EP0210337A2 - Evaporateur assisté par une structure capillaire - Google Patents

Evaporateur assisté par une structure capillaire Download PDF

Info

Publication number
EP0210337A2
EP0210337A2 EP86105061A EP86105061A EP0210337A2 EP 0210337 A2 EP0210337 A2 EP 0210337A2 EP 86105061 A EP86105061 A EP 86105061A EP 86105061 A EP86105061 A EP 86105061A EP 0210337 A2 EP0210337 A2 EP 0210337A2
Authority
EP
European Patent Office
Prior art keywords
evaporator according
heat
carbon fibers
capillary
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86105061A
Other languages
German (de)
English (en)
Other versions
EP0210337A3 (fr
Inventor
Helmut Dr.-Ing. Kreeb
Peter Dipl.-Ing. Möller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH, Dornier System GmbH filed Critical Dornier GmbH
Publication of EP0210337A2 publication Critical patent/EP0210337A2/fr
Publication of EP0210337A3 publication Critical patent/EP0210337A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Definitions

  • the invention relates to a capillary-supported evaporator for absorbing heat and for transporting a heat transfer medium according to the preamble of claim 1.
  • Capillary evaporators can be used in so-called "two-phase flow" heat transport circuits. These are to be understood as heat transport systems with which accumulating heat loss is absorbed in the evaporator element and transported under vaporization of a suitable heat transfer medium as latent heat in the steam to the condenser, where it is released to a heat sink. Capillary evaporators of this type make it possible to absorb heat flows from dissipating components of high power density and to transfer them to an evaporating heat transfer medium.
  • the capillary structure used therein distributes the liquid medium along the heat-absorbing wall, as well a pressure potential between the vapor and liquid phases of the heat transfer medium.
  • Capillary evaporators of this type can be used particularly advantageously as thermal components in heat transport systems when operation with minimal vibrations and additional accelerations (no mechanically moving parts) and without additional power is required.
  • the capillary evaporator is coupled into the circuit so that the heat transfer medium is supplied as a supercooled liquid and, after evaporation, flows out as saturated steam.
  • the capillary structure separates the two phases, distributes the liquid evenly and pumps the liquid due to the capillary forces acting in the capillary structure.
  • capillary pump described therein consists of two coaxially arranged tubes and an intermediate capillary structure made of quartz fiber. It surrounds a perforated tube and lies against an inner surface of the outer tube formed with longitudinal grooves and webs. Due to the difference in pressure caused by the capillary forces, the medium flows through the inner perforated tube into the capillary structure and evaporates with the addition of heat (generated by an electrical heating wire) at the interface between the capillary structure and the webs. The steam generated here flows out through longitudinal grooves arranged between the webs.
  • the object of the invention is to provide a capillary-assisted evaporator with which high heat transfer rates can be achieved using a special capillary structure and avoidance of gas and vapor bubble sensitivity.
  • good internal thermal conductivity of the assembled components should be ensured with simple manufacture and assembly.
  • the advantage of the invention is that by using very fine carbon fibers for the capillary structure, a high capillary force is achieved, which with measured heights of about 10 to 15 cm is thus greater than that of conventional capillary structures made of metal fibers or fabrics.
  • the carbon fibers can be wetted well by conventional liquid media used as heat transfer media at the required temperatures, are chemically and thermally resistant, age-resistant, and are flexible and therefore easy to wind and install. Furthermore, carbon fibers have a relatively low thermal conductivity, so that vapor bubble formation in the capillary structure is largely avoided.
  • a capillary evaporator 1 in the longitudinal (top) and cross section (bottom). It consists of two coaxially arranged tubes 2, 3, of which the wall 4 of the inner tube 2 is provided with a perforation 5 and the wall 6 of the outer tube 3 is provided on the inner surface with V-shaped longitudinal grooves 7.
  • a very fine capillary structure wound from carbon fibers 8 is arranged in a ring around the inner tube 2, the outer surface of which is tight against the longitudinal webs of the outer tube 3.
  • the required radial contact pressure results from the taper of inner tube 2 and outer tube 3 by axial displacement.
  • the inner tube 2 is closed on the steam outlet side with a stopper 9 and the outer tube 3 is connected to a collecting tube 10.
  • the supply of a liquid medium 11 suitable as a heat carrier takes place axially into the inner tube 2 and radially through the perforation 5 of the wall 4 into the carbon fiber 8 arranged above it standing capillary structure (see arrows).
  • the liquid medium 11 is distributed and, when heat is supplied (see arrows), evaporates through the wall 6 to form an inverted meniscus on the contact surface 12 between the liquid and the V-shaped longitudinal webs 7.
  • the supply of the necessary heat flow can be achieved, for example, by waste heat from dissipating components or an electrical heating spiral (not shown in the figure) arranged around the outer tube 3.
  • the resulting steam flows through the V-shaped longitudinal webs 7, which are only partially filled with the liquid medium 11, to the collecting tube 10 (see arrows).
  • FIG. 2 shows a further variant of a capillary evaporator 1 in the longitudinal (top) and cross section (bottom).
  • the liquid medium 11 is first supplied to a free space 15 located at the inlet (see arrow) and formed by a cover 13 of the inner tube 2 and by the outer tube 3 with cover 14. From here, the medium 11 flows through holes 16 provided in the cover 13 into longitudinal grooves arranged on the outer circumference of the inner tube 2 as flow channels 17 (see arrows), which alternately function as steam and liquid channels.
  • the carbon fibers 8 arranged around the inner tube 2 and acting as a capillary structure suck the liquid medium 11 out of the corresponding liquid-filled longitudinal grooves 17 and cause an even distribution with the circumferential grooves 20 arranged on the inner circumference of the outer tube 3.
  • the medium 11 evaporates within the capillary structure from the carbon fibers 8 or at its interface with the circumferential grooves 20.
  • the two radially directed flows that result, one is the flow of the liquid Medium 11 directed outwards and the other of the evaporated medium 11 inwards into the steam channels 17.
  • the vaporous medium 11 flows through the periodically arranged perforation 18 into the collecting pipe 19.
  • FIG. 3 shows a section through a capillary evaporator 22 in plate form. It consists of two plates 23, 24 arranged one above the other, of which the lower plate 23 is crossed with channels 25 pointing towards the inside, over which the carbon fibers 8 are laid as a capillary structure in a wide recess 26.
  • the upper plate 24 is crossed on the surface facing the carbon fibers 8 with a number of grooves 27, the rear
  • the plate end opens into a collecting duct 28 connected there.
  • the liquid medium 11 passes from the channels 25 (see arrows) into the carbon fibers 8, is distributed there and, after supplying a heat flow (see vertical arrow), is evaporated into the upper plate 24 at the interface between carbon fibers 8 and webs 30.
  • the steam produced flows, as explained above, into the collecting duct 28 and from there to the heat sink.
  • the two plates 23, 24 are firmly connected to one another by a screw connection 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Nonwoven Fabrics (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
EP86105061A 1985-07-25 1986-04-12 Evaporateur assisté par une structure capillaire Withdrawn EP0210337A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3526574A DE3526574C1 (de) 1985-07-25 1985-07-25 Kapillarunterstuetzter Verdampfer
DE3526574 1985-07-25

Publications (2)

Publication Number Publication Date
EP0210337A2 true EP0210337A2 (fr) 1987-02-04
EP0210337A3 EP0210337A3 (fr) 1989-09-06

Family

ID=6276702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105061A Withdrawn EP0210337A3 (fr) 1985-07-25 1986-04-12 Evaporateur assisté par une structure capillaire

Country Status (2)

Country Link
EP (1) EP0210337A3 (fr)
DE (1) DE3526574C1 (fr)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334142A2 (fr) * 1988-03-25 1989-09-27 ERNO Raumfahrttechnik Gesellschaft mit beschränkter Haftung Unité d'évaporation
EP0351163A1 (fr) * 1988-07-15 1990-01-17 General Electric Company Echangeur de chaleur condenseur/évaporateur avec pompage à faible chute de pression
EP0739647A1 (fr) * 1995-04-25 1996-10-30 DORNIER GmbH Evaporateur capillaire
GB2312734A (en) * 1996-05-03 1997-11-05 Matra Marconi Space Capillary evaporator
FR2752291A1 (fr) * 1996-08-12 1998-02-13 Centre Nat Etd Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
US6227288B1 (en) * 2000-05-01 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Multifunctional capillary system for loop heat pipe statement of government interest
FR2805035A1 (fr) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp Conduite de transport de chaleur du type en boucle
WO2004008045A1 (fr) * 2002-07-16 2004-01-22 Empresa Brasileira De Compressores S/A Embraco Systeme de refrigeration
WO2004031675A1 (fr) * 2002-10-02 2004-04-15 Swales & Associates, Inc. Evaporateur pour systeme de transfert thermique
WO2004040218A2 (fr) 2002-10-28 2004-05-13 Swales & Associates, Inc. Systeme de transfert de chaleur
WO2004111558A1 (fr) * 2003-06-13 2004-12-23 Strateg Trade Ab Systeme de pompe a chaleur et procede de regulation d'un tel systeme
US6889754B2 (en) 2000-06-30 2005-05-10 Swales & Associates, Inc. Phase control in the capillary evaporators
US7004240B1 (en) 2002-06-24 2006-02-28 Swales & Associates, Inc. Heat transport system
US7251889B2 (en) 2000-06-30 2007-08-07 Swales & Associates, Inc. Manufacture of a heat transfer system
EP1963768A1 (fr) * 2006-02-22 2008-09-03 Texaco Development Corporation Vaporiseur et procedes s'y rapportant
US7549461B2 (en) 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US7661464B2 (en) 2005-12-09 2010-02-16 Alliant Techsystems Inc. Evaporator for use in a heat transfer system
US7708053B2 (en) 2000-06-30 2010-05-04 Alliant Techsystems Inc. Heat transfer system
US7931072B1 (en) 2002-10-02 2011-04-26 Alliant Techsystems Inc. High heat flux evaporator, heat transfer systems
US8047268B1 (en) 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
US8109325B2 (en) 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US8136580B2 (en) 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US10345052B2 (en) 2016-12-21 2019-07-09 Hamilton Sundstrand Corporation Porous media evaporator
CN115231761A (zh) * 2022-06-24 2022-10-25 莘县金茂生物能源有限公司 一种多级水相隔离型脂肪酸生产废水处理设备
CN115289699A (zh) * 2022-08-01 2022-11-04 西安交通大学 用于冰箱或冷柜的带两相回热的蒸气压缩制冷循环系统及方法
US11656010B2 (en) * 2020-06-02 2023-05-23 Hamilton Sundstrand Corporation Evaporator with feed tube flow distributors for random gravitation and acceleration fields

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017585B (zh) * 2011-09-23 2015-01-28 北京兆阳光热技术有限公司 一种相变换热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633200C (de) * 1934-04-18 1936-07-22 Sachsenberg Akt Ges Geb Aus einer poroesen Wand bestehende Drosselvorrichtung
DE825693C (de) * 1945-04-30 1951-12-20 Gen Motors Corp Kapillarfluessigkeitsfoerdersystem, insbesondere fuer Waermeuebertragung
US3857441A (en) * 1970-03-06 1974-12-31 Westinghouse Electric Corp Heat pipe wick restrainer
US3971435A (en) * 1971-07-13 1976-07-27 Ncr Corporation Heat transfer device
GB2134236A (en) * 1983-01-13 1984-08-08 Richard William Husband Improvements in or relating to evaporative heat exchangers
US4467861A (en) * 1982-10-04 1984-08-28 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademii Nauk Sssr Heat-transporting device
WO1986001582A1 (fr) * 1984-08-24 1986-03-13 Michael Laumen Machine frigorifique ou pompe a chaleur et pompe a jet pour celle-ci

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789920A (en) * 1970-05-21 1974-02-05 Nasa Heat transfer device
JPS5960184A (ja) * 1982-09-28 1984-04-06 Fujikura Ltd ヒ−トパイプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633200C (de) * 1934-04-18 1936-07-22 Sachsenberg Akt Ges Geb Aus einer poroesen Wand bestehende Drosselvorrichtung
DE825693C (de) * 1945-04-30 1951-12-20 Gen Motors Corp Kapillarfluessigkeitsfoerdersystem, insbesondere fuer Waermeuebertragung
US3857441A (en) * 1970-03-06 1974-12-31 Westinghouse Electric Corp Heat pipe wick restrainer
US3971435A (en) * 1971-07-13 1976-07-27 Ncr Corporation Heat transfer device
US4467861A (en) * 1982-10-04 1984-08-28 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademii Nauk Sssr Heat-transporting device
GB2134236A (en) * 1983-01-13 1984-08-08 Richard William Husband Improvements in or relating to evaporative heat exchangers
WO1986001582A1 (fr) * 1984-08-24 1986-03-13 Michael Laumen Machine frigorifique ou pompe a chaleur et pompe a jet pour celle-ci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE INTERNATIONAL HEAT PIPE CONFERENCE, Tsukuba, Teil 2, Conf. 5, 14.-18. Mai 1984, Seiten 195-202, Tokyo, JP; M. TAKAOKA et a.: "Development and applications of long heat pipes" *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334142A2 (fr) * 1988-03-25 1989-09-27 ERNO Raumfahrttechnik Gesellschaft mit beschränkter Haftung Unité d'évaporation
EP0334142A3 (en) * 1988-03-25 1989-11-23 Erno Raumfahrttechnik Gesellschaft Mit Beschrankter Haftung Evaporator unit evaporator unit
EP0351163A1 (fr) * 1988-07-15 1990-01-17 General Electric Company Echangeur de chaleur condenseur/évaporateur avec pompage à faible chute de pression
EP0739647A1 (fr) * 1995-04-25 1996-10-30 DORNIER GmbH Evaporateur capillaire
GB2312734A (en) * 1996-05-03 1997-11-05 Matra Marconi Space Capillary evaporator
GB2312734B (en) * 1996-05-03 2000-05-03 Matra Marconi Space Capillary evaporator
US6241008B1 (en) 1996-05-03 2001-06-05 Matra Marconi Space Uk, Ltd. Capillary evaporator
FR2752291A1 (fr) * 1996-08-12 1998-02-13 Centre Nat Etd Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
WO1998006992A1 (fr) * 1996-08-12 1998-02-19 Centre National D'etudes Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
US6058711A (en) * 1996-08-12 2000-05-09 Centre National D'etudes Spatiales Capillary evaporator for diphasic loop of energy transfer between a hot source and a cold source
FR2805035A1 (fr) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp Conduite de transport de chaleur du type en boucle
US6227288B1 (en) * 2000-05-01 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Multifunctional capillary system for loop heat pipe statement of government interest
US7251889B2 (en) 2000-06-30 2007-08-07 Swales & Associates, Inc. Manufacture of a heat transfer system
US7708053B2 (en) 2000-06-30 2010-05-04 Alliant Techsystems Inc. Heat transfer system
US9631874B2 (en) 2000-06-30 2017-04-25 Orbital Atk, Inc. Thermodynamic system including a heat transfer system having an evaporator and a condenser
US9273887B2 (en) 2000-06-30 2016-03-01 Orbital Atk, Inc. Evaporators for heat transfer systems
US6889754B2 (en) 2000-06-30 2005-05-10 Swales & Associates, Inc. Phase control in the capillary evaporators
US9200852B2 (en) 2000-06-30 2015-12-01 Orbital Atk, Inc. Evaporator including a wick for use in a two-phase heat transfer system
US8752616B2 (en) 2000-06-30 2014-06-17 Alliant Techsystems Inc. Thermal management systems including venting systems
US8136580B2 (en) 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US8109325B2 (en) 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US8066055B2 (en) 2000-06-30 2011-11-29 Alliant Techsystems Inc. Thermal management systems
US7549461B2 (en) 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US7004240B1 (en) 2002-06-24 2006-02-28 Swales & Associates, Inc. Heat transport system
WO2004008045A1 (fr) * 2002-07-16 2004-01-22 Empresa Brasileira De Compressores S/A Embraco Systeme de refrigeration
US7931072B1 (en) 2002-10-02 2011-04-26 Alliant Techsystems Inc. High heat flux evaporator, heat transfer systems
US8047268B1 (en) 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
WO2004031675A1 (fr) * 2002-10-02 2004-04-15 Swales & Associates, Inc. Evaporateur pour systeme de transfert thermique
WO2004040218A2 (fr) 2002-10-28 2004-05-13 Swales & Associates, Inc. Systeme de transfert de chaleur
EP1588113A4 (fr) * 2002-10-28 2008-08-13 Swales Aerospace Inc Systeme de transfert de chaleur
JP2006508324A (ja) * 2002-10-28 2006-03-09 スウエールズ・アンド・アソシエイツ・インコーポレーテツド 熱伝達システム
EP1588113A2 (fr) * 2002-10-28 2005-10-26 Swales Aerospace Inc. Systeme de transfert de chaleur
WO2004111558A1 (fr) * 2003-06-13 2004-12-23 Strateg Trade Ab Systeme de pompe a chaleur et procede de regulation d'un tel systeme
US7661464B2 (en) 2005-12-09 2010-02-16 Alliant Techsystems Inc. Evaporator for use in a heat transfer system
EP1963768A1 (fr) * 2006-02-22 2008-09-03 Texaco Development Corporation Vaporiseur et procedes s'y rapportant
EP1963768A4 (fr) * 2006-02-22 2011-09-14 Texaco Development Corp Vaporiseur et procedes s'y rapportant
US10345052B2 (en) 2016-12-21 2019-07-09 Hamilton Sundstrand Corporation Porous media evaporator
US11656010B2 (en) * 2020-06-02 2023-05-23 Hamilton Sundstrand Corporation Evaporator with feed tube flow distributors for random gravitation and acceleration fields
CN115231761A (zh) * 2022-06-24 2022-10-25 莘县金茂生物能源有限公司 一种多级水相隔离型脂肪酸生产废水处理设备
CN115231761B (zh) * 2022-06-24 2024-03-08 莘县金茂生物能源有限公司 一种多级水相隔离型脂肪酸生产废水处理设备
CN115289699A (zh) * 2022-08-01 2022-11-04 西安交通大学 用于冰箱或冷柜的带两相回热的蒸气压缩制冷循环系统及方法

