EP0193837B1 - Générateur de champ magnétique pour système d'accélération de particules - Google Patents

Générateur de champ magnétique pour système d'accélération de particules Download PDF

Info

Publication number
EP0193837B1
EP0193837B1 EP86102393A EP86102393A EP0193837B1 EP 0193837 B1 EP0193837 B1 EP 0193837B1 EP 86102393 A EP86102393 A EP 86102393A EP 86102393 A EP86102393 A EP 86102393A EP 0193837 B1 EP0193837 B1 EP 0193837B1
Authority
EP
European Patent Office
Prior art keywords
quadrupole
windings
conductor arrangement
triplet
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86102393A
Other languages
German (de)
English (en)
Other versions
EP0193837A2 (fr
EP0193837A3 (en
Inventor
Andreas Dr Jahnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0193837A2 publication Critical patent/EP0193837A2/fr
Publication of EP0193837A3 publication Critical patent/EP0193837A3/de
Application granted granted Critical
Publication of EP0193837B1 publication Critical patent/EP0193837B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means

Definitions

  • microtrons With known smaller, circularly designed electron accelerator systems, which are also referred to as "microtrons", particle energies of up to approximately 100 MeV can be achieved with normally conducting magnetic field generating windings. These systems can in particular also be implemented as so-called race track microtrons.
  • the particle trajectories of this type of accelerator systems are composed of two semicircles, each with a corresponding 180 ° deflection magnet, and of two straight track sections (cf. "Nucl. Instr. And Meth.”, Vol. 177, 1980, pages 411 to 416 or Vol. 204, 1982, pages 1 to 20).
  • the magnetic field can be increased with unchanged dimensions of the particle path. Such an increase can be made in particular with superconducting magnets.
  • low-energy electrons are injected into a microtron with a very low magnetic field, which also has superconducting magnet windings, a number of possible field error sources must be taken into account in order to keep the electron losses small during the acceleration phase.
  • the field level for low-energy shot electrons of, for example, 100 keV with a radius of curvature of the accelerator system of, for example, 0.5 m is only about 2.2 mT.
  • Eddy currents in metallic parts of the magnetic device or in its conductors can also lead to corresponding disturbances.
  • shielding currents in the conductors of a superconducting winding or so-called frozen magnetic fluxes in these conductors may represent such sources of interference.
  • the electron accelerator system to be removed has, in each case, the 180 '' magnet with a main winding which generates a dipole field and an additional winding which focuses the particles onto the particle path.
  • a focusing solenoid system is provided in the area of the straight track sections.
  • the normally conductive deflection magnets enclose the corresponding curved section of the particle path with their iron yoke for reasons of the desired field accuracy, so that the synchrotron radiation occurring there cannot be used.
  • the particles in known accelerator systems are generally only at a higher field level, i.e. shot with higher energy. Then the mentioned interference effects are only of minor or subordinate importance.
  • operating the accelerator systems in this way requires corresponding pre-accelerators and is therefore correspondingly complex.
  • the object of the present invention is to design the magnetic field generating device of a particle accelerator system mentioned at the outset such that it can be used to accelerate relatively large currents of electrically charged particles to relatively high energy levels, in the case of electrons, for example to several 100 MeV, without any particular Pre-accelerators are required.
  • quadrupole triplets Systems consisting of three quadrupole windings or coils arranged in series, so-called quadrupole triplets, for focusing beams of electrically charged particles are generally known.
  • a beam guiding system emerges which comprises several such quadrupole triplets in straight lines cut its particle path.
  • double-telescopic beam guidance systems can also be formed, each comprising two quadrupole triplets, which are surrounded symmetrically by the same drift sections of predetermined length.
  • Each quadrupole triplet of such a system is electrically excited in such a way that both the horizontal and the vertical focusing plane coincide with the beginning of the preceding or the end of the following drift path, as seen in the beam guidance direction.
  • FIG. 1 indicates the particle path of a magnetic field generating device with additional windings according to the invention.
  • Figure 2 shows schematically such an additional winding in perspective.
  • FIGS. 3 and 4 show two cross sections through such an additional winding. In the figures, the same parts are provided with the same reference symbols.
  • the magnetic field generating device is to be provided in particular for electronically known accelerator systems of the race track type ("race track microtrons").
  • the dipole deflection magnets required for this are bent semicircularly in accordance with the curved particle path (see, for example, "IEEE Trans. Nucl. Sci.”, Vol. NS-30, No.4, August 1983, pages 2531 to 2533). Since in particular end energies of the particles of a few 100 MeV are aimed for, the main windings of the deflection magnets are preferably created with superconducting material because of the high field strengths required.
  • quadrupole fields are to be formed with additional windings, which at the same time enable an undisturbed outlet of the synchrotron radiation.
  • additional focusing of the electron beam can advantageously be achieved during the still low-energy acceleration phase of the electrons, so that superconducting main windings of the deflection magnets can then also be used.
