EP0189536B1 - Infrarot-Einbruchdetektor - Google Patents

Infrarot-Einbruchdetektor Download PDF

Info

Publication number
EP0189536B1
EP0189536B1 EP85114602A EP85114602A EP0189536B1 EP 0189536 B1 EP0189536 B1 EP 0189536B1 EP 85114602 A EP85114602 A EP 85114602A EP 85114602 A EP85114602 A EP 85114602A EP 0189536 B1 EP0189536 B1 EP 0189536B1
Authority
EP
European Patent Office
Prior art keywords
radiation
sensor
detector according
radiation source
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85114602A
Other languages
English (en)
French (fr)
Other versions
EP0189536A1 (de
Inventor
Kurt Müller
Walter Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT85114602T priority Critical patent/ATE47238T1/de
Publication of EP0189536A1 publication Critical patent/EP0189536A1/de
Application granted granted Critical
Publication of EP0189536B1 publication Critical patent/EP0189536B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/04Monitoring of the detection circuits
    • G08B29/046Monitoring of the detection circuits prevention of tampering with detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an infrared intrusion detector with an infrared sensor enclosed by a housing and an optical arrangement which directs infrared radiation entering the housing from certain reception areas through an infrared-transparent entrance window, and with an evaluation circuit connected to the sensor. which emits a signal when the output signal of the sensor changes in a certain way, the housing having an infrared radiation source which is designed and arranged in such a way that its radiation strikes the sensor after the entrance window has passed, and the evaluation circuit is designed in this way that it additionally emits a signal when the sensor receives radiation that has been reduced in a certain way from the radiation source.
  • Such infrared intrusion detectors are e.g. B. from GB-A-2141 228 and are used to penetrate a monitored area object, for. B. an intruder, by means of the infrared radiation emitted or modified by this and to trigger an alarm signal via the evaluation circuit.
  • the housing of the detector is closed in the direction of radiation by an infrared-transparent window, which is suitable for the radiation to be detected, e.g. -B. the body radiation of a person in the wavelength range around 10 f.Lm, z. B. is permeable in the area of 5-10 f.Lm.
  • the additional infrared radiation source ensures that the functionality of the detector is continuously monitored. A malfunction of the sensor or the evaluation circuit is immediately detected by reducing the electrical response signal to an infrared radiation pulse and triggers a fault signal. Likewise, any attempt to sabotage the detector and mesh insensitive to the detection of an intruder, e.g. B. by spraying the lens, or the entrance window of the housing with a spray impermeable to infrared radiation, signaled in the same way as a fault.
  • the irradiation of the sensor In order to be able to distinguish a real alarm condition caused by a burglar from a disturbance in such known detectors, the irradiation of the sensor must be different in both cases, and the evaluation circuit must be able to evaluate and display the two types of irradiation separately.
  • the radiation of the additional radiation source can be modulated in a certain way and the evaluation circuit can be matched to this modulation, which requires a considerable amount of circuitry, or the optical arrangement is designed to generate a number of limited reception fields, such as, for. B.
  • the evaluation circuit specifically and selectively detects a radiation change of the sensor generated by movement of a burglar through a reception area and only then delivers an alarm signal if this change in radiation has a certain predetermined shape. This also requires considerable effort.
  • an infrared intrusion detector is already known from US-A-4,339,748 and other publications, in which the infrared sensor is designed as a dual sensor with two sensor elements connected to one another or connected in antiparallel. Because of the slight spatial displacement of the two sensor elements relative to one another, each optical element therefore generates a pair of two closely adjacent reception areas, which a burglar crosses in succession with a short time difference. Due to the differential connection of the two sensor elements, the evaluation circuit therefore receives at least one positive and one negative pulse in quick succession in the event of an alarm. -B: can be evaluated with a time window circuit for alarm signaling, and separately from other signals.
  • the invention sets itself the task of avoiding the disadvantages of the prior art, and to provide an infrared intrusion detector which can detect and signal an alarm condition separately from a functional defect or a tamper attempt safely and reliably and with little effort.
  • the infrared sensor has two sensor elements which are irradiated differently by the infrared radiation source and are connected in a differential circuit.
  • the radiation source can advantageously be arranged asymmetrically with respect to the plane of symmetry of the sensor elements, e.g. B. laterally offset on the edge or in a corner of the radiation inlet opening of the housing, the entrance window in the opening set back a little or be slightly inclined towards the front of the housing.
  • Focusing optics can be provided which focus the radiation from the radiation source onto the sensor.
  • an optical element of the optical arrangement can be used, which is required anyway for receiving external infrared radiation, or advantageously a separate optical element, which is arranged asymmetrically to the plane of symmetry of the two sensor elements.
  • the radiation source can then also be arranged symmetrically, with different irradiation of the two sensor elements also being ensured here.
  • the fault monitoring can take place continuously. All that is required in the evaluation circuit is a control circuit that determines whether at the input, ie. H. at the output of the differential circuit, a signal is constantly present.
  • the radiation source can advantageously be controlled with direct voltage steps without disrupting the alarm evaluation, which only responds to short successive pulses with reversed polarity and not to a sequence of similar pulses.
  • the fault monitoring can also be carried out periodically during certain test phases. A pulse operation with a signal that is similar to the signal generated by a burglar is advantageous.
  • FIG. 1 shows an infrared intrusion detector which has an infrared sensor 3 and an optical arrangement 4 in a housing 1 with a radiation entrance window 2, which directs or bundles radiation from a monitored area 5 onto the sensor 3.
  • the entrance window 2 is composed of an at least in the wavelength range of human body radiation, i.e. H. in the range of 10 f.Lm, z. B. between 5 and 15 f.Lm radiolucent, but for visible light with advantage, if not necessarily, impermeable, and z. B. from a suitable plastic material or a special glass.
  • the sensor 3 is sensitive in the same wavelength range, for. B. as a pyroelectric sensor.
  • a special infrared filter 6 can be provided in front of the sensor 3 to absorb other wavelengths.
  • the optical arrangement 4 expediently has a plurality of mirror segments arranged next to one another, or a plurality of rows of mirror segments lying one above the other, with which a number of reception fields for the sensor are generated.
  • the sensor 3 is designed as a dual sensor with two adjacent sensor elements, so that the optical elements generate pairs of adjacent reception fields, one of which is assigned to one of the two sensor elements.
  • An evaluation circuit is connected to the sensor 3, which responds specifically and selectively to radiation changes as they are generated by an intruder crossing a pair of reception areas.
  • this circuit consists of a differential circuit 7 which is connected to the two sensor elements of the radiation sensor 3 and which is connected to a discriminator circuit 8. This triggers an alarm signal via a signal line 9 if the sensor output signal has two sufficiently strong pulses of different polarity that occur at short intervals, ie. H. has a positive and a negative impulse, which indicates the movement of an intruder through a reception area pair.
  • the evaluation circuit or parts thereof can also be provided separately in a signal center and connected to it with lines.
  • a detector of this type responds to infrared radiation of the type which is emitted by a person after being modulated in a certain way.
  • the entrance window of the detector with a translucent, i.e. H. practically invisible, but infrared-opaque layer, which can easily be done with the spray when the system is disarmed during the day, the sensor no longer receives any evaluable radiation, so that the alarm system is ineffective when activated, without the inoperability and attempted sabotage more are recognizable.
  • the detector shown has an infrared radiation source 11 on the front side 10 of the housing, which emits radiation in the same wavelength range as a human person.
  • the radiation source can be designed, for example, as a linear or as a PTC resistor, as an incandescent lamp or as an LED.
  • the entrance window 2 is set back a little against the radiation source 11, so that its radiation can cross the entrance window 2 and, after being deflected by the optical element 5, can strike the sensor 3.
  • the arrangement of the radiation source 11 is now selected such that it lies outside the plane of symmetry of the two sensor elements, for. B.
  • the radiation source at the edge of the inlet opening can be offset laterally, ie outside the center, or in a corner of the opening. Due to this asymmetrical arrangement causes the two sensor elements to be irradiated differently by the radiation source and a non-zero signal to occur at the output of the differential circuit connecting the two sensor elements, provided that all components are functional and the entrance window is infrared-transparent.
  • this control signal can be evaluated in a simple manner by means of a control circuit in the discriminator circuit 8, in that a fault signal is triggered as soon as the control signal is absent, specifically and independently of the alarm evaluation.
  • a functional test can also be carried out in test phases, e.g. B. manually triggered with a test switch on the detector or in the signaling center, or automatically with a control circuit periodically or at irregular, statistically distributed intervals.
  • a functional test is expediently carried out automatically each time the alarm system is activated. It is also advantageous to provide a function test not only during arming the alarm system, but also during disarming, if people are allowed to stay regularly in the monitored area and there is therefore an opportunity to attempt sabotage.
  • the function check can also be triggered and controlled by a suitably programmed microprocessor.
  • the use of a programmable controller also allows particularly advantageous developments of the inventive concept.
  • the intensity or duty cycle of the radiation source can be determined and stored until the radiation required to trigger the alarm by an intruder is reached. With each subsequent function test, the radiation source is then switched on with these stored operating data.
  • a more sophisticated evaluation, e.g. B. with multiple thresholds is possible in this way.
  • FIGS. 2 and 3 show a variant of an infrared intrusion detector, identical components being provided with the same reference symbols.
  • the entrance window 13 is slightly inclined towards the front of the housing so that the radiation from the radiation source 11 can penetrate it better and with a larger angle of incidence.
  • the optical arrangement for receiving infrared radiation from the monitored space generates a folded beam path and consists of a series of primary mirror segments 14 for forming the individual reception areas and a common secondary mirror 15 for focusing the radiation from all areas onto the sensor 3 is, as shown in particular in FIG. 3, designed as a dual sensor with two adjacent sensor elements 18, 19 connected to one another or in anti-parallel with a vertical plane of symmetry.
  • a separate reflector 16 is provided in the housing 1 for focusing the infrared radiation from the radiation source 11 onto the sensor 3. This permits radiation bundling with optimum efficiency, so that a sufficient test radiation equivalent to the radiation intensity of an intruder can be generated with a radiation source of minimal power.
  • a radiation source power of approximately 0.1 watt was sufficient, if the radiation source is designed as a 50 ohm resistor with an operating temperature of approximately 100 ° C.
  • the reflector 16 is arranged asymmetrically to the plane of symmetry of the two sensor elements 18, 19. It is also possible to arrange the reflector 16 so far laterally that essentially only one of the two sensor elements is irradiated. This asymmetry of the arrangement also ensures here that a sensor output signal is always present in the dual sensor with sensor elements connected to one another when the radiation source is activated.
  • the switching on and off of the radiation source can here instead of switching the operating voltage for the radiation source 11, also by means of a mechanical interrupter 17 or an element with electrically controllable transparency, for. B. a Kerr cell.
  • a mechanical interrupter 17 or an element with electrically controllable transparency for. B. a Kerr cell.
  • the radiation source can remain switched on continuously, or can only be switched on shortly before the radiation is released by the chopper 17 in order to save power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

