5920 Bad Berleburg Kreissäge mit Minimalschnittfuge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1262737B (de) * 1961-07-31 1968-03-07 Ingersoll Milling Machine Co Spanndorn
DE2625995A1 (de) * 1976-06-10 1977-12-22 Wurster & Dietz Maschinenfabri Kreissaegeblatt
DE2654625A1 (de) * 1976-12-02 1978-06-08 Jansen Fa R Kreis- bzw. spiralsaegeblatt
DE2717935A1 (de) * 1977-04-22 1978-10-26 Koenig J Gmbh & Co Werkzeugfab Kreissaegeblatt mit aussparungen zum spannungsausgleich
DE2824213A1 (de) * 1977-06-13 1978-12-14 Ahlstroem Oy Kreisfoermiges saegeblatt
EP0102626A2 (de) * 1982-09-03 1984-03-14 Firma Röttger Jansen-Herfeld Spannungsausgleichsschlitze in Kreissägeblättern
DE8533710U1 (de) * 1985-11-30 1986-03-06 Fries, Berthold, 5920 Bad Berleburg Schnittwerkzeug, insbesondere Kreissägeblatt
DE8534533U1 (de) * 1985-12-07 1986-03-13 Fries, Berthold, 5920 Bad Berleburg Kreissäge mit Minimalschnittfuge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804400A1 (de) * 1988-02-12 1989-08-24 Fritz Seeber Vorrichtung zum erzeugen einer mehrzahl von parallelen schnittfugen
EP0378189A1 (de) * 1989-01-13 1990-07-18 Michael J. Pappas Abgesetztes chirurgisches Sägeblatt
EP1380376A1 (de) * 2001-03-30 2004-01-14 Kanefusa Kabushiki Kaisha Kreissäge und verfahren zur befestigung ihrer hauptspindel
EP1380376A4 (de) * 2001-03-30 2006-05-10 Kanefusa Knife & Saw Kreissäge und verfahren zur befestigung ihrer hauptspindel
EP1872918A1 (de) * 2006-06-30 2008-01-02 Nordpan Rubner Holzbauelemente GmbH Sägen von Brettern aus Holz mit einer Kreissäge

Also Published As

Publication number Publication date
EP0211423B1 (de) 1991-01-09
DE3676754D1 (de) 1991-02-14
EP0211423A3 (en) 1988-04-27

Similar Documents

Publication Publication Date Title
DE202005002831U1 (de) Ausgangskomponente für Sägeblätter bzw. Sägebänder
WO2002043912A1 (de) Sägewerkzeug für eine handkreissägemaschine mit zwei aneinander vorbeidrehenden, gegenläufig antreibbaren, koaxialen sägeblattern
EP1099872B1 (de) Verfahren zum Herstellen eines Reibringes, insbesondere für eine Bremsscheibe und Bremsscheibe
EP1533078B1 (de) Geteiltes Schleifwerkzeug
EP0008631B1 (de) Satzfräser
EP0211423B1 (de) Scheibenförmiges, rotierendes Werkzeug
CH676940A5 (de)
DE2647630A1 (de) Turbinenlaufrad
DE3804400A1 (de) Vorrichtung zum erzeugen einer mehrzahl von parallelen schnittfugen
EP0243909B1 (de) Kreissägeblatt
DE69018997T2 (de) Kreissägeblattanordnung.
EP0394242B1 (de) Kreissäge
DE2846747B1 (de) Praezisions-Streifenschneidmaschine
DE3310247A1 (de) Schneidwerkzeug, insbesondere kreissaegenblatt
DE3728447C2 (de)
DE2730801C2 (de) Messerwelle für Holzzerspanungsmaschinen
DE8534533U1 (de) Kreissäge mit Minimalschnittfuge
DE8533710U1 (de) Schnittwerkzeug, insbesondere Kreissägeblatt
DE2306010A1 (de) Fraeser zur herstellung konvexer flaechen
EP1773529A1 (de) Ausgangskomponente für die herstellung von sägeblättern oder sägebändern und verfahren zu dessen herstellung
DE3300860A1 (de) Innenlochsaege
DE3216357C2 (de)
WO1997031762A1 (de) Fräswerkzeug mit verminderter lärmemission zum bearbeiten von holz oder dergleichen
DE3542364A1 (de) Schnittwerkzeug, insbesondere kreissaegeblatt
DE202006002850U1 (de) Kreissägeblatt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19881026

17Q First examination report despatched

Effective date: 19900220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910109

Ref country code: NL

Effective date: 19910109

Ref country code: BE

Effective date: 19910109

Ref country code: GB

Effective date: 19910109

REF Corresponds to:

Ref document number: 59799

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3676754

Country of ref document: DE

Date of ref document: 19910214

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910831

Ref country code: CH

Effective date: 19910831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940802

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940812

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941015

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86110691.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 86110691.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST