EP0198814A2 - Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmässigung von heissem Stahlgut - Google Patents

Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmässigung von heissem Stahlgut Download PDF

Info

Publication number
EP0198814A2
EP0198814A2 EP86890073A EP86890073A EP0198814A2 EP 0198814 A2 EP0198814 A2 EP 0198814A2 EP 86890073 A EP86890073 A EP 86890073A EP 86890073 A EP86890073 A EP 86890073A EP 0198814 A2 EP0198814 A2 EP 0198814A2
Authority
EP
European Patent Office
Prior art keywords
reheating
zone part
temperature
furnace
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86890073A
Other languages
English (en)
French (fr)
Other versions
EP0198814A3 (de
Inventor
Aktiengesellschaf Voest-Alpine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0198814A2 publication Critical patent/EP0198814A2/de
Publication of EP0198814A3 publication Critical patent/EP0198814A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/201Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace walking beam furnace

Definitions

  • the invention relates to a reheating furnace for reheating and for equalizing the temperature of hot, hot-deformable, in particular to be rolled steel material to hot-forming temperature, in particular of continuously cast material, with an oven space divided into at least two zones, provided with burners and a flue gas outlet.
  • the aim is to subject the steel to be thermoformed directly to the hot shaping as soon as possible after it has been produced, that is to say without prior cooling.
  • slabs, billets or blooms are to be subjected to further hot shaping in order to save energy by using the heat contained in the steel material by the casting process.
  • the edges of the steel material have often already cooled considerably, even if the core is still at the high temperature required for hot forming. It is therefore inevitable to reheat the continuously cast material even in the so-called direct rolling of continuously cast material and to carry out a temperature compensation over the cross section.
  • heating furnaces walking beam or push furnaces
  • heating furnaces are not suitable for heating cold steel to a hot forming temperature, for which the temperature increase is only slight for hot steel; overheating of the hot steel in such heating furnaces can occur.
  • Another disadvantage is the fact that the heating furnace is underutilized, making the end product more expensive.
  • the invention aims at avoiding these disadvantages and difficulties and has as its object to create a furnace with which, considering economic aspects, reheating and temperature-equalization of hot steel to hot forming temperature is possible, the risk of overheating of the steel being eliminated and the burners provided in the furnace can be optimally used.
  • the furnace chamber is divided into a post-heating zone part and a compensation zone part, which is preferably divided by a separating weir, the - burners being arranged at the inlet end and the flue gas outlet at the outlet end in the post-heating zone part in order to form a temperature profile, at which a highest temperature at the inlet end and a lowest temperature at the outlet end of the reheating zone part is reached.
  • the steel material passes through the hottest area of the furnace immediately after entering the post-heating zone part, so that the edges or surfaces can immediately absorb the heat still required, whereupon the steel product arrives in the cooler area of the post-heating zone part, so that Overheating of both the edges and the core of the steel material can be reliably avoided.
  • the flue gas outlet is expediently arranged below the transport level of the furnace.
  • a furnace for heating long billets is known from DE-Ps 152.851. This furnace is equipped with high-speed burners to achieve good heat transfer with the lowest possible temperature differences.
  • high-speed burners are expediently arranged in the after-heating zone part above and / or below the transport plane.
  • burners which are preferably arranged above the transport level of the reheating furnace, are provided on the end face of the reheating zone part and are directed in the transport direction.
  • burners which are preferably arranged below the transport plane of the reheating furnace, in the side walls of the reheating zone part and to direct them transversely to the transport direction.
  • a preferred embodiment is characterized in that a temperature sensor for measuring the extracted flue gas temperature is provided in the flue gas outlet, which is connected in a manner known per se via a control loop to a fuel control element and / or a burner control unit.
  • a storage zone part is expediently connected upstream of the reheating zone part, in which a transport system is provided for the optional finishing of each individual steel piece, which is independent of the transport system of the reheating and compensation zone part.
  • the storage component i) is preferably equipped with a walking beam conveyor, the walking beams of which are divided into lifting tables that can be raised and lowered transversely to the conveying direction and whose length in the conveying direction corresponds approximately to the width of a piece of steel product.
  • the lifting tables can be lifted and lowered individually according to the conveying task - tracking individual steel goods or groups of steel goods for transfer to the lifting conveyor of the reheating and compensation zone part - or in the necessary combination of adjacent lifting tables.
  • FIG. 1 shows a diagrammatic view of the post-heating furnace in an oblique view
  • FIG. 2 shows a vertical section in the longitudinal direction of the furnace
  • FIG. 3 shows a cross section along the line III-III of FIG. 2 demonstrate.
  • Fig. 4 shows the detail IV of Fig. 2 on a larger scale.
  • Fig. 5 shows the temperature curve over the length of the reheating furnace in diagram form. 6 and 7 illustrate, in a representation analogous to FIG. 2, the control devices for setting a specific temperature profile in the furnace chamber.
  • the furnace chamber 1 of the reheating furnace 2 shown in the drawing is composed of three zone parts which individually treat the steel material 3 to be reheated, namely the storage zone part 5 arranged first in the conveying direction 4 of the steel material 3, which ends in the reheating zone part 6, which in turn leads to the compensating zone part 7 of the reheating furnace 2 passes over.
  • the storage zone part 5 has a low room height 8, so that the steel material 3, in the illustrated embodiment it is a continuous cast slab with its longitudinal axis 9 transverse to the conveying direction 4 of the steel material 3 through the furnace, a relatively short distance from the refractory-lined Cover 10 of the storage ion part 5. No burners are provided in the storage zone part 5.
  • the input opening 11 is closed by an insertion door 12.
  • the continuous cast slabs 3 fed into the storage zone part 5 are conveyed by means of a walking beam conveyor 13 which forms the bottom of this part in a conveying plane 14 in the conveying direction 4 from the storage zone part 5 into the reheating zone part 6 and from there by means of a separate walking beam conveyor 15 into the compensating zone part 7 and further.
  • the walking beam conveyor 15 located in the compensating zone part 7 and in the reheating zone part 6 is of conventional construction and is preferably designed as a walking beam conveyor 15 which supplies these two parts 6, 7, the walking beam conveyor 13 of the storage zone part 5 is constructed in such a way that the continuous cast slabs 3 can be conveyed individually , so that they are closely adjacent in the reheating zone even if they are used in the storage zone part 5 at different time intervals, as is the case, for example, when the continuous cast slabs are not exactly transported in batches, but batchwise to the reheating furnace.
  • the walking beam conveyor 13 of the storage zone part has lifting tables 17, which can be raised and lowered between the fixed fixed bars 16 and which are transverse to the conveying direction 4 and whose length 18 in the conveying direction 4 corresponds approximately to the width of a continuous casting slab 3.
  • the walking beam conveyor 13 also has a traveling frame 21 which can be moved in the conveying direction 4 by means of wheels 19 and in the opposite direction by means of a pressure medium cylinder 20, on which the individual lifting tables 17 are mounted such that they can be raised and lowered, etc.
  • the lifting tables 17, which are arranged transversely to the conveying direction 4 at a point along the longitudinal extent of the storage zone part 5, are raised and lowered together, so that a continuous casting slab 3 lying on these lifting tables 17 is lifted with all lifting tables 17 on which it rests.
  • a lifting frame 22 which is movably mounted on the traveling frame 21 transversely to the direction of travel 4 and which can be moved in the direction of the double arrow 24 by means of a pressure center cylinder 23, is used for lifting and lowering.
  • This lifting frame 22 is supported by rollers 25 on the one hand on the moving frame 21 and on the other hand on a support frame 26 on which the lifting tables 17 which can be raised and lowered together are, etc. via lifting wedges 27 attached to the underside of the support frame 26.
  • systems of waterproofing cups 29 are provided, each of which surrounds a supporting structure 30 of a lifting table 17 and which are fastened to the support frame 26, into which Immerse the immersion strips 31 attached to the stationary lining 28 of the furnace or the fixed beams 16 and immersion strips 32 attached to the lifting tables 17 for the purpose of sealing the furnace atmosphere.
  • the post-heating zone part 6 has a much larger furnace interior in cross section than the storage zone part, etc. the ceiling 34 and the floor 35 at a large distance 'from the conveyor plane 14 are arranged.
  • the ceiling 10 and the floor 13 of the storage zone part merge into the ceiling 34 and the floor 35 of the reheating zone part by means of vertical end walls 36, 37.
  • the upper end wall 36 In the upper end wall 36 are high-speed burners 38, etc. so-called pulse burner, installed, as illustrated in Fig. 4.
  • the end wall 36 is penetrated by a burner block 39 which has a passage opening 40 which narrows towards the furnace interior.
  • the actual burner 41 is provided on the outside of the burner block and is connected to a fuel gas supply line 42 and to a combustion air supply line 43.
  • the flame 44 burning in the passage opening 40 causes a high exit velocity of the fuel gases, which leads to a strong flue gas circulation within the reheating zone part 6.
  • additional burners 46 which are also designed as high-speed burners, are optionally provided in the end walls 36 in addition to the high-speed burners 38. These burners 46 are arranged below the conveyor level 14.
  • the flue gas outlet 48 is located at the outlet-side end 47 of the reheating zone part, etc. also below the funding level 14.
  • the compensating zone part 7 which is of approximately conventional construction, adjoins the reheating zone part 6 by means of a separating weir 49 which extends close to the steel material 3.
  • the separating weir 49 serves to keep the flue gas atmosphere of the compensating zone part 7 unaffected by that of the reheating zone part 6, so that the temperature profile within the reheating zone part 6 has only an insignificant effect on the compensating zone part 7.
  • Side wall burners 50 of conventional design are provided in the compensation zone part 7.
  • the flue gas from the outlet: partial zone part 7 is fed from the inlet end 52 of the equalizing zone part 7 to the furnace chamber of the reheating zone part 6. At the outlet-side end 53 there is a bottom opening which receives scale.
  • a temperature profile 55 can be set over its length, as shown in FIG. 5.
  • the temperature values entered in this figure represent the furnace lining temperature.
  • the highest temperature 56 occurs at the inlet end of the reheating zone part, it is approximately 1290 ° C. (at a drawing temperature of the continuous cast slabs of 1250 ° C.).
  • At the input opening 11 of the storage zone part 5 there is a temperature 57 of approximately 1200 ° C. corresponding to the average surface temperature of the heating material, and a temperature 58 of approximately 1260 ° C. at the outlet-side end 47 of the reheating zone part 6; A constant temperature of approximately 1250 ° C. is maintained over the length of the compensation zone part 7.
  • a temperature sensor 59 is provided in the flue gas outlet 48 of the reheating zone part for measuring the temperature of the extracted flue gas.
  • the temperature sensor 59 acts on a fire output controller 62 via a control circuit 60, which acts on a fuel gas control flap 63.
  • a fuel gas flow meter 64 is provided in the fuel gas Supply line 42 and in the combustion air supply line 43 there is a combustion air flow meter 65. Both the combustion air flow meter 65 and the fuel gas flow meter 64 give an input signal to a fuel / combustion air ratio controller 66, which in turn transmits an adjustment pulse to a combustion air control valve 67.
  • the amount of fuel gas and thus also the amount of combustion air is thus throttled or increased depending on the flue gas temperature.
  • the temperature sensor 59 acts on a fire output controller 62, which acts on a burner control unit 68.
  • This burner controller 68 closes or opens one or more of the high speed burners 38 and 46, i.e. the operating times or the operating cycles of individual or several high-speed burners 38, 46 are adjusted depending on the key, etc. by means of fuel gas quick-closing flaps 69 and fuel-air quick-closing flaps 70.
  • This embodiment is preferable for a larger required control range, since the stirring effect of the high-speed burners 38, 46 decreases with the square of the burner output.
  • the burners 50 of the compensating zone part 7 are regulated in a known manner, which is not shown here.
  • the burner 50 of the compensation zone part 7 is supplied by means of regulating flaps 71, 72 which are provided in the fuel gas or combustion air supply line 73, 74 leading to these burners 50.
  • a fuel gas quantity measuring device 75 or a combustion air quantity measuring device 76 is also located in these lines. The required combustion air is set via the control flaps 71, 72 after comparison of the quantity flows of the combustion air quantity and the fuel gas quantity.
  • the invention is not limited to the exemplary embodiment shown, but can also be modified in various respects.
  • the arrangement of the high-speed burners 38, 46 in the end wall 36 or in the side wall can also be selected depending on the requirements, for example a group of burners can also be dispensed with under certain circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Um heißes Stahlgut, dessen Temperaturmittelwert nur wenig unter der gewünschten Warmformgebungstemperatur liegt, dessen Kanten jedoch deutlich kühler sind als die mittlere Temperatur, wirtschaftlich auf Warmformgebungstemperatur nachzuwärmen, ist der Ofenraum eines Nachwärmofens - (2) zumindest in einen Nachwärmzonenteil (6) und einen Ausgleichszonenteil (7) zweigeteilt, wobei in dem Nachwärmzonenteil (6) die Brenner (38, 46) beim einlaufseitigen Ende (45) und der Rauchgasabzug (48) beim auslaufseitigen Ende (47) angeordnet sind, um ein Temperaturprofil (55) auszubilden, bei welchem eine höchste Temperatur beim einlaufseitigen Ende (45) und eine tiefste Temperatur beim auslaufseitigen Ende (47) des Nachwärmzonenteiles , (6) erreicht ist.

Description

  • Die Erfindung betrifft einen Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmäßigung von heißem, warm zu verformenden, insbesondere zu verwalzendem Stahlgut auf Warmformgebungstemperatur, insbesondere von stranggegossenem Gut, mit einem in mindestens zwei Zonen unterteilten, mit Brennern und einem Rauchgasabzug versehenen Ofenraum.
  • In Stahlwerken besteht das Bestreben, warmzuverformendes Stahlgut möglichst unmittelbar nach dessen Herstellung, also ohne vorherige Abkühlung, direkt der Warmformgebung zu unterwerfen. Insbesondere bei Stranggießanlagen anfallende Brammen, Knüppel oder Vorblöcke sollen zwecks Energieeinsparung unter Heranziehung der durch den Gießvorgang im Stahlgut enthaltenen Wärme der weiteren Warmformgebung unterzogen werden.
  • Dabei tritt jedoch das Problem auf, daß das Stahlgut an der Oberfläche eine niedrigere Temperatur aufweist als im Kern. Insbesondere sind die Kanten des Stahlgutes oft bereits stark abgekühlt, auch wenn der Kern noch die zum Warmverformen erforderliche hohe Temperatur aufweist. Es ist also unumgänglich, auch beim sogenannten Direkt-Walzen von stranggegossenem Material das stranggegossene Material nachzuwärmen und eine Temperaturausgleich über den Querschnitt vorzunehmen.
  • Zu diesem Zweck ist es bekannt, das heiße Stahlgut in herkömmlichen Wärmeöfen - (Hubbalken-oder Stoßöfen) einzusetzen, welche Wärmeöfen jedoch infolge ihrer Auslegung ausschließlich zum Aufheizen von kaltem Stahlgut auf Warmformgebungstemperatur für die bei heißem Stahlgut nur geringe Temperaturerhöhung nicht geeignet sind; es kann zu Überhitzungen des heißen Stahlgutes in solchen Wärmeöfen kommen. Ein weiterer Nachteil ist darin zu sehen, daß dabei der Wärmeofen nur schlecht ausgelastet ist, wodurch das Endprodukt verteuert wird.
  • Es ist in der Hüttenindustrie bekannt (vgl. Hütte, Taschenbuch für Eisenhüttenleute, 5. Auflage, Seiten 425, 806), Tieföfen zur Temperaturvergleichmäßigung von Stahlwerksblöcken zu verwenden, wobei solche Tieföfen mit Zellen zur Aufnahme je eines Blockes ausgestattet sind. Solche Tieföfen erfordern viele Brenner und ergeben eine ungleichmäßige Beheizung und weisen eine - schlechte Regelmöglichkeit auf. Es besteht die Gefahr örtlicher Überhitzungen.
  • Die Erfindung bezweckt die Vermeidung dieser Nachteile und Schwierigkeiten und stellt sich die Aufgabe, einen Ofen zu schaffen, mit dem unter Berücksichtigung wirtschaftlicher Aspekte ein Nachwärmen und ein Temperaturvergleichmäßigen von heißem Stahlgut auf Warmformgebungstemperatur möglich ist, wobei die Gefahr einer Überhitzung des Stahlgutes ausgeschaltet ist und die im Ofen vorgesehenen Brenner optimal eingesetzt werden können.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Ofenraum in einen Nachwärmzonenteil und einen von diesem vorzugsweise durch ein Trennwehr geteilten Ausgleichszonenteil zweigeteilt ist, wobei in dem Nachwärmzonenteil die - Brenner beim einlaufseitigen Ende und der Rauchgasabzug beim auslaufseitigen Ende angeordnet sind, um ein Temperaturprofil auszubilden, bei welchem eine höchste Temperatur beim einlaufseitigen Ende und eine tiefste Temperatur beim auslaufseitigen Ende des Nachwärmzonenteiles erreicht ist.
  • Durch der erfindungsgemäße bauliche Gestaltung des Nachwärmofens durchläuft das Stahlgut sofort nach Eintritt in den Nachwärmzonenteil den heißesten Bereich des Ofens, so daß die Kanten bzw. Oberflächen sofort die noch benötigte Wärme aufnehmen können, worauf das Stahlgut in den kühleren Bereich des Nachwärmzonenteiles gelangt, so daß Überhitzungen sowohl der Kanten als auch des Kernes des Stahlgutes zuverlässig vermieden werden.
  • Zur besseren Durchmischung der Ofenatmosphäre ist zweckmäßig der Rauchgasabzug unterhalb der Transportebene des Ofens angeordnet.
  • Ein Ofen zur Erwärmung von langen Knüppeln ist aus der DE-Ps 152.851 bekannt. Dieser Ofen ist zur Erzielung eines guten Wärmeüberganges bei geringstmöglichen Temperaturdifferenzen mit Hochgeschwindigkeitsbrennern ausgestattet.
  • Zweckmäßig sind erfindungsgemäß Hochgeschwindigkeitsbrenner im Nachwärmzonenteil oberhalb und/oder unterhalb der Transportebene angeordnet.
  • Von besonderem Vorteil für die Einstellung des gewünschten Temperaturprofiles ist es, wenn Brenner, die vorzugsweise oberhalb der Transportebene des Nachwärmofens angeordnet sind, an der Stirnseite des Nachwärmzonenteiles vorgesehen und in Transportrichtung gerichtet sind.
  • Für die Temperaturführung ist es weiters günstig, Brenner, die vorzugsweise unterhalb der Transportebene des Nachwärmofens angeordnet sind, in den Seitenwänden des Nachwärmzonenteiles vorzusehen und quer zur Transportrichtung zu richten.
  • Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß im Rauchgasabzug ein Temperaturfühler zur Messung der abgezogenen Rauchgastemperatur vorgesehen ist, der in an sich bekannter Weise über einen Regelkreis mit einem Brennstoffregelorgan und/oder einem Brennersteuerwerk verbunden ist.
  • Um periodisch ungleichmäßig anfallendes Stahlgut nachwärmen zu können, ist zweckmäßig dem Nachwärmzonenteil ein Speicherzonenteil vorgeschaltet, in dem ein vom Transportsystem des Nachwärm-und Ausgleichszonenteiles unabhängiges Transportsystem zum wahlweisen Nachschlichten jedes einzelnen Stahlgutstückes vorgesehen ist.
  • Vorzugsweise ist der Speicherzonentei) mit einem Hubbalkenförderer ausgestattet, dessen Hubbalken quer zur Förderrichtung in einzeln heb-und senkbare Hubtische geteilt ausgebildet sind, deren Länge in Förderrichtung etwa der Breite eines Stahlgutstückes entspricht. Die Hubtische sind entsprechend der Förderaufgabe -Nachführen einzelner Stahlgutstücke oder Gruppen von Stahlgutsstücken zur Übergabe an den Hubförderer des Nachwärm-und Ausgleichszonenteiles -einzeln oder in der dafür notwendigen Kombination jeweils benachbarter Hubtische heb-und senkbar.
  • Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert, wobei Fig. 1 einen - schematische Ansicht des Nachwärmofens im Schrägriß darstellt, Fig. 2 einen in Längsrichtung des Ofens geführten Vertikalschnitt und Fig. 3 einen Querschnitt entlang der Linie III-III der Fig. 2 zeigen. Fig. 4 zeigt das Detail IV der Fig. 2 in größerem Maßstab. Fig. 5 gibt den Temperaturverlauf über die Länge des Nachwärmofens in Diagrammform wieder. Die Fig. 6 und 7 veranschaulichen in zu Fig. 2 analoger Darstellung die Regeleinrichtungen zur Einstellung eines bestimmten Temperaturprofiles im Ofenraum.
  • Der Ofenraum 1 des in der Zeichnung dargestellten Nachwärmofens 2 setzt sich aus drei das nachzuwärmende Stahlgut 3 individuell behandelnden Zonenteilen zusammen, näm lich dem in Förderrichtung 4 des_ Stahlgutes 3 zuerst angeordneten Speicherzonenteil 5, der in den Nachwärmzonenteil 6 mündet, welcher wiederum in den Ausgleichszonenteil 7 des Nachwärmofens 2 übergeht.
  • Der Speicherzonenteil 5 weist eine niedrig bemessene Raumhöhe 8 auf, so daß das Stahlgut 3, im dargestellten Ausführungsbeispiel handelt es sich um Stranggußbrammen, die mit ihrer Längsachse 9 quer zur Förderrichtung 4 des Stahlgutes 3 durch den Ofen liegen, einen relativ geringen Abstand zur feuerfest ausgekleideten Decke 10 des Speicherionenteiles 5 aufweist. Im Speicherzonenteil 5 sind keinerlei Brenner vorgesehen. Die Eingabeöffnung 11 ist von einer Einlegetür 12 geschlossen.
  • Die in den Speicherzonenteil 5 aufgegebenen Stranggußbrammen 3 werden mittels eines den Boden dieses Teiles bildenden Hubbalkenförderers 13 in einer Förderebene 14 in Förderrichtung 4 vom Speicherzonenteil 5 in den Nachwärmzonenteil 6 und von diesem mittels eines eigenen Hubbalkenförderers 15 in den Ausgleichszonenteil 7 und weiter gefördert. Während der im Ausgleichszonenteil 7 und im Nachwärmzonenteil 6 befindliche Hubbalkenförderer 15 herkömmlicher Bauart ist und vorzugsweise als ein diese beiden Teile 6, 7 gemeinsam versorgender Hubbalkenförderer 15 ausgebildet ist, ist der Hubbalkenförderer 13 des Speicherzonenteiles 5 derart gebaut, daß die Stranggußbrammen 3 einzeln gefördert werden können, so daß sie im Nachwärmzonenteil auch dann eng benachbart liegen, wenn sie in den Speicherzonenteil 5 in unterschiedlich großen zeitlichen Abständen eingesetzt werden, wie dies beispielsweise dann der Fall ist, wenn die Stranggußbrammen nicht genau im Ziehtakt, sondem chargenweise zum Nachwärmofen transportiert werden.
  • Der Hubbalkenförderer 13 des Speicherzonenteils weist quer zur Förderrichtung 4 geteilte, zwischen ortsfesten Festbalken 16 liegende, heb-und senkbare Hubtische 17 auf, deren Länge 18 in Förderrichtung 4 etwa der Breite einer Stranggußbramme 3 entspricht. Der Hubbalkenförderer 13 weist weiters einen mittels Räder 19 in Förderrichtung 4 und entgegengesetzt mittels eines Druckmittelzylinders 20 bewegbaren Fahrrahmen 21 auf, an dem die einzelnen Hubtische 17 heb-und senkbar gelagert sind, u.zw. werden jeweils die Hubtische 17, die quer zur Förderrichtung 4 an einer Stelle der Längserstreckung des Speicherzonenteiles 5 angeordnet sind, gemeinsam gehoben und gesenkt, so daß eine auf diesen Hubtischen 17 liegende Stranggußbramme 3 mit allen Hubtischen 17 gehoben wird, auf denen sie aufliegt.
  • Zum Heben und Senken dient ein am Fahrrahmen 21 quer zur Fahrtrichtung 4 fahrbar gelagerter Hubrahmen 22, der mittels eines Druckmittefzylinders 23 in Richtung des Doppelpfeiles 24 bewegbar ist. Dieser Hubrahmen 22 stützt sich über Laufrollen 25 einerseits am Fahrrahmen 21 und andererseits an einem Tragrahmen 26, an dem die gemeinsam heb-und senkbaren Hubtische 17 montiert sind, ab, u.zw. über an der Unterseite des Tragrahmens 26 befestigte Hubkeile 27.
  • Zwischen der ortsfesten feuerfesten Ausmauerung 28 des Ofens und den Hubtischen 17 bzw. zwischen den Hubtischen 17 und den Festbalken 16 sind Systeme von Wasserdichtungstassen 29, die jeweils eine Unterstützungskonstruktion 30 eines Hubtisches 17 umgeben und die am Tragrahmen 26 befestigt sind, vorgesehen, in die an der ortsfesten Ausmauerung 28 des Ofens bzw. den Festbalken 16 befestigte Tauchleisten 31 und weiters an den Hubtischen 17 befestigte Tauchleisten 32 zwecks Abdichtung der Ofenatmosphäre eintauchen.
  • Mit dem Hubbalkenförderer 13 des Speicherzonenteiles 5 oder durch Gruppen solcher Stranggußbrammen ist es somit möglich, eine einzelne Stranggußbramme 3 schrittweise und unabhängig vom Fördertakt des Hubbalkenfördersystems 15 im Nachwärm-und Ausgleichszonenteil zu am Ausgang 33 des Speicherzonenteiles 5 bereits liegenden Brammen 3 zu fördern, so daß in den Nachwärmzonenteil in konstantem Abstand Stranggußbrammen eintreten und keine Leerstelle auftritt.
  • Der Nachwärmzonenteil 6 weist im Querschnitt einen wesentlich größeren Ofeninnenraum auf als der Speicherzonenteil, u.zw. sind die Decke 34 und der Boden 35 in großem Abstand' von der Förderebene 14 angeordnet. Die Decke 10 und der Boden 13 des Speicherzonenteiles gehen in die Decke 34 und den Boden 35 des Nachwärmzonenteiles mittels vertikaler Stirnwände 36, 37 über.
  • In der oberen Stirnwand 36 sind Hochgeschwindigkeitsbrenner 38, u.zw. sogenannte Impulsbrenner, eingebaut, wie dies in Fig. 4 veranschaulicht ist. Die Stirnwand 36 wird von einem Brennerstein 39 durchsetzt, der eine sich zum Ofeninnenraum verengende Durchlaßöffnung 40 aufweist. An der Außenseite des Brennersteins ist der eigentliche Brenner 41 vorgesehen, der an eine Brenngaszuführungsleitung 42 und an ein Brennluftzuführungsleitung 43 angeschlossen ist. Die in der Durchlaßöffnung 40 brennende Flamme 44 bewirkt eine hohe Austrittsgeschwindigkeit der Brenngase, wodurch es zu einer starken Rauchgaszirkulation innerhalb des Nachwärmzonenteiles 6 kommt.
  • Nahe beim einlaufseitigen Ende 45 des Nachwärmzonenteiles 6 sind gegebenenfalls zusätzlich zu den Hochgeschwindigkeitsbrennern 38 in der Stirnwand 36 noch in den Seitenwänden weitere Brenner 46, die ebenfalls als Hochgeschwindigkeitsbrenner ausgebildet sind, vorgesehen. Diese Brenner 46 sind unterhalb der Förderebene 14 angeordnet. Am auslaufseitigen Ende 47 des Nachwärmzonenteiles liegt der Rauchgasabzug 48, u.zw. ebenfalls unterhalb der Förderebene 14.
  • An den Nachwärmzonenteil 6 schließt der Ausgleichszonenteil 7, der in etwa herkömmlicher Bauart gestaltet ist, mittels eines nahe zum Stahlgut 3 reichenden Trennwehrs 49 an. Das Trennwehr 49 dient dazu, die Rauchgasatmosphäre des Ausgleichszonenteiles 7 von der des Nachwärmzonenteiles 6 unbeeinflußt halten zu können, so daß sich der Temperaturverlauf innerhalb des Nachwärmzonenteiles 6 auf den Ausgleichszonenteil 7 nur unwesentlich auswirkt. Im Ausgleichszonenteil 7 sind Seitenwandbrenner 50 herkömmlicher Bauart vorgesehen. Das Rauchgas aus dem Ausg:leichszonenteil 7 wird vom einlaufseitigen Ende 52 des Ausgleichszonenteiles 7 dem Ofenraum des Nachwärmzonenteiles 6 zugeführt. Beim auslaufseitigen Ende 53 ist eine anfallenden Zunder aufnehmende Bodenöffnung vorgesehen.
  • Im dem Nachwärmofen läßt sich über seine Länge ein Temperaturprofil 55 einstellen, wie es in Fig. 5 dargestellt ist. Die in dieser Figur eingetragenen Temperaturwerte stellen die Ofenausmauerungstemperatur dar. Die höchste Temperatur 56 tritt am Eingangsende des Nachwärmzonenteiles auf, sie beträgt etwa 1290°C'(bei einer Ziehtemperatur der Stranggußbrammen von 1250°C). An der Eingabeöffnung 11 des Speicherzonenteiles 5 herrscht entsprechend der mittleren Oberflächentemperatur des Wärmgutes eine Temperatur 57 von etwa 1200°C, am auslaufseitigen Ende 47 des Nachwärmzonenteiles 6 eine Temperatur 58 von etwa 1260°C; über die Länge des Ausgleichszonenteiles 7 wird eine konstante Temperatur von etwa 1250°C gehalten.
  • Wesentlich für den erfindungsgemäßen Nachwärmofen 2 ist es, daß im Nachwärmzonenteil 6 des Rauchgas vom ein laufseitigen Ende 45 zum auslaufseitigen Ende 47 geführt ist und beim einlaufseitigen Ende 45 die höchste Temperatur 56 herrscht. Durch diese Maßnahmen gelingt es, in kurzer Zeit die kalten Oberflächenstellen der Stranggußbrammen 3 ohne örtliche Überhitzung aufzuwärmen.
  • Zur Regelung bzw. Konstanthaltung des gewünschten Temperaturprofiles im Nachwärmofen 2 ist im Rauchgasabzug 48 des Nachwärmzonenteiles ein Temperaturfühler 59 zur Messung der Temperatur des abgezogenen Rauchgases vorgesehen. Gemäß der in Fig. 6 dargestellten Ausführungsform wird durch den Temperaturfühler 59 über einen Regelkreis 60 ein Feuerleistungsregler 62 beaufschlagt, der auf eine Brenngasregelklappe 63 wirkt. In der Brenngaszuführleitung 42 ist ein Brenngasmengenmesser 64 vorgesehen und in der Brennluftzuführleitung 43 befindet sich ein Brennlufimengenmesser 65. Sowohl der Brennluftmengenmesser 65 als auch der Brenngas mengenmesser 64 geben ein Eingangssignal an einen Brennstoff/Brennluft-Verhältnisregler 66, der wiederum einen Verstellimpuls an eine Brennluftregelklappe 67 weitergibt.
  • Gemäß der in Fig. 6 dargestellten Ausführungsform wird somit je nach Rauchgastemperatur die Brenngasmenge und damit auch die Brennluftmenge gedrosselt bzw. erhöht.
  • Bei der in Fig. 7 dargestellten Ausführungsvariante wirkt der Temperaturfühler 59 auf einen Feuerleistungsregler 62, der auf ein Brennersteuerwerk 68 wirkt. Dieses Brennersteuerwerk 68 schließt oder öffnet einzelne oder mehrere der Hochgeschwindigkeitsbrenner 38 und 46, d.h. es werden die Einsatzzeiten bzw. die Einsatzzyklen einzelner oder mehrerer Hochgeschwindigkeitsbrenner 38, 46-tastabhängig verstellt, u.zw. mittels Brenngasschnellschlußklappen 69 und Brennluftschnellschlußklappen 70. Diese Ausführungsform ist bei einem größeren erforderlichen Regelbereich vorzuziehen, da die Rührwirkung der Hochgeschwindigkeitsbrenner 38, 46 mit dem Quadrat der Brennerleistung abnimmt.
  • Bei beiden Ausführungsformen der Brennerregelung im Nachwärmzonenteil werden die Brenner 50 des Ausgleichszonenteiles 7 in bekannter Weise geregelt, die hier nicht weiter dargestellt ist. Die Versorgung der Brenner 50 des Ausgleichszonenteiles 7 geschieht mittels Regelklappen 71, 72, die in der zu diesen Brennern 50 führenden Brenngas- bzw. Brennluftzuführungsleitung 73, 74 vorgesehen sind. In diesen Leitungen befindet sich auch ein Brenngasmengenmeßgerät 75 bzw. ein Brennluftmengenmeßgerät 76. Die erforderliche Brennluft wird nach Vergleich der Mengenströme der Brennluftmenge und der Brenngasmenge über die Regelklappen 71, 72 eingestellt.
  • Die Erfindung beschränkt sich nicht auf das dargestellte Ausführungsbeispiel, sondern sie kann auch in verschiedener Hinsicht modifiziert werden. Beispielsweise kann auf einen Speicherzonenteil 5 bei taktweiser Stahlgutzuführung verzichtet werden. Auch ist die Anordnung der Hochgeschwindigkeitsbrenner 38, 46 in der Stirnwand 36 bzw. in der Seitenwand je nach den Erfordernissen wählbar, beispielsweise kann auf eine Gruppe von Brennern unter Umständen auch verzichtet werden.

Claims (8)

1. Nachwärmofen (2) zum Nachwärmen und zur Temperaturvergleichmäßigung von heißem, warm zu verformenden, insbesondere zu verwalzendem Stahlgut (3) auf Warmformgebungstemperatur, insbesondere von stranggegossenem Gut, mit einem in mindestens zwei Zonen (6, 7) unterteilten, mit Brennern (38) und einem Rauchgasabzug (48) versehenen Ofenraum, dadurch gekennzeichnet, daß der Ofenraum in einen Nachwärmzonenteil (6) und einen von diesem vorzugsweise durch ein Trennwehr (49) geteilten Ausgleichszonenteil (7) zweigeteilt ist, wobei in dem Nachwärmzonenteil (6) die Brenner (38, 46) beim einlaufseitigen Ende (45) und der Rauchgasabzug (48) beim auslaufseitigen Ende (47) angeordnet sind, um ein Temperaturprofil (55) auszubilden, bei welchem eine höchste Temperatur (56) beim einlaufseitigen Ende (45) und eine tiefste Temperatur (58) beim auslaufseitigen Ende (47) des Nachwärmzonenteiles (6) erreicht ist.
2. Nachwärmofen nach Anspruch 1, dadurch gekennzeichnet, daß der Rauchgasabzug (48) unterhalb der Transportebene (14) des Ofens angeordnet ist.
3. Nachwärmofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Hochgeschwindigkeitsbrenner (38, 46) im Nachwärmzonenteil (6) oberhalb undloder unterhalb der Transportebene (14) angeordnet sind.
4. Nachwärmofen nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Brenner (38), die vorzugsweise oberhalb der Transportebene (14) des Nachwärmofens (2) angeordnet sind, an der Stirnseite (36) des Nachwärmzonenteiles (6) vorgesehen und in Transportrichtung (4) gerichtet sind.
5. Nachwärmofen nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Brenner (46), die vorzugsweise unterhalb der Transportebene (14) des Nachwärmofens (2) angeordnet sind, in den Seitenwänden des Nachwärmzonenteiles (6) vorgesehen und quer zur Transportrichtung (4) gerichtet sind.
6. Nachwärmofen nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Rauchgasabzug (48) ein Temperaturfühler (59) zur Messung der abgezogenen Rauchgastemperatur vorgesehen ist, der in an sich bekannter Weise über einen Regelkreis (60, 62) mit einem Brennstoffregelorgan (63) und/oder einem Brennersteuerwerk (68) verbunden ist.
7. Nachwärmofen nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß dem Nachwärmzonenteil (6) ein Speicherzonenteil (5) vorgeschaltet ist, in dem ein vom Transportsystem (15) des Nachwärm-und Ausgleichszonenteiles (6, 7) unabhängiges Transportsystem (13) zum wahlweisen Nachschlichten jedes einzelnen Stahlgutstückes (3) vorgesehen ist.
8. Nachwärmofen nach Anspruch 7, dadurch gekennzeichnet, daß der Speicherzonenteil (5) mit einem Hubbalkenförderer (13) ausgestattet ist, dessen Hubbalken quer zur Förderrichtung in einzeln heb-und senkbare Hubtische (17) geteilt ausgebildet sind, deren Länge (18) in der Förderrichtung - (4) etwa der Breite eines Stahlgutstückes (3) entspricht, wobei jeweils die quer zur Förderrichtung - (4) benachbarten Hubtische (17) gemeinsam heb-und senkbar sind.
EP86890073A 1985-04-04 1986-03-20 Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmässigung von heissem Stahlgut Withdrawn EP0198814A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1022/85 1985-04-04
AT0102285A AT381789B (de) 1985-04-04 1985-04-04 Nachwaermofen zum nachwaermen und zur temperaturvergleichmaessigung von heissem stahlgut

Publications (2)

Publication Number Publication Date
EP0198814A2 true EP0198814A2 (de) 1986-10-22
EP0198814A3 EP0198814A3 (de) 1987-05-27

Family

ID=3505037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86890073A Withdrawn EP0198814A3 (de) 1985-04-04 1986-03-20 Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmässigung von heissem Stahlgut

Country Status (4)

Country Link
EP (1) EP0198814A3 (de)
JP (1) JPS61231117A (de)
CN (1) CN86102287A (de)
AT (1) AT381789B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788331A2 (de) * 2005-11-21 2007-05-23 Novac Engineerig Transportsystem für zu wärmebehandelnde mechanische Elemente

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169885C (zh) 1998-12-25 2004-10-06 日本巴卡莱近估股份有限公司 形成耐损伤性优异的润滑薄膜用水系金属表面处理组合物
FR2853959B1 (fr) * 2003-04-18 2005-06-24 Stein Heurtey Procede de controle de l'homogeneite de temperature des produits dans un four de rechauffage de siderurgie, et four de rechauffage
FR2901868B1 (fr) * 2006-06-01 2009-03-06 Cmi Thermline Services Soc Par Four de rechauffage a zone de defournement perfectionnee
CN102851462B (zh) * 2012-08-14 2013-09-04 苏州汇科机电设备有限公司 热处理炉
CN110260651B (zh) * 2019-07-22 2024-06-18 镇江龙源铝业有限公司 一种用于铝带的连续加热装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2259639A1 (de) * 1971-12-06 1973-06-20 Kawasaki Heavy Ind Ltd Nachwaermofen oder vorrichtung mit vorerhitzung
DE2723626A1 (de) * 1977-05-25 1978-11-30 Chugai Ro Kogyo Kaisha Ltd Aufheizverfahren in einer heisswalzstrasse und nachwaermofen zur durchfuehrung des verfahrens
JPS5820301A (ja) * 1981-07-27 1983-02-05 Nippon Steel Corp 鋼材の熱間圧延方法および熱処理炉
DE3310867A1 (de) * 1983-03-25 1984-10-04 Mannesmann AG, 4000 Düsseldorf Giesswalzanlage zum walzen von stranggiessmaterial

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322874C1 (de) * 1983-06-24 1984-10-11 Friedrich Wilhelm Dipl.-Ing. 7761 Moos Elhaus Anlage mit einem Durchlaufofen zum Anwaermen oder Waermebehandeln von Stranggussbarren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2259639A1 (de) * 1971-12-06 1973-06-20 Kawasaki Heavy Ind Ltd Nachwaermofen oder vorrichtung mit vorerhitzung
DE2723626A1 (de) * 1977-05-25 1978-11-30 Chugai Ro Kogyo Kaisha Ltd Aufheizverfahren in einer heisswalzstrasse und nachwaermofen zur durchfuehrung des verfahrens
JPS5820301A (ja) * 1981-07-27 1983-02-05 Nippon Steel Corp 鋼材の熱間圧延方法および熱処理炉
DE3310867A1 (de) * 1983-03-25 1984-10-04 Mannesmann AG, 4000 Düsseldorf Giesswalzanlage zum walzen von stranggiessmaterial

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 7, Nr. 95 (M-209)[1240], 21. April 1983; & JP-A-58 20 301 (SHIN NIPPON SEITETSU K.K.) 05-02-1983 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788331A2 (de) * 2005-11-21 2007-05-23 Novac Engineerig Transportsystem für zu wärmebehandelnde mechanische Elemente
EP1788331A3 (de) * 2005-11-21 2008-04-23 Novac Engineerig Transportsystem für zu wärmebehandelnde mechanische Elemente

Also Published As

Publication number Publication date
AT381789B (de) 1986-11-25
EP0198814A3 (de) 1987-05-27
ATA102285A (de) 1986-04-15
JPS61231117A (ja) 1986-10-15
CN86102287A (zh) 1986-10-01

Similar Documents

Publication Publication Date Title
DE60124691T2 (de) Verfahren zum betrieb eines heizofens mit regenerativen brennern
DE2511211C3 (de) Ofen für industrielle Zwecke und Bäkkereibetriebe
EP1812766B1 (de) Verfahren zur regelung des betriebes eines schüttgutrostkühlers
DE2428090B2 (de) Temperaturregelverfahren fuer einen mehrzonendurchlaufofen
DE1956495C3 (de) Vorherd für glasverarbeitende Maschinen
DE3131514C1 (de) Verfahren zum Kuehlen von Kuehlgutbetten und Stauvorrichtung zur Durchfuehrung des Verfahrens
DE2337282C3 (de) Strahlwand-gasbeheizte Fließbettwärmebehandlungsvorrichtung
EP0198814A2 (de) Nachwärmofen zum Nachwärmen und zur Temperaturvergleichmässigung von heissem Stahlgut
DE1558020A1 (de) Durchlaufofen
DE3436976C2 (de) Vorherd für geschmolzenes Glas
EP2639536B1 (de) Ofenanlage sowie Verfahren zum Betreiben der Ofenanlage
DD149383A5 (de) Verfahren und vorrichtung zum kontinuierlichen waermebehandeln von vereinzeltem,langgestrecktem metallischem gut
EP0165586A2 (de) Anlage mit einem Wärmofen für auf Länge geschnittene Strangstücke einer Stranggiessanlage
DE2119006C3 (de) Vorrichtung zum Kühlen von in einem Ofensystem gebranntem Material, insbesondere von Zementklinker
EP0179050A2 (de) Ofen zur Wärmebehandlung von Leichtmetallbarren
EP0036609A1 (de) Verfahren und Vorrichtung zum Zünden eines Sintergemisches
DE1907494C3 (de) Hubbalkenofen
CH653367A5 (de) Verfahren und schmelzofen fuer metalle und metallegierungen mit einer ueber einen abgaskanal verbundenen waermeisolierten kammer.
DE69011436T2 (de) Vorrichtung zum Vorheizen einer Giessdüse für geschmolzenes Metall und mit dieser Vorrichtung ausgerüstete Metallgiesseinrichtung.
DE2337362A1 (de) Vorrichtung zum sintern von erz auf einer kette
DE19731753B4 (de) Reflow-Lötanlage
DE481367C (de) Tunnelofen zum Kuehlen von Glaswaren
AT526114B1 (de) Vorheizstation zum Vorheizen einer Schmelzetransportvorrichtung
DD146847A1 (de) Kuehltunnel fuer die gesteuerte zwangskuehlung von erhitztem gut,insbesondere von gussstuecken
DE3842290C1 (en) Heating furnace for billets, ingots, slabs, rough strips and similar products to be heated

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOEST-ALPINE AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19871119

17Q First examination report despatched

Effective date: 19881215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890426

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIE ERFINDER HABEN AUF IHRE NENNUNG VERZICHTET.