  • Die Erfindung betrifft einen Infrarot-Einbruchdetektor mit einem von einem Gehäuse umschlossenen Infrarot-Sensor und einer optischen Anordnung, welche durch ein infrarotdurchlässiges Eintrittsfenster in das Gehäuse aus bestimmten Empfangsbereichen eintretende Infrarot-Strahlung auf den Sensor richtet, sowie mit einer mit dem Sensor verbundenen Auswerteschaltung, welche ein Signal abgibt, wenn sich das Ausgangssignal des Sensors in bestimmter Weise ändert, wobei das Gehäuse eine Infrarot-Strahlungsquelle aufweist, die derart ausgebildet und angeordnet ist, dass deren Strahlung nach Durchsetzung des Eintrittsfensters auf den Sensor auftrifft, und die Auswerteschaltung so ausgebildet ist, dass sie zusätzlich ein Signal abgibt, wenn der Sensor eine in bestimmter Weise verminderte Strahlung von der Strahlungsquelle erhält.
  • Solche Infrarot-Einbruchdetektoren sind z. B. aus der GB-A-2141 228 bekannt und dienen dazu, ein in einen überwachten Bereich eingedrungenes Objekt, z. B. einen Eindringling, mittels der von diesem ausgesandten oder geänderten Infrarot-Strahlung zu detektieren und über die Auswerteschaltung ein Alarmsignal auszulösen. Zum Schutz der optischen Anordnung und des Sensors vor Beschädigung oder Verstaubung, sowie zur unauffälligen Plazierung des Detektors im überwachten Raum ist dabei das Gehäuse des Detektors in Einstrahlungs-Richtung durch ein infrarotdurchlässiges Fenster abgeschlossen, das für die nachzuweisende Strahlung, z. -B. die Körperstrahlung eines Menschen im Wellenlängenbereich um 10 f.Lm, z. B. im Gebiet von 5-10 f.Lm durchlässig ist. Durch die zusätzliche Infrarot-Strahlungsquelle wird dabei erreicht, dass die Funktionsfähigkeit des Detektors laufend überwacht wird. Eine Funktionsstörung des Sensors oder der Auswerteschaltung wird durch die Verminderung des elektrischen Antwortsignals auf einen Infrarot-Strahlungspuls unverzüglich entdeckt und löst ein Störungs-Signal aus. Ebenso wird jeder Versuch, den Detektor zu sabotieren und für die Detektion eines Eindringlings unempfindlich zu maschen, z. B. durch Besprühen der Abschlussscheibe, bzw. des Eintrittsfensters des Gehäuses mit einem für Infrarot-Strahlung undurchlässigen Spray, in gleicher Weise als Störung signalisiert.
  • Um bei solchen vorbekannten Detektoren einen -echten, von einem Einbrecher verursachten Alarmzustand von einer Störung unterscheiden zu können, muss die Bestrahlung des Sensors in beiden Fällen unterschiedlich sein, und die Auswerteschaltung muss in der Lage sein, die beiden Bestrahlungsarten getrennt auszuwerten und anzuzeigen. Dazu kann entweder die Strahlung der zusätzlichen Strahlungsquelle in bestimmter Weise moduliert und die Auswerteschaltung auf diese Modulation abgestimmt sein, was einen erheblichen Schaltungsaufwand erfordert, oder die optische Anordnung ist eingerichtet, eine Anzahl begrenzter Empfangsfelder zu erzeugen, wie z. B. aus US-A-3 703 718, US-A-4 058 726 oder EP-A-25 188 bekannt, und die Auswerteschaltung detektiert spezifisch und selektiv eine durch Bewegung eines Einbrechers durch einen Empfangsbereich erzeugte Bestrahlungsänderung des Sensors und liefert nur dann ein Alarmsignal, wenn diese Bestrahlungsänderung eine bestimmte vorgegebene Form besitzt. Auch dies erfordert einen erheblichen Aufwand.
  • Andererseits ist aus US-A-4 339 748 und anderen Publikationen bereits ein Infrarot-Einbruchdetektor bekannt, bei dem der Infrarot-Sensor als Dual-Sensor mit zwei gegeneinander geschalteten oder antiparallel geschalteten Sensorelementen ausgebildet ist. Wegen der geringen räumlichen Versetzung der beiden Sensorelemente gegeneinander erzeugt daher jedes optische Element ein Paar von zwei eng benachbarten Empfangsbereichen, die von einem Einbrecher mit einer kurzen Zeitdifferenz nacheinander durchquert werden. Durch die Differenzschaltung der beiden Sensorelemente erhält die Auswerteschaltung daher im Alarmfall kurz nacheinander mindestens je einen positiven und negativen Impuls, der auf einfache Weise, z. -B: mit einer Zeitfensterschaltung zur Alarmsignalgabe ausgewertet werden kann, und zwar getrennt von anderen Signalen.
  • Bei einem solchen, mit einem Dual-Sensor ausgerüsteten Infrarot-Einbruchdetektor wäre die Verwendung einer zusätzlichen, den Sensor direkt bestrahlenden Strahlungsquelle zur Störungs- oder Sabotageüberwachung jedoch unwirksam, da die Strahlungsquelle beide Sensorelemente gleichmässig bestrahlen würde und das Ausgangssignal der Differenzschaltung daher Null wäre, und eine Störung oder ein Sabotageversuch nicht erkannt werden könnte.
  • Die Erfindung setzt sich die Aufgabe, die genannten Nachteile des Standes der Technik zu vermeiden, und einen Infrarot-Einbruchdetektor zu schaffen, der einen Alarmzustand getrennt von einem Funktionsdefekt oder einen Sabotageversuch sicher und zuverlässig und mit geringem Aufwand festzustellen und zu signalisieren vermag.
  • Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass der Infrarot-Sensor zwei Sensorelemente aufweist, die von der infrarot-Strahlungsquelle unterschiedlich bestrahlt und in einer Differenzschaltung verbunden sind.
  • Um eine unterschiedliche Bestrahlung der beiden Sensorelemente zu erreichen, kann die Strahlungsquelle mit Vorteil asymmetrisch zur Symmetrie-Ebene der Sensorelemente angeordnet sein, z. B. seitlich versetzt am Rande oder in einer Ecke der Strahlungseintrittsöffnung des Gehäuses, wobei das Eintrittsfenster in der Oeffnung etwas zurückversetzt oder gegen die Gehäuse-Vorderseite etwas geneigt sein kann.
  • Mit besonderem Vorteil kann im Gehäuse eine Bündelungs-Optik vorgesehen sein, die die Strahlung der Strahlungsquelle auf den Sensor bündelt. Dafür kann ein optisches Element der optischen Anordnung benützt werden, die ohnehin zum Empfang externer Infrarot-Strahlung benötigt wird, oder aber mit Vorteil ein separates optisches Element, welches asymmetrisch zur Symmetrie-Ebene der beiden Sensor-Elemente angeordnet ist. In letzterem Falle kann dann die Strahlungsquelle auch symmetrisch angeordnet sein, wobei auch hier eine unterschiedliche Bestrahlung der beiden Sensorelemente sichergestellt ist.
  • Die Störungsüberwachung kann dabei kontinuierlich erfolgen. In der Auswerteschaltung ist dazu lediglich eine Kontrollschaltung erforderlich, die feststellt, ob am Eingang, d. h. am Ausgang der Differenzschaltung, dauernd ein Signal ansteht. Die Strahlungsquelle kann dabei mit Vorteil mit Gleichspannungsschritten angesteuert werden, ohne die Alarmauswertung zu stören, die nur auf kurz aufeinanderfolgende Impulse mit umgekehrter Polarität anspricht, und nicht auf eine Folge gleichartiger Impulse. Die Störungsüberwachung kann jedoch auch periodisch während bestimmter Testphasen erfolgen. Vorteilhaft ist dabei ein Impulsbetrieb mit einem Signal, das dem von einem Einbrecher erzeugten Signal ähnlich ist. An der Auswerteschaltung sind keine wesentlichen Aenderungen erforderliche, ausser einer Inverterstufe, die bewirkt, dass in der Testphase kein Signal gegeben wird, wenn Strahlung der Strahlungsquelle korrekt empfangen wird, jedoch Alarm signalisiert wird, wenn keine ausreichende Strahlung eintrifft, umgekehrt wie im normalen Betriebs- und Ueberwachungszustand. Ein spezieller Sabotageerkenhungskanal ist dabei überflüssig.
  • Die Erfindung wird anhand der in den Figuren wiedergegebenen Ausführungsbeispiele näher erläutert. Es zeigen :
    • Figur 1 -einen ersten Einbruchdetektor im Schnitt,
    • Figur 2 einen zweiten Einbruchdetektor im Schnitt,
    • Figur 3 den zweiten Einbruchdetektor in Perspektive.
  • In Figur 1 ist ein Infrarot-Einbruchdetektor dargestellt, der in einem Gehäuse 1 mit einem Strahlungs-Eintrittsfenster 2 einen Infrarot-Sensor 3 und eine optische Anordnung 4 aufweist, welche Strahlung aus einem überwachten Bereich 5 auf den Sensor 3 richtet oder bündelt. Das Eintrittsfenster 2 ist aus einem zumindest im Wellenlängenbereich der menschlichen Körperstrahlung, d. h. im Bereich um 10 f.Lm, z. B. zwischen 5 und 15 f.Lm strahlungsdurchlässig, für sichtbares Licht jedoch mit Vorteil, wenn auch nicht notwendigerweise, undurchlässig, und besteht z. B. aus geeignetem Kunststoffmaterial oder einem Spezialglas. Der Sensor 3 ist im gleichen Wellenlängenbereich empfindlich ausgebildet, z. B. als pyroelektrischer Sensor. Nötigenfalls kann vor dem Sensor 3 ein spezielles Infrarotfilter 6 zur Absorption anderer Wellenlängen vorgesehen sein. Sie optische Anordnung 4 weist zweckmässigerweise eine Mehrzahl nebeneinander angeordneter Spiegelsegmente auf, oder mehrere übereinanderliegende Reihen von Spiegelsegmenten, mit denen eine Anzahl von Empfangsfeldern für den Sensor erzeugt werden.
  • Der Sensor 3 ist als Dual-Sensor mit zwei benachbarten Sensorelementen ausgebildet, so dass die optischen Elemente Paare von benachbarten Empfangsfeldern erzeugen, von denen je eines einem der beiden Sensorelemente zugeordnet ist. An den Sensor 3 ist eine Auswerteschaltung angeschlossen, die spezifisch und selektiv auf Strahlungsänderungen anspricht, wie sie von einem ein Empfangsbereichs-Paar durchquerenden Eindringling erzeugt werden. Im einfachsten Fall besteht diese Schaltung aus einer mit den beiden Sensorelementen des Strahlungssensors 3 verbundenen Differenzschaltung 7, die an eine Diskriminatorschaltung 8 angeschlossen ist. Diese löst über eine Signalleitung 9 ein Alarmsignal aus, falls das Sensor-Ausgangssignal zwei in kurzem Zeitabstand auftretende, ausreichend starke Impulse unterschiedlicher Polarität, d. h. einen positiven und einen negativen Impuls aufweist, was die Bewegung eines Eindringlings durch ein Empfangsbereichs-Paar anzeigt. Statt im Gehäuse 1 selbst kann die Auswerteschaltung oder Teile derselben auch getrennt davon in einer Signalzentrale und mit Leitungen damit verbunden vorgesehen sein.
  • Ein Detektor dieser Art spricht auf Infrarotstrahlung solcher Art an, wie sie von einer Person ausgestrahlt wird, nachdem diese in bestimmter Weise moduliert wurde. Wird jedoch das Eintrittsfenster des Detektors mit einer lichtdurchlässigen, d. h. praktisch unsichtbaren, jedoch infrarotundurchlässigen Schicht bedeckt, was in Unscharfstellung der Anlage während des Tages leicht mit einem Spray bewerkstelligt werden kann, so empfängt der Sensor keine auswertbare Strahlung mehr, so dass die Alarmanlage bei Scharfstellung unwirksam ist, ohne dass die Funktionsunfähigkeit und der Sabotageversuch ohne weiteres erkennbar sind.
  • Um diesen Nachteil zu beseitigen, weist der dargestellte Detektor an der Gehäuse-Vorderseite 10 eine Infrarot-Strahlungsquelle 11 auf, die Strahlung im gleichen Wellenlängenbereich emittiert, wie eine menschliche Person. Die Strahlungsquelle kann beispielsweise als linearer oder als PTC-Widerstand, als Glühlampe oder als LED ausgebildet sein. Das Eintrittsfenster 2 ist gegen die Strahlungsquelle 11 ein wenig zurückgesetzt, so dass deren Strahlung das Eintrittsfenster 2 durchqueren und nach Umlenkung durch das optische Element 5 auf den Sensor 3 auftreffen kann.
  • Die Anordnung der Strahlungsquelle 11 ist nun so gewählt, dass sie ausserhalb der Symmetrie-Ebene der beiden Sensorelemente liegt z. B. kann die Strahlungsquelle am Rand der Eintrittsöffnung seitlich versetzt, d. h. ausserhalb der Mitte, oder in einer Ecke der Oeffnung angebracht sein. Durch diese asymmetrische Anordnung wird bewirkt, dass die beiden Sensorelemente unterschiedlich von der Strahlungsquelle bestrahlt werden und am Ausgang der die beiden Sensorelemente verbindenden Differenzschaltung ein von Null verschiedenes Signal auftritt, sofern alle Komponenten funktionsfähig sind und das Eintrittsfenster infrarotdurchlässig ist. Bei kontinuierlichem Ueberwachungsbetrieb kann dieses Kontrollsignal auf einfache Weise mittels einer Kontrollschaltung in der Diskriminatorschaltung 8 ausgewertet werden, indem ein Störungssignal ausgelöst wird, sobald das Kontrollsignal ausbleibt, und zwar getrennt und unabhängig von der Alarmauswertung.
  • Eine Funktionsprüfung kann jedoch auch in Testphasen, z. B. manuell mit einem Testschalter am Detektor oder in der Signalzentrale ausgelöst werden, oder aber automatisch mit einer Steuerschaltung periodisch oder in unregelmässigen, statistisch verteilten Zeitabständen. Zweckmässigerweise wird ein Funktionstest automatisch bei jeder Scharfstellung der Alarmanlage vorgenommen. Vorteilhaft ist es auch, einen Funktionstest nicht nur während der Scharfstellung der Alarmanlage vorzusehen, sondern auch während der Unscharfstellung, wenn sich Personen regelmässig im überwachten Bereich aufhalten dürfen und somit Gelegenheit zu einem Sabotageversuch besteht. Die Funktionskontrolle kann im übrigen auch von einem geeignet programmierten Mikroprozessor ausgelöst und gesteuert werden. Der Einsatz einer programmierbaren Steuerung erlaubt zudem noch besonders vorteilhafte Weiterbildungen des Erfindungsgedankens. So kann beispielsweise beim ersten Einschalten einer Alarmanlage nach der Installation die Intensität oder Einschaltdauer der Strahlungsquelle bis zum Erreichen der für die Alarmauslösung durch einen Eindringling erforderlichen Bestrahlung des Sensors festgestellt und gespeichert werden. Bei jedem folgenden Funktionstest wird dann die Strahlungsquelle mit diesen gespeicherten Betriebsdaten eingeschaltet. Auch eine differenziertere Auswertung, z. B. mit mehreren Schwellenwerten wird auf diese Weise möglich.
  • Besonders vorteilhaft ist es, wenn die Strahlungsquelle 11 während der Testphase über eine Treiberschaltung 12 kurzzeitig, z. B. während etwa einer Sekunde eingeschaltet wird. Der Sensor wird dabei etwa in gleicher Weise mit Infrarot- Strahlung beaufschlagt, wie wenn ein Eindringling einen Empfangsbereich durchquert. Eine Alarmsignalgabe wird dabei während der Testphase durch logische Schaltung in der Diskriminatorschaltung 8 unterdrückt, während in dieser Phase ein Störungssignal bei Ausbleiben der modulierten Infrarotstrahlung ausgelöst wird.
  • Die Figuren 2 und 3 zeigen eine Variante eines Infrarot-Einbruchdetektors, wobei identische Bauteile mit den gleichen Bezugszeichen versehen sind. Im Unterschied zum ersten Beispiel ist hier das Eintrittsfenster 13 gegen die Gehäuse-Vorderseite etwas geneigt, so dass es von der Strahlung der Strahlungsquelle 11 besser und mit grösserem Einfallswinkel durchsetzt werden kann. Die optische Anordnung für die Aufnahme von Infrarot-Strahlung aus dem überwachten Raum erzeugt einen gefalteten Strahlengang und besteht aus einer Reihe von primären Spiegelsegmanten 14 zur Bildung der einzelnen Empfangsbereiche und einem gemeinsamen Sekundärspiegel 15 zur Bündelung der Strahlung aus allen Bereichen auf den Sensor 3. Dieser ist, wie insbesondere Figur 3 zeigt, als Dual-Sensor mit zwei benachbarten, gegeneinander oder antiparallel geschalteten Sensorelementen 18, 19 mit vertikaler Symmetrie-Ebene ausgebildet.
  • Zur Fokussierung der Infrarotstrahlung der Strahlungsquelle 11 auf den Sensor 3 ist im Gehäuse 1 ein separater Reflektor 16 vorgesehen. Dieser gestattet eine Strahlungsbündelung mit optimalem Wirkungsgrad, so dass mit einer Strahlungsquelle minimaler Leistung eine ausreichende, der Strahlungsintensität eines Eindringlings äquivalente Teststrahlung erzeugbar ist. In einem praktischen Ausführungsbeispiel genügte bereits eine Strahlungsquellen-Leistung von etwa 0,1 Watt, bei Ausbildung der Strahlungsquelle als 50 Ohm-Widerstand mit einer Betriebstemperatur von ca. 100°C. Um eine ungleichmässige Bestrahlung der beiden Sensorelemente 18, 19 zu erreichen, ist der Reflektor 16 asymmetrisch zur Symmetrie-Ebene der beiden Sensorelemente 18, 19 angeordnet. Dabei ist es auch möglich, den Reflektor 16 so weit seitlich anzuordnen, dass im wesentlichen nur eines der beiden Sensorelemente bestrahlt wird. Durch diese Unsymmetrie der Anordnung wird auch hier erreicht, dass bei dem Dual-Sensor mit gegeneinandergeschalteten Sensorelementen bei Ansteuerung der Strahlungsquelle stets ein Sensor-Ausgangssignal vorhanden ist.
  • Das Ein- und Ausschalten der Strahlungsquelle kann hier statt durch Schalten der Betriebsspannung für die Strahlungsquelle 11, auch mittels eines mechanischen Unterbrechers 17 oder eines Elementes mit elektrisch steuerbarer Transparenz, z. B. einer Kerr-Zelle, erfolgen. Dadurch lässt sich der bei einem Heizwiderstand wegen seiner Wärmeträgheit relativ langsame Temperaturanstieg beim Einschalten vermeiden, und es lässt sich ein Strahlungsanstieg mit sehr steiler Flanke erreichen, was den Wirkungsgrad verbessert. Die Strahlungsquelle kann dabei dauernd eingeschaltet bleiben, oder aber nur kurz vor der Strahlungsfreigabe durch den Chopper 17 eingeschaltet werden, um Leistung zu sparen.
  • Auf die beschriebene Weise lässt sich bei Infrarot-Einbruchdetektoren durch Verwendung eines Dual-Sensors und mit asymmetrischer Bestrahlung zu Testzwecken eine sichere und zuverlässige Funktions- und Sabotageüberwachung auf einfache Weise und mit minimalem Mehraufwand erreichen, wobei die Alarmauswertung unbeeinflusst davon äusserst selektiv arbeitet.

Claims (18)

1. Infrarot-Einbruchdetektor mit einem von einem Gehäuse (1) umschlossenen Infrarot-Sensor (3) und einer optischen Anordnung (4, 14, 15), welche durch ein infrarotdurchlässiges Eintrittsfenster (2, 13) in das Gehäuse (1) aus bestimmten Empfangsbereichen (5) eintretende Infrarot- Strahlung auf den Sensor (3) richtet, sowie mit einer mit dem Sensor (3) verbundenen Auswerteschaltung (7, 8), welche ein Signal abgibt, wenn sich das Ausgangssignal des Sensors (3) in bestimmter Weise ändert, wobei das Gehäuse (1) eine Infrarot-Strahlungsquelle (11) aufweist, die derart ausgebildet und angeordnet ist, dass deren Strahlung nach Durchsetzung des Eintrittsfensters (2, 13) auf den Sensor (3) auftritt, und die Auswerteschaltung (7, 8) so ausgebildet ist, dass sie zusätzlich ein Signal abgibt, wenn der Sensor (3) eine in bestimmter Weise verminderte Strahlung von der Strahlungsquelle (11) erhält, dadurch gekennzeichnet, dass der Infrarot-Sensor (3) zwei Sensorelemente (18, 19) aufweist, die von der Strahlungsquelle (11) unterschiedlich bestrahlt sind, und die in einer Differenzschaltung miteinander verbunden sind.
2. Detektor nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlungsquelle (11) ausserhalb der Symmetrie-Ebene der beiden Sensorelemente (18, 19) angeordnet ist.
3. Detektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strahlungsquelle (11) an der Vorderseite (10) des Gehäuses (1) am Rand des Eintrittsfensters (2, 13) angeordnet ist
4. Detektor nach Anspruch 3, dadurch gekennzeichnet, dass die Strahlungsquelle (11) ausserhalb der Mitte des Eintrittsfensters (2, 13) angeordnet ist.
5. Detektor nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Eintrittsfenster (2) in Einstrahlungsrichtung gegenüber der Strahlungsquelle (11) zurückversetzt ist.
6. Detektor nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Eintrittsfenster (13) gegen die Vorderseite (10) des Gehäuses (1) geneigt ist.
7. Detektor nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass im Gehäuse ein Reflektor (4, 16) zur Umlenkung der Strahlung der Strahlungsquelle (11) nach Durchsetzung des Eintrittsfensters (2, 13) auf den Sensor (3) vorgesehen ist.
8. Detektor nach Anspruch 7, dadurch gekennzeichnet, dass der Reflektor (4) zur Umlenkung der Strahlung der Strahlungsquelle (11) auf den Sensor (3) ein Element der optischen Anordnung zur Leitung von Strahlung aus einem Empfangsbereich (5) auf den Sensor (3) ist.
9. Detektor nach Anspruch 7, dadurch gekennzeichnet, dass der Reflektor (16) zur Umlenkung der Strahlung der Strahlungsquelle (11) auf den Sensor (3) ein von der optischen Anordnung (14, 15) zur Leitung von Strahlung aus den Empfangsbereichen auf den Sensor (3) getrenntes optisches Element ist.
10. Detektor nach Anspruch 9, dadurch gekennzeichnet, dass der Reflektor (16) zur Umlenkung der Strahlung asymmetrisch zur Symmetrie-Ebene der beiden Sensorelemente (18, 19) angeordnet ist.
11. Detektor nach Anspruch 10, dadurch gekennzeichnet, dass der Reflektor so angeordnet ist, dass von ihm im wesentlichen nur eines der Sensorelemente bestrahlt ist.
12. Detektor nach einem der Ansprüche 1-11, dadurch gekennzeichnet, dass die Auswerteschaltung eine Einrichtung (8) zur Störungssignalgabe aufweist, welche ein Signal abgibt, wenn das Ausgangssignal der Differenzschaltung der beiden Sensorelemente (18, 19) unter einen bestimmten Wert abfällt.
13. Detektor nach einem der Ansprüche 1-12, dadurch gekennzeichnet, dass eine Einrichtung (8, 12) zum kurzzeitigen Einschalten der Strahlungsquelle (11) während einer vorbestimmten Einschaltzeit und mit vorbestimmter Strahlungstemperatur vorgesehen ist.
14. Detektor nach einem der Ansprüche 1-12, dadurch gekennzeichnet, dass eine Einrichtung (17) zur kurzzeitigen Freigabe der Strahlung der Strahlungsquelle (11) vorgesehen ist.
15. Detektor nach Anspruch 14, dadurch gekennzeichnet, dass die Einrichtung zur Freigabe der Strahlung als mechanischer Unterbrecher (17) ausgebildet ist.
16. Detektor nach Anspruch 14, dadurch gekennzeichnet, dass die Einrichtung zur Freigabe der Strahlung als Element mit elektrisch steuerbarer Strahlungsdurchlässigkeit ausgebildet ist.
17. Detektor nach einem der Ansprüche 13-16, dadurch gekennzeichnet, dass die Einschalt- oder Freigabezeit der Strahlungsquelle (11) in der Grössenordnung von einer Sekunde und deren Strahlungstemperatur in der Grössenordnung von 100°C liegt.
18. Detektor nach einem der Ansprüche 1-17, dadurch gekennzeichnet, dass die Strahlungsquelle (11) ein Temperaturstrahler mit einem Strahlungsmaximum im Bereich zwischen 5 und 15 (.Lm ist.
EP85114602A 1985-01-08 1985-11-16 Infrarot-Einbruchdetektor Expired EP0189536B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85114602T ATE47238T1 (de) 1985-01-08 1985-11-16 Infrarot-einbruchdetektor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH58/85 1985-01-08
CH5885 1985-01-08

