EP0187350B1 - Verfahren zur Herstellung von Formkörpern aus aromatischen Polyethern - Google Patents

Verfahren zur Herstellung von Formkörpern aus aromatischen Polyethern Download PDF

Info

Publication number
EP0187350B1
EP0187350B1 EP85116333A EP85116333A EP0187350B1 EP 0187350 B1 EP0187350 B1 EP 0187350B1 EP 85116333 A EP85116333 A EP 85116333A EP 85116333 A EP85116333 A EP 85116333A EP 0187350 B1 EP0187350 B1 EP 0187350B1
Authority
EP
European Patent Office
Prior art keywords
mol
polymer
amount
aromatic
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85116333A
Other languages
English (en)
French (fr)
Other versions
EP0187350A3 (en
EP0187350A2 (de
Inventor
Hartmut Dr. Zeiner
Gerhard Dr. Heinz
Peter Dr. Neumann
Jürgen Dr. Fischer
Dietmar Dr. Nissen
Gerhard Dr. Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0187350A2 publication Critical patent/EP0187350A2/de
Publication of EP0187350A3 publication Critical patent/EP0187350A3/de
Application granted granted Critical
Publication of EP0187350B1 publication Critical patent/EP0187350B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones

Definitions

  • Aromatic polyethers are high-temperature-resistant plastics that can be processed thermoplastically to form high-quality molded parts.
  • DE-A-1 545 106 and 1 957 091 describes the preparation of aromatic polyether sulfones by nucleophilic polycondensation from dihaloaromatics and bisphenols. These polyether sulfones are soluble in organic solvents, so they have low solvent resistance and are prone to stress cracking. For some applications, their heat resistance is also not sufficiently high.
  • the invention was therefore based on the object of improving the resistance to solvents and stress cracking and, if appropriate, the heat resistance of molded articles made from aromatic polyethers. Another object of the invention was to provide new aromatic polyethers from which solvent-resistant and stress-crack-resistant molded articles can be produced.
  • thermoplastic molding which produces 5-60% by weight of reinforcing fibers with a length of up to 25 mm and / or mineral fillers but no oriented continuous fibers, and in which the polymer is produced by heating to temperatures of over 200'C cross-linked that its soluble fractions determined by extraction in boiling dichloromethane for one day are reduced to a value of below 60%.
  • Such copolyethers are particularly well suited for the purpose according to the invention since, in contrast to homopolymers, they contain fewer sulfur bridges and thus a lower crosslinking potential.
  • the crosslinking potential can be set in a targeted manner and the speed and extent of the crosslinking can be controlled in this way.
  • Preferred comonomers are bisphenol A and dihydroxydiphenyl sulfone.
  • the aromatic copolyethers according to the invention can be prepared by the customary processes. 4,4'-Thiodiphenol, together with 1 to 99 mol% of other bisphenols, and dichlorodiphenyl sulfone or dihalobenzophenone, preferably difluorobenzophenone, are preferably polycondensed in approximately equivalent amounts in the presence of anhydrous alkali carbonate. This can be done in the absence of Solvents are carried out, but is preferably carried out in a polar, aprotic solvent at temperatures between 120 and 200 ° C, preferably between 150 and 180 ° C, the water formed is expediently removed with the aid of an azeotrope.
  • Suitable anhydrous alkali carbonates are sodium and preferably potassium carbonate or mixtures thereof, preferably in amounts of 1.0 to 2.2 mol, based on thiodiphenol.
  • Compounds used as polar, aprotic solvents are those which form the N-substituted acid amides. count the sulfoxides or sulfones, for example N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, dimethyl sulfone, tetramethyl sulfone (sulfolane) or diphenyl sulfone. N-methylpyrrolidone is preferably used.
  • the polar, aprotic solvents are used in amounts of 5 to 100, preferably 10 to 20, moles, based on 1 mole of thiodiphenol. This means that the reaction solutions, in the absence of alkali carbonate and azeotrope, have a solids content of 5 to 50% by weight, preferably 20 to 35% by weight, based on the total weight.
  • Suitable water azeotroping agents are all substances that boil in the range of the reaction temperature at normal pressure and can be mixed homogeneously with the reaction mixture without undergoing chemical reactions.
  • azeotroping agents of the type mentioned are: chlorobenzene, toluene and xylene.
  • the reaction mixture in the first reaction stage is advantageously 0.5 to 4 until the separation of at least 90% by weight, preferably 90 to 96% by weight, based on the total weight, of the theoretically possible amount of water Heated, preferably 1 to 2 hours.
  • the reaction mixture is polycondensed until it is completely free of water and for this purpose, further azeotrope is constantly added to the reaction mixture and, at the same time, the azeotrope mixture formed is distilled off.
  • the reaction time is about 0.5 to 4 hours, preferably 1 to 2 hours.
  • the reaction time in the third stage for polycondensation to the desired viscosity of the copolyether is approximately 3 to 12 hours, preferably 4 to 8 hours.
  • the polycondensation is then stopped by introducing methyl chloride.
  • the reaction time for this is approximately 0.1 to 2, preferably 0.2 to 0.5 hours.
  • the isolation of the copolyether in the fourth stage can be carried out in various ways.
  • the solid polymer can be separated by mixing the reaction solution with a precipitant, e.g. B. water and / or methanol, by vigorous stirring, spraying or atomizing.
  • a precipitant e.g. B. water and / or methanol
  • the solvent can also be evaporated.
  • the inorganic constituents can be removed from the polyether by suitable methods such as dissolving, filtering or sieving.
  • the aromatic copolyethers thus produced have intrinsic viscosities (measured at 25 ° C. in methylpyrrolidone) from 0.2 to 2.0, preferably from 0.3 to 1.5. This corresponds to an average degree of polymerization of 50 to 500, preferably 70 to 250.
  • the glass transition temperature is between 160 and 250 ° C.
  • the aromatic copolyether can be admixed with conventional additives, for example reinforcing fibers made of glass, carbon or aromatic polyamide, with a length of up to 2.5 cm, preferably less than 0.1 cm, and silicate fillers, such as wollastonite, in each case in amounts of 5 to 60 wt .-%, based on the mixture. Flame retardants, stabilizers, dyes and crosslinking aids can also be added.
  • conventional additives for example reinforcing fibers made of glass, carbon or aromatic polyamide, with a length of up to 2.5 cm, preferably less than 0.1 cm, and silicate fillers, such as wollastonite, in each case in amounts of 5 to 60 wt .-%, based on the mixture.
  • silicate fillers such as wollastonite
  • the polymers are optionally thermoplastic molded together with the additives to give shaped articles. This can be done for example by pressing, extruding, injection molding or deep drawing. Solutions or dispersions of the polymers can also be brought into a mold and the polymer can be shaped in the melt after removal of the solvent or dispersion medium.
  • copolyethers can also be used instead of polysulfones analogously to DE-A-1 720 428 for modifying epoxy resins and other reactive resin formulations.
  • Epoxy resins containing 10 to 100 parts by weight of copolyether, based on the epoxy resin, are particularly advantageously used for the production of prepregs with controlled flow behavior.
  • the polymer is crosslinked in the moldings produced in such a way that its soluble fractions (measured by extraction for one day with boiling dichloromethane in a Soxhlet device) are from 100% to a value below 60%, preferably between 5 and 50 % are reduced, the glass temperature measured on the shaped body being practically not increased.
  • the degree of crosslinking achieved is sufficient to eliminate the stress crack susceptibility of the molded body.
  • the degree of crosslinking can be influenced by the temperature and the duration of the treatment, it is also dependent on the content of sulfur bridges in the polymer.
  • the crosslinking temperature is in any case above 200 ° C, it can preferably be varied in the range between 250 and 450 ° C, but must be kept below the temperature at which the polymer decomposes appreciably. It is preferably 120 to 200 ° C. above the glass transition temperature of the aromatic copolyether.
  • the duration of the annealing treatment can be between a few minutes and several days are varied, for low crosslinking, only the solubility being to be reduced, generally 10 to 200 minutes are sufficient; if the glass temperature is also to be raised, you have to temper for 1 to 10 hours.
  • the moldings produced according to the invention can be used as motor vehicle parts or in the aerospace industry.
  • Crosslinking can be accelerated by adding crosslinking catalysts in amounts of 0.5 to 5% by weight.
  • B. Lewis acids such as aluminum chloride or zinc chloride, metal oxides, such as aluminum oxide or iron oxide, and diarylene disulfides or dithiophosphoric acid derivatives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

    Beschreibung
  • Aromatische Polyether sind hochtemperaturbeständige Kunststoffe, die thermoplastisch zu hochwertigen Formteilen verarbeitbar sind. In den DE-A-1 545 106 und 1 957 091 wird die Herstellung von aromatischen Polyethersulfonen durch nucleophile Polykondensation aus Dihalogenaromaten und Bisphenolen beschrieben. Diese Polyethersulfone sind in organischen Lösungsmitteln löslich, sie haben daher eine geringe Lösungsmittelbeständigkeit und sind spannungsrißanfällig. Für manche Anwendungszwecke ist auch ihre Wärmeformbeständigkeit nicht ausreichend hoch.
  • Der Erfindung lag daher die Aufgabe zugrunde, die Lösungsmittelbestandigkeit und Spannungsrißbeständigkeit sowie gegebenenfalls die Wärmeformbeständigkeit von Formkörpern aus aromatischen Polyethern zu verbessern. Eine weitere Aufgabe der Erfindung bestand darin, neue aromatische Polyether bereitzustellen, aus denen lösungsmittelbeständige und spannungsrißbeständige Formkörper hergestellt werden können.
  • Die erstgenannte Aufgabe wird dadurch gelöst, daß man aus aromatischen Copolyethern, aufgebaut aus Einheiten der Formel A-B-, wobei
    Figure imgb0001
    (mit X = S02 oder CO und n = 1 oder 2), und B zu 1 bis 99 Mol.-%
    Figure imgb0002
    und zu 99 bis 1 Mol.-%
    Figure imgb0003
    (mit Y = 0, CO, S02 oder C(CH3)2).
    durch thermoplastische verformung Formkörper, die gegebenenfalls 5 - 60 Gew.-% Verstärkungsfasern mit einer Länge von bis zu 25 mm und/oder mineralische Füllstoffe, jedoch keine orientierten Endlosfasern enthalten, herstellt und darin das Polymere durch Erhitzen auf Temperaturen von über 200'C so vernetzt, daß seine durch eintägige Extraktion in siedendem Dichlormethan bestimmten löslichen Anteile auf einen Wert von unter 60 % erniedrigt werden.
  • In dem Artikel "Polyaryl Ethers by Nucleophilic Aromatic Substitution I" von R.N. Johnson et al. in J. Pol. Sci. Part A-1, 1967, Seite 2383 ist die Herstellung von Polyetherthioethersulfon durch Umsetzung von 4,4'-Dichlordiphenylsulfon mit dem Dinatriumsalz des Thiodiphenols beschrieben. Das erhaltene Polymere ist in Chloroform löslich. Von einer thermischen Nachbehandlung ist nicht die Rede.
  • Ein weiterer Gegenstand der Erfindung sind neue aromatische Copolyether, enthaltend Einheiten der Formel -A-B-, wobei
    Figure imgb0004
    (mit X = S02 oder CO und n = 1 oder 2), und B zu 1 bis 99 Mol.-%, vorzugsweise 5 bis 50 Mol.-%
    Figure imgb0005
    und zu 99 bis 1 Mol.-%, vorzugsweise 95 bis 50 Mol.-%
    Figure imgb0006
    (mit Y = 0, CO, S02 oder C(CH3)2) sind.
  • Solche Copolyether sind besonders gut für den erfindunsgemäßen Zweck geeignet, da sie im Gegensatz zu Homopolymeren weniger Schwefelbrücken und somit ein geringeres Vernetzungspotential enthalten. Man kann durch die Einstellung der Menge an Comonomeren und damit der Menge an -S-Gruppierungen das Vernetzungspotential gezielt einstellen und auf diese Weise die Geschwindigkeit und das Ausmaß der Vernetzung steuern. Bevorzugte Comonomere sind Bisphenol A und Dihydroxydiphenylsulfon.
  • Die Herstellung der erfindungsgemäßen aromatischen Copolyether kann nach den üblichen Verfahren erfolgen. Bevorzugt werden 4,4'-Thiodiphenol, zusammen mit 1 bis 99 Mol.-% anderer Bisphenole, und Dichlordiphenylsulfon bzw. Dihalogenbenzophenon, vorzugsweise Difluorbenzophenon, in etwa äquivalenten Mengen in Gegenwart von wasserfreiem Alkalicarbonat polykondensiert. Dies kann in Abwesenheit von Lösungsmitteln durchgeführt werden, bevorzugt wird jedoch in einem polaren, aprotischen Lösungsmittel bei Temperaturen zwischen 120 und 200°C, vorzugsweise zwischen 150 und 180°C, gearbeitet, wobei zweckmäßigerweise das entstehende Wasser mit Hilfe eines Azeotropbildners entfernt wird.
  • Als wasserfreie Alkalicarbonate kommen beispielsweise Natrium- und vorzugsweise Kaliumcarbonat oder deren Mischungen in Betracht, bevorzugt in Mengen von 1,0 bis 2,2 Mol, bezogen auf Thiodiphenol.
  • Als polare, aprotische Lösungsmittel gelangen Verbindungen zur Anwendung, die zu den N-substituierten Säureamiden. den Sulfoxiden oder Sulfonen zählen, beispielsweise N,N-Dimethylformaid, N,N-Dimethylacetamid, N-Methylpyrrolidon, Dimethylsulfoxid, Dimethylsulfon, Tetramethylsulfon (Sulfolan) oder Diphenylsulfon. Bevorzugt wird N-Methylpyrrolidon verwendet.
  • Die polaren, aprotischen Lösungsmittel werden in Mengen von 5 bis 100, vorzugsweise von 10 bis 20 Molen, bezogen auf 1 Mol Thiodiphenol, verwendet. Dies bedeutet, daß die Reaktionslösungen in Abwesenheit von Alkalicabonat und Azeotropbildner einen Feststoffgehalt von 5 bis 50 Gew.-%, vorzugsweise von 20 bis 35 Gew.- %, bezogen auf das Gesamtgewicht, aufweisen.
  • Geeignete Wasser-Azeotropbildner sind alle Substanzen, die im Bereich der Reaktionstemperatur bei Normaldruck sieden und sich mit dem Reaktionsgemisch homogen mischen lassen, ohne chemische Reaktionen einzugehen. Als Azeotropbildner der genannten Art seien beispielsweise genannt: Chlorbenzol, Toluol und Xylol.
  • Zur Durchführung dieses Verfahrens wird die Reaktionsmischung in der ersten Reaktionsstufe bis zur Abtrennung von mindestens 90 Gew.-0/o, vorzugsweise 90 bis 96 Gew.-0/o, bezogen auf das Gesamtgewicht, der theoretisch möglichen Wassermenge vorteilhafterweise 0,5 bis 4 Stunden, vorzugsweise 1 bis 2 Stunden erhitzt.
  • In der zweiten Reaktionsstufe wird das Reaktionsgemisch bis zur völligen Wasserfreiheit polykondensiert und hierzu wird das Reaktionsgemisch ständig mit weiterem Azeotropbildner versetzt und gleichzeitig das entstehende Azeotropgemisch abdestilliert. Die Reaktionszeit beträgt ungefähr 0,5 bis 4 Stunden, vorzugsweise 1 bis 2 Stunden.
  • Die Reaktionszeit in der dritte Stufe zur Polykondensation bis zur gewünschten Viskosität des Copolyethers beträgt ungefähr 3 bis 12 Stunden, vorzugsweise 4 bis 8 Stunden. Danach wird die Polykondensation durch Einleiten von Methylchlorid abgestoppt. Die Reaktionszeit hierfür beträgt ungefähr 0,1 bis 2, vorzugsweise 0,2 bis 0,5 Stunden.
  • Die Isolierung des Copolyethers in der vierten Stufe schließlich kann auf verschiedene Weise durchgeführt werden. Eine Abscheidung des festen Polymeren kann durch Mischung der Reaktionslösung mit einem Fällungsmittel, z. B. Wasser und/oder Methanol, durch starkes Rühren, Verspritzen oder Verdüsen geschehen. Andererseits kann das Lösungsmittel auch verdampft werden. Die anorganischen Bestandteile können durch geeignete Methoden wie Lösen, Filtrieren oder Sieben aus dem Polyether entfernt werden.