  • the superconducting deflection magnets can therefore also be used for fields between approximately 2 mT and 100 mT during electron acceleration.
  • the corresponding additional windings for generating the additional quadrupole fields are advantageously arranged in the region of the superconducting deflection magnets.
  • Additional windings can be created both with normally conducting and in particular with superconducting conductors. They are indicated schematically in FIG. 1 as a top view, with the superconducting main windings of the 180 ° deflection magnets being omitted for reasons of clarity.
  • the particle track 2 of the racetrack type shown in FIG. 1 has two curved track sections A 1 and A 2 , between which straight track sections A 3 and A 4 extend.
  • a conductor arrangement 3 or 4 is provided with a corresponding curvature of its conductor parts, each of which is a triplet of three quadrupole windings 5 to 7 or 8 to 10 which are arranged one behind the other and are electrically connected to one another, as seen in the beam guidance direction are executed.
  • the two quadrupot triplets 3 and 4 form a double telescopic beam guidance system.
  • Corresponding systems with quadrupole triplets of this type are known per se (cf., for example, "Nucl. Instr.
  • such triplets can be used to transmit a beam onto a point on the particle path both vertically
  • a particle stream denoted by S which is formed in the straight section A 4 of the particle path by approximately parallel-flying particles, is focused on a point P by means of the quadrupole triplet _3 as beam S ' , which lies approximately in the middle of the axial extent of the straight section A 3 of the particle path 2.
  • this particle beam S ' which is focused on the point P and then diverges again after this point, into the particle beam formed from parallel-flying particles S in the straight section A 4 of the particle path.
  • Such a system with a point-to-parallel and parallel-to-point imaging is called double-telescopic.
  • the current flow directions to be set for this in the windings of the quadrupole coils 5 to 7 or 8 to 10 shown in the top view of FIG. 1 are illustrated by single arrowed lines on the windings lying above the particle path.
  • FIG. 1 a conductor arrangement for generating superimposed quadrupole fields, which form a triplet, is shown in perspective.
  • This quadrupole triplet is, for example, the triplet 4 according to FIG. 1.
  • the magnetic quadrupole fields of the triplet are generated by two current conductors 12 to 13, which are each arranged in parallel planes on one side with respect to the plane in which the particle path 2 lies .
  • the lateral radiation of synchrotron light occurring at higher energies which is to be illustrated by arrowed, dash-dotted lines 11, is not impeded.
  • the triplet is composed of three quadrupoles and two drift sections, the lengths Iq and I d of which are in the ratio Iq: l d : lq: l d : lq as 0.125 :: 0.25: 0.25: 0.25: 0.125.
  • the field strength of the quadrupole fields should be significantly higher than that of the interference fields.
  • a dipole field of 70 mT which corresponds to an electron energy of approximately 10 MeV, includes a quadrupole field with a gradient of approximately 0.18 T / m. This - gradient requires an electrical flooding of the Tripletspulen 12 to 14 cm of about 700 ampere-turns at 4 distance from the electron orbit. 2
  • the conductors of the quadrupole triplets can advantageously be installed in a simple manner in the respective deflection magnets. This fact is readily apparent from Figures 3 and 4.
  • 3 schematically shows a cross section through the quadrupole coil 6 of the conductor arrangement forming the quadrupole triplet 3 according to FIG. 1.
  • the quadrupole coil 6 is formed by an upper conductor turn 14 and a lower conductor turn 15. These turns are arranged on both sides of a plane E, in which the particle path 2 and the radius of curvature R of the deflection magnet lie.
  • the particle trajectory 2 passes through the origin of a coordinate system with R and Z as coordinates, where Z is perpendicular to the plane E or to R.
  • the conductor turns 14 and 15 should be arranged symmetrically with respect to the plane E according to the invention.
  • a quadrupole field can be generated with these conductor turns, which has a focusing effect of +45 ° on the particle beam.
  • the quadrupole field is illustrated by field lines 16, while the focussing or defocusing direction of the Lorentz force is indicated by dashed lines 17 and 17 '.
  • This quadrupole field is superimposed by a dipole field, indicated by field lines 18, which is generated by main windings 19 or 20 of the 180 0 deflection magnet.
  • the two main windings 19 and 20 are approximately symmetrical on both sides of the plane E.
  • a cross-section through the quadrupole coil 7 of the same quadrupole triplet 3 is shown schematically in FIG.
  • the current flow directions in the upper turn 14 and in the lower turn 15 of this coil 7 are opposite to the current flow directions in the adjacent quadrupole coil 6 of the triplet 3, so that the quadrupole field of the coil 7, illustrated by field lines 16 ', focuses or -45 ° has a defocusing effect. That is, the quadrupole field of the coil 7 is rotated by 90 ° with respect to the quadrupole field of the coil 6 shown in FIG. 3.
  • the current flow directions in the quadrupole coil 5 must also be selected in accordance with the directions of current flow in the conductor windings of the quadrupole coil 7.
  • the quadrupole fields to be produced with the configuration of the magnetic field generating device according to the invention are essentially only effective with small dipole fields and high field change rates.
  • B> 1 T and smaller field change velocities B such additional fields are largely superfluous, since then the main windings of the magnetic field generating device can take over the particle guidance only in a known manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Claims (8)

1. Générateur de champs magnétique pour une installation d'accélération de particules chargées électriquement et dont la trajectoire (2), fermée sur elle même, comporte des sections courbes et des sections rectilignes (Ai, A2, et A3, A4), ledit générateur étant pourvu d'enroulements d'électroaimants (19, 20) d'électro-aimants de déviation dans les zones qui concernent les sections courbes (Ai, A2), ainsi que d'au moins un enroulement supplémentaire dont l'agencement à conducteurs (2, 4), qui sert à focaliser les particules sur la trajectoire de celles-ci, est réalisé sous la forme d'un triplet quatrupolaire, caractérisé par le fait que pour focaliser les particules pendant leur phase d'accélération, se trouvent disposés, dans la zone intéressant au moins l'une des sections courbes (Ai, A2) de la trajectoire (2) des particules, l'agencement à conducteurs (2, 4) qui forme un triplet quatrupolaire ainsi que les enroulements d'électro-aimant (19, 20) d'un électro-aimant de déviation, les spires (12, 13; 14, 15) de cet agencement à conducteurs s'étendant symétriquement de part et d'autre du plan (E) dans lequel se situe la trajectoire (2) des particules.
2. Générateur de champs magnétique selon la revendication 1, caractérisé par le fait que les directions de passage du courant dans des spires (12, 13; 14, 15), qui se correspondent, d'enroulements qua- trupolaires voisins (5 à 7; 8 à 10) de l'agencement à conducteurs (3; 4) qui forme le triplet quadrupolaire, ont des sens opposés.
3. Générateur de champs magnétique selon la revendication 1 ou 2, caractérisé par le fait que les enroulements d'électro-aimant (19, 20) des électroaimants de déviation et/ou l'agencement à conducteurs (3, 4) qui forme le triplet quadrupolaire comportent, au moins partiellement, des conducteurs à supraconduction.
4. Générateur de champs magnétique selon l'une des revendications 1 à 3, caractérisé par le fait que dans les zones qui intéressent chaque section courbe (Ai, A2) de la trajectoire (2) des particules, est prévu un agencement à conducteurs (3, 4) qui forme le triplet quadrupolaire.
5. Générateur de champs magnétique selon la revendication 4, caractérisé par le fait que deux agencements à conducteurs (3, 4) dont chaque fo- me un triplet quadrupolaire, constituent un double système télescopique pour focaliser les particules.
6. Générateur de champs magnétique selon l'une des revendications 1 à 5, caractérisé par le fait que l'étendue Id des voies de la dérive et l'étendue Iq du triplet quadrupolaire (3, 4) dans la direction du guidage du rayonnement, sont choisies entre elles de façon à satisfaire les rapports Id:lq:ld égaux à 1,5:1:1,5.
7. Générateur de champs magnétique selon l'une des revendications 1 à 6, caractérisé par le fait que les enroulements quadrupolaires (5 à 7; 8 à 10) de l'agencement à conducteurs (3; 4) qui forme un triplet quadrupolaire, comportent au moins deux spires de conducteurs (12, 13; 14, 15) qui sont disposées sur des côtés situés l'un en face de l'autre par rapport au plan (E).
8. Générateur de champs magnétique selon l'une des revendications 1 à 7, caractérisé par le fait que les particules chargées électriquement qui sont à accélérer, sont des électrons.
EP86102393A 1985-03-08 1986-02-24 Générateur de champ magnétique pour système d'accélération de particules Expired - Lifetime EP0193837B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3508334 1985-03-08
DE3508334 1985-03-08

Publications (3)

Publication Number Publication Date
EP0193837A2 EP0193837A2 (fr) 1986-09-10
EP0193837A3 EP0193837A3 (en) 1986-12-03
EP0193837B1 true EP0193837B1 (fr) 1990-05-02

Family

ID=6264650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102393A Expired - Lifetime EP0193837B1 (fr) 1985-03-08 1986-02-24 Générateur de champ magnétique pour système d'accélération de particules

Country Status (4)

Country Link
US (1) US4710722A (fr)
EP (1) EP0193837B1 (fr)
JP (1) JPH0754760B2 (fr)
DE (1) DE3670943D1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824080B2 (ja) * 1987-06-24 1996-03-06 株式会社日立製作所 電子蓄積リング
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
DE3842792A1 (de) * 1988-12-20 1990-06-28 Kernforschungsz Karlsruhe Teilchenfuehrungsmagnet zur fuehrung elektrisch geladener teilchen
US5198674A (en) * 1991-11-27 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Particle beam generator using a radioactive source
US7002160B1 (en) * 2003-11-07 2006-02-21 University Of Louisiana At Lafayette Sextuplet quadrupole lens system for charged particle accelerators
WO2006012467A2 (fr) 2004-07-21 2006-02-02 Still River Systems, Inc. Generateur de forme d'ondes a radiofrequences programmable pour un synchrocyclotron
EP1764132A1 (fr) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Procédé et dispositif pour la configuration d'une trajectoire de faisceau d'un système de thérapie par faisceau de particules
EP2389977A3 (fr) 2005-11-18 2012-01-25 Still River Systems, Inc. Radiothérapie à particules chargées
US20110158369A1 (en) * 2007-02-24 2011-06-30 Delbert John Larson Cellular, electron cooled storage ring system and method for fusion power generation
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
TWI604868B (zh) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 粒子加速器及質子治療系統
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP2900324A1 (fr) 2012-09-28 2015-08-05 Mevion Medical Systems, Inc. Système de commande pour un accélérateur de particules
TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
WO2014052734A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Commande de thérapie par particules
EP2901823B1 (fr) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Contrôle de l'intensité d'un faisceau de particules
WO2014052719A2 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Réglage de l'énergie d'un faisceau de particules
EP2901824B1 (fr) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Éléments d'homogénéisation de champ magnétique permettant d'ajuster la position de la bobine principale et procédé correspondant
JP6138947B2 (ja) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド 磁場再生器
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN105764567B (zh) 2013-09-27 2019-08-09 梅维昂医疗系统股份有限公司 粒子束扫描
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3906968A1 (fr) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Planification de traitement
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
WO2020185544A1 (fr) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Administration de radiothérapie par colonne et génération d'un plan de traitement associé
US10766775B1 (en) 2019-08-05 2020-09-08 Daniel Hodes Method of producing diamond using shockwaves
US11802053B2 (en) 2021-06-10 2023-10-31 Daniel Hodes Method and apparatus for the fabrication of diamond by shockwaves

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344357A (en) * 1964-07-13 1967-09-26 John P Blewett Storage ring
GB1329412A (en) * 1969-09-18 1973-09-05 Science Res Council Electrical coils for generating magnetic fields
DE2446142A1 (de) * 1974-09-27 1976-04-15 Hrvoje Prof Babic Vorrichtung an einem racetrackmikrotron zum bewirken eines einwandfreien einschiessens der elektronen einer elektronenkanone in einen beschleuniger
SE398191B (sv) * 1976-06-03 1977-12-05 Rosander Staffan Forfarande for korrektion av uppriktningsfel mellan tva magnetiska huvudfelt och en linjer accelerator i en race-trackmikrotron, samt anordning for utforande av forfarandet
US4200844A (en) * 1976-12-13 1980-04-29 Varian Associates Racetrack microtron beam extraction system
JPS5495897A (en) * 1978-01-13 1979-07-28 Hidetsugu Ikegami Method and device for accelerating or storing particles by using electrical current sheet magnet
SE436962B (sv) * 1983-06-17 1985-01-28 Scanditronix Instr Race-track mikrotron for lagring av en energirik elektronstrale

Also Published As

Publication number Publication date
EP0193837A2 (fr) 1986-09-10
DE3670943D1 (de) 1990-06-07
JPS61208800A (ja) 1986-09-17
EP0193837A3 (en) 1986-12-03
US4710722A (en) 1987-12-01
JPH0754760B2 (ja) 1995-06-07

Similar Documents

Publication Publication Date Title
EP0193837B1 (fr) Générateur de champ magnétique pour système d'accélération de particules
EP0193038B1 (fr) Générateur de champ magnétique pour système d'accélération de particules
EP0208163B1 (fr) Dispositif à champ magnétique pour un appareil d'accélération et/ou de stockage de particules chargées
DE3928037C2 (de) Vorrichtung zum Beschleunigen und Speichern von geladenen Teilchen
EP0191392B1 (fr) Générateur de champ magnétique
EP0348403B1 (fr) Systeme de deflexion magnetique pour particules chargees
DE2730985C2 (de) Bestrahlungsvorrichtung unter Verwendung geladener Teilchen
EP3115082B1 (fr) Installation de thérapie par irradiation de particules avec aimants solénoïdes
DE102007046508A1 (de) Bestrahlungsanlage mit einem Strahlführungsmagneten
DE1565881B2 (de) Verfahren und Anordnung zum gesteuer ten Erwarmen eines Targetmatenals in einem Hochvakuum Elektronenstrahlofen
DE3020281C2 (de) Vorrichtung zur Doppelablenk-Abtastung eines Partikelstrahls
DE2826858C2 (de) Magnetisches Fokussiersystem einer Mehrstrahl-Kathodenstrahl-Bildröhre
DE1244972B (de) Verfahren zum Bestrahlen mittels Korpuskularstrahlen
DE2433989A1 (de) Elektromagnetisches ablenkjoch
DE1268236B (de) Reziproker elektromagnetischer Wellenleiter
EP0416414B1 (fr) Procédé et dispositif de déviation d'un faisceau
DE3943786C2 (de) Vorrichtung zum Speichern von geladenen Teilchen
DE3010674C2 (de) Bandleiter zur Bildung von Polen für einen zur Ablenkung und/oder Fokussierung von Teilchenstrahlen dienenden, im Pulsbetrieb betreibbaren Dipol oder Multipol
DE1464845A1 (de) Zirkular-Teilchenbeschleuniger
DE19513683C2 (de) Hochstromgepulstes Linsenmultiplett für die Strahlführung und Strahloptik von elektrisch geladenen Teilchen
DE3938628C2 (de) Vorrichtung zum Speichern von geladenen Teilchen
DE1287710B (fr)
DE1491445C (de) Permanentmagnetsystem zur Erzeugung mindestens zweier hintereinanderliegender und einander ntgegengesetzter Magnetfelder für die gebündelte Führung eines Elektronenstrahls, insbesondere für Wanderfeldröhren
DE1491445B2 (de) Permanentmagnetsystem zur erzeugung mindestens zweier hintereinanderliegender und einander entgegengesetzter magnetfelder fuer die gebuendelte fuehrung eines elektronenstrahls, insbesondere fuer wanderfeldroehren
DE1565881C (de) Verfahren und Anordnung zum gesteuer ten Erwarmen eines Targetmaterials in einem Hochvakuum Elektronenstrahlofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870109

17Q First examination report despatched

Effective date: 19880713

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3670943

Country of ref document: DE

Date of ref document: 19900607

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940517

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050224