Also Published As

Publication number Publication date
EP0210337A3 (fr) 1989-09-06
DE3526574C1 (de) 1987-03-26

Similar Documents

Publication Publication Date Title
EP0210337A2 (fr) Evaporateur assisté par une structure capillaire
EP0334142B1 (fr) Unité d'évaporation
DE3617762C2 (de) Mit Kapillareffekt arbeitender Wärmetauscher für ein thermisches Betriebssystem
DE60305235T2 (de) Wärmetauschvorrichtung mit Verdampfer für Satellit
DE4226225C2 (de) Wärmehohlleiter
DE2820734A1 (de) Abwaermespeicher
DE4121534A1 (de) Kuehlvorrichtung
AT12048U1 (de) Vorrichtung zur übertragung von wärme
DE102007027355A1 (de) Wärmerohr sowie Kühleinrichtung für die Kryotechnik
DE2252292A1 (de) Waermetransportvorrichtung
US3603382A (en) Radial heat flux transformer
WO2024022606A1 (fr) Système de refroidissement pour le refroidissement par immersion liquide de composants électroniques
DE102014208955A1 (de) Wärmeübertragungsvorrichtung und deren Verwendung
WO2016091628A1 (fr) Module de sorption
EP0729001B1 (fr) Echangeur de chaleur
DE102008044482A1 (de) Kombinierter Verdampfer/Absorber einer mobilen Absorptionsklimaanlage
DE1917266A1 (de) Verdampfungskuehlsystem
DE2454757A1 (de) Kaeltemittelseitig umschaltbarer waermetauscher
DE102018127928A1 (de) Wärmetransporteinheit
DE102022000363A1 (de) Mehrkammer-Sorptionsmodul für große Temperaturspreizung und Betriebsverfahren desselben
DE3309968C2 (de) Thermodynamisches Prozeß-System
DE102005013457B4 (de) Elektronisches Gerät, beispielsweise Rechner mit einem Kühlsystem
DE202009005525U1 (de) Wärmeübertrager für Wärmerohr-Kondensatoren
DE1601062C3 (de) Heiz- und Kühlvorrichtung
JPH0346758B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900307

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOELLER, PETER, DIPL.-ING.

Inventor name: KREEB, HELMUT, DR.-ING.