  • Die so hergestellten aromatischen Copolyether weisen Grenzviskositäten (gemessen bei 25° C in Methylpyrrolidon) von 0,2 bis 2.0, bevorzugt von 0,3 bis 1,5 auf. Dies entspricht einem mittleren Polymerisationsgrad von 50 bis 500, bevorzugt von 70 bis 250. Die Glastemperatur liegt zwischen 160 und 250°C.
  • Dem aromatischen Copolyether können übliche Zusatzstoffe zugemischt werden, beispielsweise Verstärkungsfasern aus Glas, Kohlenstoff oder aromatischem Polyamid, mit einer Länge von bis zu 2,5 cm, vorzugsweise von weniger als 0,1 cm, sowie silikatische Füllstoffe, wie Wollastonit, jeweils in Mengen von 5 bis 60 Gew.-%, bezogen auf die Mischung. Darüber hinaus können Flammschutzmittel, Stabilisatoren, Farbstoffe und Vernetzungshilfsmittel zugesetzt werden.
  • Die Polymeren werden gegebenenfalls zusammen mit den Zusatzstoffen thermoplastisch zu Formkörpern verformt. Dies kann beispielsweise durch Verpressen, Extrudieren, Spritzgießen oder Tiefziehen erfolgen. Man kann auch Lösungen oder Dispersionen der Polymeren in eine Form bringen und das Polymere nach Entfernung des Lösungs- bzw. Dispersionsmittels in der Schmelze formen.
  • Die Copolyether können auch anstelle von Polysulfonen analog DE-A-1 720 428 zur Modifizierung von Epoxidharzen und anderen Reaktionsharzformulierungen eingesetzt werden. Besonders vorteilhaft werden Epoxidharze, die 10 bis 100 Gew.-Teilen Copolyether, bezogen auf das Epoxidharz zugesetzt enthalten, zur Herstellung von Prepregs mit kontrolliertem Fließverhalten verwendet.
  • Bei einer bevorzugten Ausführungsform der Erfindung wird in den so hergestellen Formkörpern das Polymere so vernetzt, daß seine löslichen Anteile (gemessen durch eintägige Extraktion mit siedendem Dichlormethan in einem Soxhlet-Gerät) von 100 % auf einen Wert unter 60 %, vorzugsweise zwischen 5 und 50 % erniedrigt werden, wobei die am Formkörper gemessene Glastemperatur praktisch nicht erhöht wird. Der dabei erzielte Vernetzungsgrad reicht aus um die Spannungsrißanfälligkeit des Formkörpers zu beheben.
  • Will man bei einer anderen Ausführungsform darüber hinaus auch noch die Wärmestandfestigkeit anheben, so muß man stärker vernetzen, vorzugsweise so stark, daß die am Formkörper gemessene Glastemperatur um mindestens 20°C ansteigt und die löslichen Anteile auf einen Wert unter 5 % erniedrigt werden. Einige Polyetherthioetherketone sind von vornherein in Dichlormethan schwer löslich. Hier ist die erfindungsgemäße Vernetzung nur sinnvoll zur Erhöhung der Glastemperatur und damit der Wärmeformbeständigkeit.
  • Der Grad der Vernetzung ist durch die Temperatur und die Dauer der Behandlung beeinflußbar, er ist ferner vom Gehalt des Polymeren an Schwefelbrücken abhängig. Die Vernetzungstemperatur liegt auf jeden Fall über 200°C, sie kann vorzugsweise im Bereich zwischen 250 und 450°C variiert werden, muß aber unter der Temperatur gehalten werden, bei der sich das Polymere merklich zersetzt. Vorzugsweise liegt sie 120 bis 200° C über der Glastemperatur des aromatischen Copolyethers. Die Dauer der Temperbehandlung kann zwischen einigen Minuten und mehreren Tagen variiert werden, für geringe Vernetzung, wobei nur die Löslichkeit verringert werden soll, genügen im allgemeinen 10 bis 200 min; soll auch noch die Glastemperatur angehoben werden, so muß man schon 1 bis 10 Stunden lang tempern.
  • Die erfindungsgemäß hergestellten Formkörper können als Kraftfahrzeugteile oder in der Luft- und Raumfahrt eingesetzt werden.
  • Durch Zusatz von Vernetzungskatalysatoren in Mengen von 0,5 bis 5 Gew.-% kann die Vernetzung beschleunigt werden. In Frage kommen z. B. Lewis-Säuren, wie Aluminiumchlorid oder Zinkchlorid, Metalloxide, wie Aluminiumoxid oder Eisenoxid, sowie Diarylendisulfide oder Dithiophosphorsäurederivate.
  • Die in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht.
  • Beispiel 1
    • a) Herstellung des Copolyethers
      Ein Gemisch aus 0,125 Mol Bisphenol A, 0,125 Mol 4,4'-Thiodiphenol und 0,25 Mol Dichlordiphenylsulfon wurden unter Inertgas in 600 ml N-Methylpyrrolidon und 250 ml Toluol gelöst und mit 0,26 Mol wasserfreiem Kaliumcarbonat versetzt. Das Reaktionsgemisch wurde unter ständigem Abdestillieren eines azeotropen Gemisches aus Wasser und Toluol innerhalb von 2 1/2 Stunden auf 150°C erhitzt. Nach vollständigem Entfernen des Toluols wurde die Temperatur auf 180°C gesteigert und das Reaktionsgemisch 12 Stunden bei dieser Temperatur belassen. Durch 30-minütiges Einleiten eines Methylchlorid-Stromes wurde die Polykondensation abgebrochen.
      Die anorganischen Bestandteile werden nach Zugabe von 300 ml Chlorbenzol abfiltriert und das Polymere in einem Gemisch aus gleichen Teilen 1-%-iger Essigsäure und Methanol gefällt. Nach sorgfältigem Waschen mit Wasser und Methanol wird 12 Stunden bei 100°C im Vakuum getrocknet. Die Glastemperatur des erhaltenen Polyetherthioethersulfons beträgt 175°C. Das Polymere ist vollständig in Dichlormethan löslich.
    • b) Herstellung des Formkörpers und Vernetzung
      In einer Presse wurden 20 g des Copolyetherthioethersulfons erst 5 min bei 350" C/5 bar, dann 15 min bei 350° C/200 bar verpresst, schließlich wurde 15 min lang bei 200 bar abgekühlt.
      Die erhaltene, 1 mm starke Platte enthielt noch 43 % lösliche Anteile, die Glastemperatur betrug 180° C.
    Beispiel 2
    • a) Herstellung des Copolyethers
      Ein Gemisch aus 0,125 Mol 4,4-Thiodiphenol, 0,125 Mol Dihydroxydiphenylsulfon und 0,25 Mol 4,4-Dichlordiphenylsulfon wurde mit 0,25 Mol Kaliumcarbonat versetzt und wie unter a) beschrieben polykondensiert und aufgearbeitet.
    • b) Herstellung des Formkörpers und Vernetzung
      Aus den amorphen Copolymeren wurde, wie unter 1b beschrieben, eine Preßplatte hergestellt. Die löslichen Anteile betrugen 52 %, die Glastemperatur war praktisch nicht erhöht.
    Beispiel 3
    • a) Herstellung des Copolyethers
      Ein Gemisch aus 0,125 Mol Bisphenol A, 0,125 Mol Thiodiphenol und 0,25 Mol 1,4-Bis-(4-fluorbenzoyl)-benzol wurde unter Inertgas in 600 ml N-Methylpyrrolidon und 250 ml Toluol gelöst und mit 0,26 Mol wasserfreiem Kaliumcarbonat versetzt. Die Polykondensation und Aufarbeitung wurde wie in Beispiel 1 beschrieben durchgeführt.
    • b) Herstellung des Formkörpers und Vernetzung
      Wie in 2b beschrieben, wurden aus dem Copolyether kurzglasfaserverstärkte Normkleinstäbe hergestellt Diese wurden in einem Umluftofen innerhalb von 5 Stunden auf 350°C aufgeheizt und 1 1/2 Stunden bei dieser Temperatur belassen.
      Die löslichen Polymeranteile waren kleiner als 2 %, die Glastemperatur war auf 240°C angestiegen.

Claims (3)

1. Verfahren zur Herstellung von spannungsrißbeständigen Formkörpern auf Basis von temperaturbeständigen aromatischen Copolyether, aufgebaut aus Einheiten der Formel -A-B-, wobei
Figure imgb0007
(mit X = SO2 oder CO und n = 1 oder 2), und B zu 1 bis 99 Mol.-%
Figure imgb0008
und zu 95 bis 1 Mol.-%
Figure imgb0009
(mit Y = 0, CO, S02 oder C(CH3)2) sind,
die gegebenenfalls 5 bis 60 Gew.-% Verstärkungsfasern einer Länge von bis zu 25 mm und/oder mineralische Füllstoffe, jedoch keine orientierten Endlosfasern enthalten, durch thermoplastische Verformung des Polymeren, dadurch gekennzeichnet, daß in dem enthaltenen Formkörper das Polymere durch Erhitzen auf Temperaturen von über 200°C so vernetzt wird, daß seine durch eintägige Extraktion in siedendem Dichlormethan bestimmten löslichen Anteile auf einen Wert von unter 60 % erniedrigt werden.
2. Verfahren zur Herstellung von Formkörpern nach Anspruch 1, dadurch gekennzeichnet, daß das Polymere so vernetzt wird, daß seine löslichen Anteile auf einen Wert unter 5 % erniedrigt werden und die Glastemperatur des Formkörpers um mindestens 20°C ansteigt.
3. Aromatische Copolyether, enthaltend Einheiten der Formel -A-B, wobei
Figure imgb0010
mit S = S02 oder CO und n = 1 oder 2), und B zu 1 bis 99 Mol.-%
Figure imgb0011
und zu 99 bis 1 Mol.-%
Figure imgb0012
(mit Y = 0, CO, SO2 oder C(CH3)2) sind.
EP85116333A 1985-01-11 1985-12-20 Verfahren zur Herstellung von Formkörpern aus aromatischen Polyethern Expired EP0187350B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853500706 DE3500706A1 (de) 1985-01-11 1985-01-11 Verfahren zur herstellung von formkoerpern aus aromatischen polyethern
DE3500706 1985-01-11

Publications (3)

Publication Number Publication Date
EP0187350A2 EP0187350A2 (de) 1986-07-16
EP0187350A3 EP0187350A3 (en) 1987-03-25
EP0187350B1 true EP0187350B1 (de) 1989-08-02

Family

ID=6259609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85116333A Expired EP0187350B1 (de) 1985-01-11 1985-12-20 Verfahren zur Herstellung von Formkörpern aus aromatischen Polyethern

Country Status (3)

Country Link
EP (1) EP0187350B1 (de)
JP (1) JPS61163934A (de)
DE (2) DE3500706A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140499A1 (de) * 1991-12-09 1993-06-17 Danubia Petrochem Deutschland Verbunde auf basis von polyarylenetherketonen, polyphenylensulfiden oder thermoplastischen polyestern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163893A2 (de) * 1984-05-08 1985-12-11 BASF Aktiengesellschaft Thermoplastische Formmassen
EP0187348A2 (de) * 1985-01-11 1986-07-16 BASF Aktiengesellschaft Faserverbundwerkstoffe
EP0193894A1 (de) * 1985-03-02 1986-09-10 BASF Aktiengesellschaft Verfahren zur Herstellung von Verbundstoffen aus Metallen und elektrisch leitfähigen Polymeren

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6916865A (de) * 1968-11-21 1970-05-25
DE3563057D1 (en) * 1984-03-07 1988-07-07 Ciba Geigy Ag Crosslinkable linear polyether resins
DE3429670A1 (de) * 1984-08-11 1986-02-20 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von thermoplast-prepregs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163893A2 (de) * 1984-05-08 1985-12-11 BASF Aktiengesellschaft Thermoplastische Formmassen
EP0187348A2 (de) * 1985-01-11 1986-07-16 BASF Aktiengesellschaft Faserverbundwerkstoffe
EP0193894A1 (de) * 1985-03-02 1986-09-10 BASF Aktiengesellschaft Verfahren zur Herstellung von Verbundstoffen aus Metallen und elektrisch leitfähigen Polymeren

Also Published As

Publication number Publication date
EP0187350A3 (en) 1987-03-25
DE3500706A1 (de) 1986-07-17
DE3571995D1 (en) 1989-09-07
JPS61163934A (ja) 1986-07-24
EP0187350A2 (de) 1986-07-16

Similar Documents

Publication Publication Date Title
DE2623363C2 (de) Verfahren zum Herstellen von verzweigten Arylensulfidpolymeren
DE1932067C3 (de) Polyaryläthersulfone und Verfahren zu ihrer Herstellung
EP0388358B1 (de) Neue Polyarylenether
DE1520131B2 (de) Filmbildende Sulfonpolymere
DE1545106A1 (de) Verfahren zur Herstellung linearer Polyarylenpolyaether
WO2009062923A2 (de) Verfahren zur herstellung von polyarylethern
EP0163893B1 (de) Thermoplastische Formmassen
EP0234223B1 (de) Verfahren zur Herstellung von aromatischen Block-Copolyethern
EP0187348B1 (de) Faserverbundwerkstoffe
EP3433300B1 (de) Entsalzung von polyarylethern mittels schmelzeextraktion
EP0347669A2 (de) Verfahren zur Herstellung von aromatischen Polyethersulfonen
DE2719305C2 (de) Silan-Endgruppen aufweisende Polyarylen-Polyäther, Verfahren zu deren Herstellung und deren Verwendung
DE3614753A1 (de) Hochtemperaturbestaendige copolykondensat-formmassen
EP0038028A1 (de) Verfahren zur Herstellung von ketogruppenhaltigen Polyäthern
EP0358017B1 (de) Polyaryletherketone
EP0175968B1 (de) Verfahren zur Isolierung von Polyarylensulfiden
EP0187350B1 (de) Verfahren zur Herstellung von Formkörpern aus aromatischen Polyethern
EP0275038A2 (de) Hochtemperaturbeständige Polyaryletherketone
DE3414492A1 (de) Polyetherthioethernitrile
EP0161453B1 (de) Temperaturbeständige aromatische Polyether
EP0141055A1 (de) Verfahren zur Brommethylierung von Polyphenylenethern
DE2635101A1 (de) Verbesserte hochmolekulare polyaethersulfone
EP0400287A2 (de) Polyarylethersulfone für lichttechnische Anwendungen
EP0499929A2 (de) Verfahren zur Herstellung von hochmolekularen, gegebenenfalls verzweigten, Polyarylensulfiden.
DE4216588A1 (de) Polyarylenethersulfone mit heller Eigenfarbe und verbesserter Farbkonstanz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19870221

17Q First examination report despatched

Effective date: 19880704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3571995

Country of ref document: DE

Date of ref document: 19890907

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19891231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900701

26N No opposition filed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST