EP0189799B1 - Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen - Google Patents

Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen Download PDF

Info

Publication number
EP0189799B1
EP0189799B1 EP86100612A EP86100612A EP0189799B1 EP 0189799 B1 EP0189799 B1 EP 0189799B1 EP 86100612 A EP86100612 A EP 86100612A EP 86100612 A EP86100612 A EP 86100612A EP 0189799 B1 EP0189799 B1 EP 0189799B1
Authority
EP
European Patent Office
Prior art keywords
solution
precipitation
process according
precipitating agent
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86100612A
Other languages
English (en)
French (fr)
Other versions
EP0189799A1 (de
Inventor
Klaus Prof. Dr. Heckmann
Walter Rieger
Reinhard Dr. Kroebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to BR8600354A priority Critical patent/BR8600354A/pt
Priority to CA000500573A priority patent/CA1288599C/en
Priority to JP61016987A priority patent/JPH077100B2/ja
Publication of EP0189799A1 publication Critical patent/EP0189799A1/de
Application granted granted Critical
Publication of EP0189799B1 publication Critical patent/EP0189799B1/de
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation

Definitions

  • the invention relates to a process for the selective separation of cesium ions from acidic aqueous radioactive solutions, in which a precipitant is added to the aqueous solution and the resulting precipitate containing the Cs + ions is separated from the solution.
  • Cs-137 is a particularly undesirable fission product in medium-radioactive, aqueous waste (MAW).
  • MAW medium-radioactive, aqueous waste
  • a selective separation of the Cs-137 would make the processing of medium-active waste considerably easier.
  • the shielding for the concentrates and / or the solidified repository can be omitted entirely or at least partially.
  • such a method can also be used well for the extraction or separation of Cs isotopes from highly active waste solutions, such as those which occur in the reprocessing of nuclear fuels in the first extraction cycle.
  • the extraction of pure isotopes or isotope mixtures of cesium would be of practical importance for radiochemical applications and as a radiation or heat source.
  • the separation of cesium was mainly carried out by co-precipitation reactions using other known methods.
  • the co-precipitation did not provide satisfactory decontamination factors (DF values) for Cs.
  • DF values decontamination factors
  • the invention has for its object to provide a method according to the type mentioned, with which cesium selectively over other alkali metal cations, such as. B. Li + , Na + and K * , can be separated with high effectiveness from acidic aqueous radioactive waste solutions.
  • the precipitation reaction can be carried out in the presence of an acid concentration in the range from 0 to 6 mol / l.
  • the acid stability of the precipitant molecule and the resulting poorly soluble precipitate is increased by the introduction of at least two fluorine substituents in the phenyl rings of the molecule, which largely prevent positive charges on the phenyl rings from stabilizing and thus initiate the breakdown of the molecule.
  • the electron-withdrawing substituents protect the phenyl rings from electrophilic attacks.
  • 2,4-difluorobromobenzene is mixed with n-butyllithium (n-BuLi) at -78 ° C in di-ethyl ether and a BC1 3 solution in hexane is added dropwise to the phenyllithium derivative formed.
  • n-BuLi n-butyllithium
  • BC1 3 solution in hexane is added dropwise to the phenyllithium derivative formed.
  • hydrolysis is carried out, the ether is stripped off over water, the aqueous phase is mixed with a little activated carbon, filtered off and mixed with aqueous trimethylamine solution.
  • the resulting trimethylammonium salt is recrystallized from methanol / water and dried. It is converted with sodium hydride into the corresponding alkali salt, which can be recrystallized from chloroform / acetone if necessary.
  • the compound lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate was prepared in the same way (with lithium hydride) instead of sodium hydride.
  • Lithium tetrakis (pentafluorophenyl) borate production is by A.G. Massey, A.J. Park: J. Organometal. Chem., 2 (1964), pp. 245 to 250.
  • the solubilities were determined using radiometry.
  • composition of the simulate used is listed in Table 1.
  • Inactive Cs + was added to the MAW simulate (Cs + concentrations 1.0 ⁇ 10 -3 or 1.0 ⁇ 10-2 mol / I); the solutions were doped with Cs-137, regardless of the inactive Cs + concentration with the same activity (1 ⁇ Ci / mi). The precipitant was added in duplicate, regardless of whether it was added as a solution or as a solid. After about 24 hours, samples were taken, filtered off, the activity of the filtrate was measured and the Cs ⁇ concentration was then calculated by calibration. The results are shown in Tables 2 to 4.
  • Sodium tetrakis (2,4-difluorophenyl) borate (compound 1) is acid-stable up to 6m-HN0 3 and at tempera tures up to 293 K. Under conditions such as those prevailing in radioactive waste solutions, the Cs salt exhibits the lowest solubility of the investigated compounds. Depending on the temperature (239 to 293 K), the solubilities range between 1.0 10-5 and 8.0 ⁇ 10-5 mol / l.
  • the precipitation endpoints are determined by the solubility of the corresponding Cs + salts.
  • the composition of the HAW simulate can be seen in Table 7.
  • the simulate solution was 5 molar in HN0 3 and contained most of the elements in the nitrate salt form.
  • Inactive Cs + was added to water (Cs + concentration 1.0 ⁇ 10 -3 mol / I). As in the previous examples, the solutions were doped with Cs-137. The precipitant was added in a simple excess. After 24 h, samples were taken (to compare the effectiveness of the precipitation separation methods, on the one hand filtration, on the other hand extraction), filtered and the residual concentration of Cs + in the filtrate solutions of the samples was determined. It was 6.5 10 -5 mol / l.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur selektiven Abtrennung von Cäsiumionen aus sauren wäßrigen radioaktiven Lösungen, bei welchem der wäßrigen Lösung ein Fällungsmittel zugegeben und die entstehende, die Cs+-Ionen enthaltende Fällung aus der Lösung abgetrennt wird.
  • Cs-137 ist in seiner Eigenschaft als harter Gammastrahler ein besonders unerwünschtes Spaltprodukt in mittelradioaktiven, wäßrigen Abfällen (MAW). Eine zuvor erfolgte selektive Abtrennung des Cs-137 würde die Weiterverarbeitung mittelaktiver Abfälle erheblich erleichtern. Nach Abtrennung des Cs-137 aus dem MAW kann die Abschirmung für die Konzentrate und/oder die verfestigten Endlagergebinde ganz oder zumindest teilweise entfallen. Weiterhin kann ein solches Verfahren auch gut zur Gewinnung oder Abtrennung von Cs-Isotopen aus hochaktiven Abfallösungen angewendet werden, wie sie beispielsweise bei der Wiederaufarbeitung von Kernbrennstoffen im ersten Extraktionszyklus anfallen. Hier wäre die Gewinnung reiner Isotope oder Isotopengemische von Cäsium von praktischer Bedeutung für radiochemische Anwendungen und als Strahlungs- bzw. Wärmequelle.
  • Es wurde versucht, die Cs+-Ionen mit Natriumtetraphenylborat (Handelsbezeichnung Kalignost) zu fällen, doch wurde festgestellt, daß eine solche Fällung weder selektiv noch in saurem Milieu durchführbar ist.
  • Die Abtrennung von Cäsium erfolgte nach anderen bekannten Verfahren hauptsächlich durch Mitfällungsreaktionen. Die Mitfällung lieferte für Cs jedoch keine befriedigenden Dekontaminations-Faktoren (DF-Werte). Deshalb wurden andere Verfahren gesucht, die eine selektive Abtrennung der Cäsium-Radionuklide ermöglichen sollten.
  • Die bisher für Cs+-Ionen entwickelten Extraktionsverfahren sind für die Abtrennung von Cs* aus einem typischen MAW mit seinem hohen Gehalt an NaN03 und freier Salpetersäure nicht geeignet.
  • J. Rais und P. Selucky schlugen zur Abtrennung von Cs+ aus wäßrigen Lösungen ein Extraktionssystem vor, welches 2,3,11,12-Dibenzo-1,4,7,10,13,16-hexa-oxa-cyclooctadeca-2,11-dien(Dibenzo-18-krone-6 ; Kurzbezeichnung DB-18-C-6) in Verbindung mit Natriumtetraphenylborat verwendet (CS-PS 149.404). Das Verfahren ist jedoch beschränkt auf alkalische Cs+-Lösungen (PH 11 bis 13) : auch in dieser Lösung wird Natriumtetraphenylborat hydrolysiert. Das Verfahren funktioniert zudem nur gut in Abwesenheit größerer Na+- und K+-Mengen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren nach der eingangs genannten Art zu schaffen, mit welchem Cäsium selektiv gegenüber anderen Alkalimetall-Kationen, wie z. B. Li+, Na+ und K*, mit hoher Wirksamkeit aus sauren wäßrigen, radioaktiven Abfallösungen abgetrennt werden kann.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Fällungsmittel ein an den Phenylringen Fluor-Substituenten tragendes Natrium- oder Lithiumtetraphenylborat verwendet wird, bei welchem die Phenylringe jeweils in 2,4-Stellung disubstituiert oder in 2,3,5,6-Stellung vierfach substituiert oder in 2.3,4,5,6-Stellung fünffach substituiert sind. Eine wirkungsvolle Ausführung des Verfahrens ist dadurch gekennzeichnet, daß die Zugabe des Fällungsmittels und/oder die Fällungsreaktion als solche bei einer Temperatur zwischen 239 K und 303 K erfolgt bzw. durchgeführt wird. Das Fällungsmittel wird vorzugsweise in geringem Überschuß in bezug auf den Cäsiumgehalt, beispielsweise vom 1,2-fachen bis zum 5- fachen der stöchiometrisch erforderlichen Menge, der Lösung zugegeben. Eine besonders gute Abtrennung erhält man mit dem erfindungsgemäßen Verfahren, wenn die Cäsiumionen enthaltende Lösung
    • a) auf eine Cs+-Konzentration im Bereich von 10-1 bis 10-3 mol/1 eingestellt wird,
    • b) der Lösung aus Schritt a) das Fällungsmittel zugegeben und die entstehende Fällung abgetrennt wird und
    • c) im Falle einer erwünschten Dekontamination von vorhandenem Cs-137 der Schritt a) mit inaktivem Cäsium (als Schlepper) und Schritt b) einmal oder mehrmals wiederholt werden.
  • Die Fällungsreaktion kann in Gegenwart einer Säure-Konzentration im Bereich von 0 bis 6 mol/I durchgeführt werden.
  • Die Säurestabilität des Fällungsmittel-Moleküls und des entstehenden schwerlöslichen Niederschlages wird durch die Einführung von mindestens zwei Fluorsubstituenten in den Phenylringen des Moleküls erhöht, die es weitgehend verhindern, daß sich positive Ladungen an den Phenylringen stabilisieren und so den Zerfall des Moleküls einleiten. Die elektronenziehenden Substituenten schützen die Phenylringe vor elektrophilen Angriffen.
  • Die Synthese für das erfindungsgemäße Verfahren brauchbarer Fällungsmittel kann beispielsweise nach folgendem Schema verlaufen :
    • Natriumtetrakis (2.4-difluorphenyl) borat :
      (Siehe Schema Seite 3f.)
      Figure imgb0001
      Figure imgb0002
  • 2,4-Difluorbrombenzol wird bei -78 °C in Di-ethyl-Ether mit n-Butyllithium (n-BuLi) versetzt und zu dem dabei entstandenen Phenyllithiumderivat eine BC13-Lösung in Hexan getropft. Nach Aufwärmen auf Raumtemperatur wird hydrolysiert, der Ether über Wasser abgezogen, die wäßrige Phase mit etwas Aktivkohle versetzt, abgefiltert und mit wäßriger Trimethylaminlösung versetzt. Das entstandene Trimethylammoniumsalz wird aus Methanol/Wasser umkristallisiert und getrocknet. Es wird mit Natriumhydrid ins entsprechende Alkalisalz überführt, das bei Bedarf noch aus Chloroform/Aceton umkristallisiert werden kann.
  • Die Verbindung Lithiumtetrakis(2,3,5,6-tetrafluorphenyl) borat wurde auf die gleiche Weise hergestellt (mit Lithiumhydrid) anstatt Natriumhydrid.
  • Die Lithiumtetrakis(pentafluorphenyl) borat-Herstellung ist von A. G. Massey, A. J. Park : J. Organometal. Chem., 2 (1964), S. 245 bis 250 übernommen.
  • Die Charakterisierung der Produkte erfolgte mit Hilfe von IR, NMR und Elementaranalyse. Um die Salze rein darzustellen, ist der « Umweg über die Trimethylammoniumsalze notwendig. Für Fällungsreaktionen genügen aber bereits die wäßrigen Lösungen der Fällungsreagenzien, deren Konzentrationen durch quantitative Ausfällung mit Trimethylamin einfach bestimmt werden können.
  • Löslichkeiten der entsprechenden Cs-Salze in reinem Wasser (298 K) :
    Figure imgb0003
  • Die Löslichkeiten wurden mit Hilfe von Radiometrie bestimmt.
  • Alle Reagenzien bilden schwerlösliche Niederschläge mit Cs+, jedoch nicht mit Kalium. Coprecipitation von Kalium tritt bei Lithiumtetrakis(2,3,5,6-tetrafluorphenyl) borat erst bei einem K- zu Cs-Verhältnis ≥ 100, bei Natriumtetrakis (2,4-difluorphenyl) borat und Lithiumtetrakis(pentafluorphenyl) borat erst bei einem K+- zu Cs+-Verhältnis > 100 auf.
  • Schwerlösliche Cs+-Niederschläge bilden auch das aus US-A-3,468,959 bekannte Natriumtetrakis(4- fluorphenyl) borat und Lithiumtetrakis(2,4,6-trifluorphenyl) borat, die erste Verbindung im neutralen und alkalischen Gebiet in guter Selektivität, die zweite Verbindung auch im sauren bis 3 molare Säure jedoch erfolgt Coprecipitation mit K+ ab dem Verhältnis K+ : Cs+ wie 1 : 1.
  • Beispiel 1 (Cs+-Fällungen aus MAW-Simulat)
  • Die Zusammensetzung des verwendeten Simulats ist in Tabelle 1 aufgeführt.
    Figure imgb0004
    Figure imgb0005
  • Das MAW-Simulat wurde mit inaktivem Cs+ versetzt (Cs+-Konzentrationen 1.0 · 10-3 bzw. 1.0 · 10-2 mol/I) ; die Lösungen wurde mit Cs-137 dotiert und zwar unabhängig von der inaktiven Cs+-Konzentration mit der gleichen Aktivität (1 µ Ci/mi). Das Fällungsmittel wurde jeweils in doppeltem Übschuß zugegeben, wobei es ohne Bedeutung war, ob es als Lösung oder als Feststoff zugegeben wurde. Nach etwa 24 Stunden wurden Proben entnommen, abgefiltert, die Aktivität des Filtrats gemessen und über Eichung dann die Csµ-Konzentration berechnet. Die Ergebnisse sind aus den Tabellen 2 bis 4 ersichtlich.
  • Als Fällungsmittel wurden hierbei verwendet :
    • (1) Natriumtetrakis(2,4-difluorphenyl) borat
    • (2) Lithiumtetrakis(2,3,5,6-tetrafluorphenyl) borat
    • (3) Lithiumtetrakis(pentafluorphenyl) borat
      Figure imgb0006
      Figure imgb0007
      Figure imgb0008
    Beispiel 2 (Cs+-Fällungen aus 5m-Salpetersäure)
  • Durchführung wie in Beispiel 1 beschrieben, jedoch nur mit Verbindung (1).
  • Die Zusammensetzung der verwendeten Lösung wurde so gewählt, daß sie in diesem Zusammenhang eine HAW-Konzentrats-Lösung zu simulieren vermag (HAW = Hochradioaktiver Abfall).
  • 5 molare HN03 wurde mit inaktivem Cs+ versetzt (Cs+-Konzentration 1.0 · 10-2 mol/I). Die Lösungen wurden mit Cs-137 dotiert (1 µm Ci/ml). Das Fällungsmittel wurde im doppelten Überschluß zugegeben. Nach 24 Stunden wurden Proben entnommen, abgefiltert, die Aktivität des Filtrats gemessen und über Eichung die Cs+-Konzentration berechnet. Die Ergebnisse sind aus den Tabellen 5 und 6 ersichtlich.
    Figure imgb0009
    Figure imgb0010
  • Natriumtetrakis(2,4-difluorphenyl) borat (Verbindung 1) ist säurestabil bis 6m-HN03 und bei Temperaturen bis 293 K. Unter Bedingungen, wie sie in radioaktiven Abfalllösungen vorherrschen, weist das Cs-Salz die niedrigste Löslichkeit der untersuchten Verbindungen auf. Die Löslichkeiten bewegen sich je nach Temperatur (239 bis 293 K) zwischen 1.0 10-5 und 8.0 · 10-5 mol/I.
  • (Bei Kalignost kann eine solche Löslichkeitsbestimmung nicht erfolgen, weil der Zerfall der Verbindung unter den Untersuchungsbedingungen zu schnell verläuft). Die Fällung von Cs+ mit Verbindung (1) wird durch K+ nicht beeinflußt. Es tritt keine Coprecipitation mit der Kaliumverbindung auf.
  • Die Fällungsendpunkte werden durch die Löslichkeit der entsprechenden Cs+-Salze bestimmt.
  • Beispiel 3 (Cs+-Fällungen aus HAW-Simulat)
  • Die Zusammensetzung des HAW-Simulats ist aus Tabelle 7 zu ersehen. Die Simulatlösung war 5 molar an HN03 und enthielt die meisten Elemente in der Nitratsalzform.
    Figure imgb0011
  • Die Lösung wurde mit Cs-137 dotiert (1 µCi/MI). Die Durchführung der Fällung erfolgte wie in Beispiel 2 beschrieben, jedoch nur mit der Verbindung 3. Das Ergebnis zeigt Tabelle 8 :
    Figure imgb0012
  • Beispiel 4 (Wirksamkeit)
  • Man kann nun durch Fällung, beispielsweise mit Verbindung (1), auf verschiedene Art und Weise hohe Dekontaminationen für Cs-137 erreichen :
    • 1. Einstellen der MAW-Lösung auf eine inaktive Cs+-Konzentration von 1.0 · 10-3 mol/l. Fällung mit (1) in doppeltem Überschuß und Abtrennung des Niederschlags (durch Filtration oder Zentrifugation) liefert einen Dekontaminationsfaktor (DF) von 17. Die resultierende Cs+-Konzentration von Ca. 6.0 · 10-5 mol/l wird durch inaktives Cs+ wieder auf 1.0 · 10-3 mol/I eingestellt, erneut gefällt und das ganze beliebig oft wiederholt. Beim viermaligen Cyclieren wird so ohne großen Materialaufwand ein DF für das aktive Cs von ca. 80 000 erreicht (Fällungstemperatur jeweils 293 K).
    • 2. Einstellen der MAW-Lösung auf eine inaktive Cs+-Konzentration von 1.0 · 10-2 mol/I. Verfahren wie oben. Die erste Fällung liefert einen DF von 170, beim nächsten Cyclus einen DF von 29000 usw. (Fällungstemperatur jeweils 293 K).
    • 3. Wie bei 1., Fällungstemperaturen jetzt aber 277 K. Die erste Fällung liefert einen DF von 26, bei der vierten Fällung ist der DF größer als 400 000 .
    • 4. Wie bei 2., Fällungstemperaturen jetzt aber 277 K. Die erste Fällung liefert einen DF von 280, die zweite Fällung bereits einen DF größer 78 000.
    • 5. Wie bei 1., Fällungstemperaturen aber 260 K. Die 1. Fällung liefert einen DF von 62, bei der 3. Fällung ist der DF >230 000.
    • 6. Wie bei 2. Fällungstemperaturen aber 260 K. Die 1. Fällung lieferte einen DF von 770, die 2. Fällung bereits einen DF > 590 000.
    • 7. Einstellen der 5m HN03 auf eine inaktive Cs+-Konzentration von 10-2 mol/l. Verfahren sonst wie bei 1). Die 1. Fällung liefert einen DF von 384, die 2. Fällung bereits einen DF von 148 000 (Fällungstemperatur jeweils 293 K).
    • 8. Wie bei 7., Fällungstemperaturen aber 260 K. Die. 1. Fällung liefert einen DF von 667, die 2. Fällung bereits einen DF von 444 000.
    Beispiel 5 (Abtrennung der Cs-Niederschläge von Verbindung 3 durch Flüssigextraktion aus wäßriger Lösung)
  • Wasser wurde mit inaktivem Cs+ versetzt (Cs+-Konzentration 1.0 · 10-3 mol/I). Die Lösungen wurden wie in den vorangegangenen Beispielen mit Cs-137 dotiert. Das Fällungsmittel wurde in einfachem Überschuß zugegeben. Nach 24 h wurden Proben entnommen (zum Vergleich der Wirksamkeit der Niederschlagsabtrennungsmethoden, einerseits Filtration, andererseits Extraktion), abgefiltert und die Restkonzentration an Cs+ in den Filtratlösungen der Proben bestimmt. Sie betrug 6.5 10-5 mol/l.
  • Die Lösungen, die die Fällungen enthielten, wurden nun mit verschiedenen organischen Lösungsmitteln extrahiert und die Cs+-Restkonzentration in der wäßrigen Phase gemessen. Die Ergebnisse sind aus Tabelle 9 ersichtlich.
    Figure imgb0013
  • Beispiel 6 (Abtrennung der Cs+-Niederschläge von Verbindung 3 durch Flüssigextraktion aus HAW-Simulat)
  • Durchführung der Versuche und des Vergleichs der Abtrennungsmethoden erfolgte wie in Beispiel 5 beschrieben, das Fällungsmittel wurde hier aber in doppeltem Überschuß zugesetzt. Die Cs+-Restkonzentration nach Filtration der Proben betrug 7.2 · 10-4 mol/I.
  • Die Ergebnisse der Extraktionen sind aus Tabelle 10 ersichtlich.
    Figure imgb0014
  • Als Extraktionsmittel können auch weitere organische Lösungsmittel verwendet werden, wurden jedoch auf ihre Wirksamkeit hin nicht untersucht.

Claims (6)

1. Verfahren zum selektiven Abtrennen von Cäsiumionen aus sauren wäßrigen radioaktiven Lösungen, bei welchem der wäßrigen Lösung ein Fällungsmittel zugegeben und die entstehende, die Cs*- ionen enthaltende Fällung aus der Lösung abgetrennt wird, dadurch gekennzeichnet, daß als Fällungsmittel ein an den Phenylringen Fluor Substituenten tragendes Natrium- oder Lithiumtetraphenylborat verwendet wird, bei welchem die Phenylringe jeweils in 2,4-Stellung dissubstituiert oder in 2,3,5,6-Stellung vierfach substituiert oder in 2,3,4,5,6-Stellung fünffach substituiert sind.
2. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Zugabe des Fällungsmittels und/oder die Fällungsreaktion als solche bei einer Temperatur zwischen 239 K und 303 K erfolgt bzw. durchgeführt wird.
3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Fällungsmittel im Überschuß, vom 1,2-fachen bis zum 5-fachen der stöchiometrisch erforderlichen Menge, in bezug auf die Cs+-Konzentration in der Lösung, zugegeben wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Cäsiumionen enthaltende Lösung
a) auf eine Cs+-Konzentration im Bereich von 10-1 bis 10-3 mol/I eingestellt wird,
b) der Lösung aus Schritt a) das Fällungsmittel zugegeben und die entstehende Fällung abgetrennt wird und
c) im Falle einer erwünschten Dekontamination von vorhandenem Cs-137 der Schritt a) mit inaktivem Cäsium als Schlepper und Schritt b) einmal oder mehrmals wiederholt werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Fällungsreaktion in Gegenwart einer Säure-Konzentration im Bereich von 0 bis 6 mol/I durchgeführt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Abtrennen der Fällung aus der Lösung durch Extraktion mit einem organischen Lösungsmittel aus der Gruppe Chloroform ; Diäthyläther/Petroläther (40-60) 2 : 1 [Vol./Vol.] ; 4-Methyl-2-pentanon (5 Vol.-% in Chloroform); 4-Methyl-2-pentanon (5 Vol.-% in Toluol) erfolgt.
EP86100612A 1985-01-30 1986-01-17 Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen Expired EP0189799B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR8600354A BR8600354A (pt) 1985-01-30 1986-01-29 Processo para a extracao de ions cesio de uma solucao aquosa
CA000500573A CA1288599C (en) 1985-01-30 1986-01-29 Process for the stripping of cesium ions from aqueous solutions
JP61016987A JPH077100B2 (ja) 1985-01-30 1986-01-30 水溶液からセシウムイオンを選択的に分離する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853502986 DE3502986A1 (de) 1985-01-30 1985-01-30 Verfahren zum abtrennen von caesiumionen aus waessrigen loesungen
DE3502986 1985-01-30

Publications (2)

Publication Number Publication Date
EP0189799A1 EP0189799A1 (de) 1986-08-06
EP0189799B1 true EP0189799B1 (de) 1988-08-17

Family

ID=6261095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100612A Expired EP0189799B1 (de) 1985-01-30 1986-01-17 Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen

Country Status (3)

Country Link
US (1) US4790960A (de)
EP (1) EP0189799B1 (de)
DE (2) DE3502986A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400543A1 (de) * 1994-01-11 1995-07-13 Hoechst Ag Verfahren zur Isolierung von Tetraphenylboraten
WO2014172032A3 (en) * 2013-03-13 2015-10-29 Simbol Inc. Methods for removing potassium, rubidium, and cesium, selectively or in combination, from brines and resulting compositions thereof
US9644866B2 (en) 2009-06-24 2017-05-09 Simbol, Inc. Treated brine compositions with reduced concentrations of potassium, rubidium, and cesium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL100353A (en) * 1991-01-08 1997-06-10 Zambon Spa Preparation of 5-(2, 4-difluorophenyl)-salicylic acid and novel 2,4-difluorophenyl-boronic acid derivatives being intermediates therefor
US5912180A (en) * 1993-08-13 1999-06-15 Hybrivet Systems, Inc. Process and apparatus for testing for substances in liquids
US5570469A (en) * 1995-01-06 1996-10-29 Lockheed Martin Corporation Method for removing metal contaminants from flue dust
US5540843A (en) * 1995-01-12 1996-07-30 Plesek; Jaromir Method for preferential retention of cesium cations and their separation from other inorganic cations
JP2997178B2 (ja) * 1995-01-19 2000-01-11 核燃料サイクル開発機構 高レベル放射性廃液からの発熱元素の分離方法
US6171503B1 (en) * 1998-03-16 2001-01-09 Dalhousie University Use of tetraphenyloborate for extraction of ammonium ions and amines from water
US10935006B2 (en) 2009-06-24 2021-03-02 Terralithium Llc Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines
JP6513909B2 (ja) * 2014-05-30 2019-05-15 株式会社東芝 ガラス固化体の核種分離方法
US11279715B2 (en) 2016-03-09 2022-03-22 Studiengesellschaft Kohle Mbh Process for removing radioactive isotopes from aqueous fluids by fluorine containing reagents, fluorine containing, water-insoluble salts of the radioactive isotopes, and their use as therapeutic agents
CN114350950B (zh) * 2021-04-29 2024-03-15 四川恒成钾盐科技有限公司 一种从复杂地下卤水中提取铷铯的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982785A (en) * 1959-01-07 1961-05-02 Theodore R Mckenzie Cesium recovery
US3468959A (en) * 1966-10-17 1969-09-23 Research Corp Separation of cesium from potassium and rubidium
EP0073261B1 (de) * 1981-08-31 1985-11-13 Kernforschungszentrum Karlsruhe Gmbh Verfahren zum Abtrennen von Cäsiumionen aus Lösungen unter Verwendung einer Adduktverbindung in fester Form aus einem macrocyclischen Polyether und einer anorganischen Heteropolysäure
DE3172917D1 (en) * 1981-08-31 1985-12-19 Kernforschungsz Karlsruhe Process for separating cesium ions from aqueous solutions by using an addition compound consisting of a macrocyclic polyether and an inorganic heteropolyacid
US4432893A (en) * 1982-05-19 1984-02-21 The United States Of America As Represented By The Department Of Energy Precipitation-adsorption process for the decontamination of nuclear waste supernates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400543A1 (de) * 1994-01-11 1995-07-13 Hoechst Ag Verfahren zur Isolierung von Tetraphenylboraten
US9644866B2 (en) 2009-06-24 2017-05-09 Simbol, Inc. Treated brine compositions with reduced concentrations of potassium, rubidium, and cesium
WO2014172032A3 (en) * 2013-03-13 2015-10-29 Simbol Inc. Methods for removing potassium, rubidium, and cesium, selectively or in combination, from brines and resulting compositions thereof

Also Published As

Publication number Publication date
DE3660570D1 (en) 1988-09-22
EP0189799A1 (de) 1986-08-06
US4790960A (en) 1988-12-13
DE3502986A1 (de) 1986-07-31

Similar Documents

Publication Publication Date Title
DE2210106C2 (de) Verfahren zur selektiven Extraktion von Metallionen aus wäßrigen Lösungen
EP0189799B1 (de) Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen
EP1062668A1 (de) Adsorptionsmittel für radionuklide
EP0073261B1 (de) Verfahren zum Abtrennen von Cäsiumionen aus Lösungen unter Verwendung einer Adduktverbindung in fester Form aus einem macrocyclischen Polyether und einer anorganischen Heteropolysäure
DE2610948B2 (de) Verfahren zur Gewinnung von Molybdän -99 aus mit Neutronen bestrahlter, spaltbare Stoffe und Spaltprodukte enthaltender Matrix
DE1217351B (de) Verfahren zur Gewinnung von Cs 137-Salzen aus bestrahlten Kernbrennstoffen
EP0073262B1 (de) Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen unter Verwendung einer Adduktverbindung, bestehend aus einem macrocyclischen Polyether und einer anorganischen Heteropolysäure
DE4237431C2 (de) Verfahren zur Abtrennung radioaktiver Jodverbindungen aus einem in nuklearen Anlagen anfallenden flüssigen Abfall
EP1793387B1 (de) Extraktion von radionukliden unter verwendung von kronenether enthaltenden extraktionsmitteln
DE2449589A1 (de) Verfahren zur erhoehung der lebensdauer von zur wiederaufarbeitung abgebrannter kernbrenn- und/oder brutstoffe verwendeten extraktionsmitteln
DE2140998C3 (de) Verfahren zur Gewinnung von Molybdän
DE3428877C2 (de)
EP0228051A2 (de) Verfahren zur selektiven Trennung des Plutoniums von Uran und anderen Metallen
DE102008050557B4 (de) Anionisches Boranpolymer sowie dessen Verwendung und Herstellung
DE3616391A1 (de) Verfahren zur feinreinigung von spaltmolybdaen
DE2610947C3 (de) Verfahren zur Gewinnung von Molybdän-99 aus mit Neutronen bestrahlter, spaltbare Stoffe und Spaltprodukte enthaltender Matrix
EP0662236B1 (de) Verfahren zur behandlung von auflöserückständen
DE2723025A1 (de) Verfahren zum aufbereiten von borsaeure, radioaktives antimon und weitere radioaktive nuklide enthaltenden abwaessern u.dgl., insbesondere von in kernkraftwerken anfallenden verdampferkonzentraten
DE3904167C1 (de)
DE2365114C2 (de) Verfahren zum Reinigen von Plutonium und/oder Neptunium enthaltenden Lösungen durch Abtrennen von Plutonium und/oder Neptunium
DD152774A1 (de) Verfahren zur abtrennung von palladium und technetium aus loesungen der kernbrennstoffwiederaufbereitung
EP0073263A1 (de) Verfahren zum Abtrennen von Cäsiumionen aus wässrigen Lösungen
Hilgers Chemonuclear studies for identification for new production routes for the therapeutically useful radionuclides 140 Nd, 192 Ir, 191 Pt, 193m Pt, und 195m Pt
Lyon et al. Separation process for uranium isotopes
DD260715A1 (de) Verfahren zur gewinnung von hoch 99 mo

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19860715

17Q First examination report despatched

Effective date: 19870826

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3660570

Country of ref document: DE

Date of ref document: 19880922

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891229

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901204

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910117

ITTA It: last paid annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050117