Publications (2)

Publication Number Publication Date
EP0189536A1 EP0189536A1 (de) 1986-08-06
EP0189536B1 true EP0189536B1 (de) 1989-10-11

Family

ID=4178354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114602A Expired EP0189536B1 (de) 1985-01-08 1985-11-16 Infrarot-Einbruchdetektor

Country Status (8)

Country Link
US (1) US4710629A (de)
EP (1) EP0189536B1 (de)
JP (1) JPS61162785A (de)
AT (1) ATE47238T1 (de)
CA (1) CA1244901A (de)
DE (1) DE3573670D1 (de)
ES (1) ES8706274A1 (de)
NO (1) NO854759L (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3629715C1 (de) * 1986-09-01 1987-12-17 Fraunhofer Ges Forschung Selbstueberwachende Reflexionslichtschranke
US4982094A (en) * 1986-10-31 1991-01-01 Takenaka Engineering Co., Ltd. Passive type crime-preventing infrared sensor provided with a mechanism of monitoring an obstruction for the visual field
JPH077465Y2 (ja) * 1987-04-10 1995-02-22 株式会社ナカムラ 保護柵
US5003293A (en) * 1989-10-02 1991-03-26 Compunic Electronics Co., Ltd. Billboard with audio message spreading function
CH680882A5 (de) * 1990-09-05 1992-11-30 Cerberus Ag
IT1245405B (it) * 1991-02-11 1994-09-20 Bitron Video Dispositivo anti-intrusione
US5084621A (en) * 1991-03-08 1992-01-28 Cincinnati Electronics Corporation Radiometric standard infrared detector
GB9107062D0 (en) * 1991-04-04 1991-05-22 Racal Guardall Scotland Intruder detection arrangements and methods
NL9200283A (nl) * 1992-02-17 1993-09-16 Aritech Bv Bewakingssysteem.
US5382944A (en) * 1992-08-05 1995-01-17 Detection Systems, Inc. Supervised PIR motion-detection system
EP0772171B1 (de) 1995-11-03 2003-01-08 Siemens Building Technologies AG Passiver Infrarot-Einbruchdetektor und dessen Verwendung
IL119372A (en) * 1995-11-03 2000-02-17 Siemens Building Tech Ag Passive infrared intruder detector
NL1003500C2 (nl) * 1996-07-04 1998-01-07 Aritech Bv Bewakingssysteem met lichtgeleidende middelen.
EP1037184B1 (de) 1999-03-08 2003-10-29 Siemens Building Technologies AG Gehäuse für einen Gefahrenmelder
EP1061489B1 (de) * 1999-06-07 2004-08-25 Siemens Building Technologies AG Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
IL130398A (en) * 1999-06-09 2003-11-23 Electronics Line E L Ltd Method and apparatus for detecting moving objects, particularly intrusions
US6774791B2 (en) 1999-06-09 2004-08-10 Electronics Line (E.L) Ltd. Method and apparatus for detecting moving objects, particularly intrusions
NL1019039C2 (nl) * 2001-09-26 2003-03-27 Interlogix B V Bewakingsdetector.
JP3767591B2 (ja) * 2003-09-25 2006-04-19 日産自動車株式会社 赤外線検出器
US7004784B2 (en) * 2004-02-26 2006-02-28 Robert Bosch Gmbh Tamper detection for security system
US7145455B2 (en) * 2004-08-18 2006-12-05 Honeywell International, Inc. MEMS based space safety infrared sensor apparatus and method
DE102008003585A1 (de) * 2007-06-15 2008-12-18 Robert Bosch Gmbh Werkzeugmaschinenüberwachungsvorrichtung
DE102007044800A1 (de) * 2007-09-20 2009-04-02 Robert Bosch Gmbh Werkzeugmaschine
US8858032B2 (en) * 2008-10-24 2014-10-14 Cree, Inc. Lighting device, heat transfer structure and heat transfer element
EP2498232A1 (de) 2011-03-10 2012-09-12 Siemens Aktiengesellschaft Detektor
US9964663B2 (en) * 2014-08-26 2018-05-08 The United States Of America, As Represented By The Secretary Of The Navy Extended infrared imaging system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703718A (en) * 1971-01-07 1972-11-21 Optical Coating Laboratory Inc Infrared intrusion detector system
US4058726A (en) * 1975-08-09 1977-11-15 Cerberus AG, Switzerland Radiation detector
GB1603306A (en) * 1978-04-27 1981-11-25 First Ba Security Ltd Intruder alarms
CH651941A5 (de) * 1979-09-10 1985-10-15 Cerberus Ag Optische anordnung fuer einen strahlungsdetektor.
US4339748A (en) * 1980-04-08 1982-07-13 American District Telegraph Company Multiple range passive infrared detection system
IN158131B (de) * 1981-06-02 1986-09-13 Santa Barbara Res Center
US4405234A (en) * 1981-08-03 1983-09-20 Detector Electronics Corp. Radiation detection apparatus having refractive light checking feature
EP0078443A3 (de) * 1981-10-30 1984-11-28 Armtec Industries, Inc. Branddetektoranlage
FR2520123A1 (fr) * 1982-01-15 1983-07-22 Thomson Csf Dispositif d'autotest pour equiper un systeme optronique
GB2141228B (en) * 1983-06-09 1987-01-07 Shorrock Security Systems Ltd Infra-red intrusion detector
US4464575A (en) * 1983-09-06 1984-08-07 Firetek Corporation Test device for an optical infra red detector

Also Published As

Publication number Publication date
DE3573670D1 (en) 1989-11-16
EP0189536A1 (de) 1986-08-06
ES551284A0 (es) 1987-05-16
CA1244901A (en) 1988-11-15
JPS61162785A (ja) 1986-07-23
NO854759L (no) 1986-07-09
ES8706274A1 (es) 1987-05-16
ATE47238T1 (de) 1989-10-15
US4710629A (en) 1987-12-01

Similar Documents

Publication Publication Date Title
EP0189536B1 (de) Infrarot-Einbruchdetektor
EP0188748B1 (de) Raumschutzanlage
DE3832428C2 (de)
DE3041737C2 (de) Passiver Infrarot-Einbruchdetektor
DE3402783C2 (de) Infrarotdetektor
EP0652422B1 (de) Vorrichtung zum Empfang von Lichtstrahlen
DE2537380B2 (de) Überwachungsvorrichtung mit einer Gruppe von Strahlungsdetektorelementen
EP0328709B1 (de) Lichtschranke
DE3129753A1 (de) Passive infrarot-raumschutzeinrichtung
EP0080114B2 (de) Strahlungsdetektor mit mehreren Sensorelementen
DE1616017B1 (de) Überwachungssystem
DE3518262C2 (de)
DE3134815A1 (de) Flaechensicherung
EP0200186B1 (de) Lichtschranke
CH667744A5 (de) Infrarot-eindringdetektor.
CH651941A5 (de) Optische anordnung fuer einen strahlungsdetektor.
DE2512650A1 (de) Flammendetektor
EP0319876A2 (de) Bewegungsmelder mit einem Infrarotdetektor
EP1387330B1 (de) Passiv-Infrarot-Bewegungsmelder
DE2645040B2 (de) Strahlungsdetektor
EP0262241A1 (de) Infrarot-Eindringdetektor
DE2609068A1 (de) Optisches geraet fuer schutz-lichtschranken
CH680881A5 (de)
DE8609515U1 (de) Vorrichtung zur Sabotageüberwachung an einem IR-Bewegungsmelder
DE1588617B1 (de) Elektrische ueberwachungsschaltung, insbesondere zur ueberwachung des steuerstromkreises einer durch wirkung von rauch oder sonstigen schwebstoffen ausloesbaren alarmvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19851116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19881207

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891011

REF Corresponds to:

Ref document number: 47238

Country of ref document: AT

Date of ref document: 19891015

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891115

REF Corresponds to:

Ref document number: 3573670

Country of ref document: DE

Date of ref document: 19891116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901010

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19911116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
EUG Se: european patent has lapsed

Ref document number: 85114602.7

Effective date: 19920604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001009

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001017

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010209

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST