EP0147824B1 - Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese - Google Patents

Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese Download PDF

Info

Publication number
EP0147824B1
EP0147824B1 EP84116071A EP84116071A EP0147824B1 EP 0147824 B1 EP0147824 B1 EP 0147824B1 EP 84116071 A EP84116071 A EP 84116071A EP 84116071 A EP84116071 A EP 84116071A EP 0147824 B1 EP0147824 B1 EP 0147824B1
Authority
EP
European Patent Office
Prior art keywords
rhodium
complex
group
process according
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84116071A
Other languages
English (en)
French (fr)
Other versions
EP0147824A3 (en
EP0147824A2 (de
Inventor
G. Dr. Dipl.-Chem. Dämbkes
H.-D. Dr. Dipl.-Chem. Hahn
Josef Dipl.-Ing. Hibbel
Winfried Dipl.-Ing. Materne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0147824A2 publication Critical patent/EP0147824A2/de
Publication of EP0147824A3 publication Critical patent/EP0147824A3/de
Application granted granted Critical
Publication of EP0147824B1 publication Critical patent/EP0147824B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/85Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/001Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/381Phosphines, e.g. compounds with the formula PRnH3-n, with n = 0-3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a process for the separation of rhodium from the products of oxosynthesis, where rhodium alone, i.e. H. without special complexing agents, such as organic phosphines, was used as a catalyst.
  • the classic catalyst which is still the most frequently used today, is cobalt, and rhodium was also used early, albeit to a limited extent, as a catalyst.
  • New processes use catalyst systems that contain rhodium in combination with a complexing agent.
  • complexing agents are organic phosphines, such as the water-insoluble triphenylphosphine, or the water-soluble triphenylphosphine trisulfonates and triphenylphosphine tricarboxylates.
  • processes which use simple rhodium catalysts are distinguished by a higher space-time yield and higher olefin conversion, and by less complicated reaction procedures and product output.
  • the hydroformylation with rhodium without additional complexing agent as catalyst can be carried out at a significantly higher temperature. This enables problem-free use of the considerable heat of reaction.
  • Reactors intended for cobalt catalysts can also be operated with rhodium catalysts without major changes.
  • the hydroformylation product is treated at elevated temperature with the aqueous solution of an organic acid to separate the rhodium, the resulting aqueous solution of the rhodium compound is separated from the organic phase and carried out, if necessary after the previous one Work up, again to the hydroformylation stage.
  • the task was therefore to develop a method of working which allows rhodium compounds dissolved in hydroformylation products to be recovered as completely as possible in a simple manner.
  • this object is achieved by a process for the separation and recovery of rhodium from the products of oxosynthesis, which contain no complexing agents, with the aid of complexing reagents. It is characterized in that sulfonates and carboxylates of organic phosphines of the general formula are used as complex-forming reagents be used in the form of a solution which is immiscible with the crude oxo product, where Ar 1 , Ar 2 , Ar 3 each have a phenyl or naphthyl group, Y 1 , Y 2 , Y 3 each have a straight-chain or branched alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogen atom, the OH, CN, NO 2 or R 1 R 2 N group, in which R 1 and R 2 are in each case a straight-chain or branched alkyl group having 1 to 4 C atoms, X 1 , X 2 ,
  • crude oxo products is understood to mean the reaction mixture obtained after relaxation and, if appropriate, cooling.
  • the complexing agents used according to the invention are e.g. B. from FR-A-2 489 308 and DE-A-2 627 354 known. These publications describe hydroformylation reactions with rhodium complexes of these compounds which take place in a two-phase system. After the reaction has ended, the catalysts are recovered by phase separation. The rhodium is not extracted from the organic phase into the aqueous phase in these processes.
  • the new procedure allows rhodium to be separated from the reaction mixture in a very simple manner, gently and avoiding side and subsequent reactions of the hydroformylation product.
  • compounds of the general formula described above are used as complex-forming reagents, in which Ar 1 , Ar 2 , Ar 3 each have a phenyl residue, X 1 , X 2 , X 3 each have a sulfonate residue and m 1 , m 2 , m 3 each represent the number 0 or 1, the sum of m l , m 2 and m 3 being 1, 2 or 3.
  • the complexing agents are used in excess. Since it can be recirculated, the amount of the excess per se is arbitrary, but at least 5 mol of complexing agent should be present per g-atom of rhodium. It has proven particularly useful to use 20 to 40 mol of complexing agent per g-atom of rhodium.
  • the complexing agent is used in the form of a solution. Care must be taken here that the complexing agent, like the rhodium complex formed, is largely insoluble in the hydroformylation product, but is readily soluble in the solvent for the complexing reagent. Of course, the solvent must not be miscible with the reaction product, or only to a very small extent.
  • a two-phase system which consists of the reaction product and the solution of the complexing agent or the rhodium complex compound formed.
  • the complexing agent acts as an extractant, i.e. In the initial state, the rhodium is dissolved in the reaction product, in the final state in the solution of the complexing agent.
  • the reaction product and rhodium-containing solution are separated simply by decanting the two phases from one another.
  • the preferred solvent for the complexing reagent and rhodium complex is water. Also Methanol can be used as a solvent provided that it is ensured that the oxo product and methanol do not mix.
  • the concentration of the complex-forming reagent in the solvent is variable within wide limits. It depends in particular on the extent to which the rhodium is to be enriched. Accordingly, not only highly diluted, but even saturated solutions can be used. As a rule, solutions are used which contain 0.5 to 25% by weight of the complexing agent.
  • the complexing agent is liquid under the extraction conditions and insoluble or sparingly soluble in the hydroformylation product and the rhodium complex is soluble in the complexing agent, the use of a solvent can also be dispensed with, ie the pure complexing agent can be used.
  • the extraction of the rhodium with the dissolved or pure complexing agent is carried out at temperatures from 0 to 200 ° C., preferably 20 to 100 ° C. In individual cases, however, working at a temperature between 120 to 150 ° C has also proven itself.
  • the new process can be carried out batchwise or continuously. Even with simple recirculation of the partially loaded complexing agent into the reaction product, high rhodium concentrations in the extractant can be achieved.
  • the extraction is carried out in several stages, the rhodium-containing reaction product being passed in countercurrent to the extractant.
  • phase containing the separated rhodium depends on the particular circumstances. So the rhodium in a known manner, for. B. separated by conversion into the salt of a higher carboxylic acid and again used as a catalyst. But it is also possible to use the solvent bar as a catalyst system.
  • the process according to the invention is suitable for the separation and recovery of rhodium from a wide variety of products in oxo synthesis. It can not only be used successfully in raw products which are formed by hydroformylation of olefinic hydrocarbons, in particular those having 2 to 20 carbon atoms. Also in the removal of rhodium from products of hydroformylation of other olefinically unsaturated compounds, for. B. unsaturated alcohols, aldehydes, carboxylic acids, also diolefins, cyclic olefins such as dicyclopentadiene, it has proven itself.
  • the sulfonates and carboxylates used according to the invention do not interfere with the subsequent phase separation.
  • the phases separate very sharply after just a few seconds.
  • a reactor 4 is fed via lines 1, 2 and 3 synthesis gas, olefin and rhodium catalyst homogeneously dissolved in an organic phase.
  • the product drawn off via a level regulator 5 is cooled in a heat exchanger 6 to a temperature suitable for complex formation.
  • the product stream coming from the heat exchanger 6 is admixed with an aqueous phase containing the complexing agent from a separation vessel 7 via a pump 8 in a pipeline section 9.
  • aqueous phase containing the complexing agent from a separation vessel 7 via a pump 8 in a pipeline section 9.
  • the phases are mixed thoroughly and the rhodium is almost completely extracted.
  • Organic phase and water are separated in the separation vessel 7. Release gas released is discharged via a line 10, the rhodium-free product phase via a line 11.
  • the rhodium-enriched aqueous phase is withdrawn via a line 12 in batches in exchange for additional amounts of complexing agents. This greatly simplifies the control of the extraction process, since only the last section of the enrichment requires analytical monitoring.
  • TPPTS triphenylphosphine trisulfonate. All concentrations are given in percent by weight (% by weight).
  • Examples 1 to 5 a crude hydroformylation product of about 20 to 25 ° C. is used, as is the case after relaxation and cooling. There are storage times of several hours between the discharge of the raw product from the technical system and the rhodium separation.
  • the molar ratio of phosphorus to rhodium is 5. Both phases are stirred intensively for 5 minutes at 50 ° C. After the stirring has ended, the two phases separate within 12 seconds without emulsion formation.
  • the organic crude oxy-product phase contains only 1.1 ppm Rhodium, corresponding to a rhodium separation of 72%.
  • Example 2 The procedure is as in Example 1, but using a 0.4% sodium TPPTS solution.
  • the molar ratio of phosphorus to rhodium is 20. 1 ppm of rhodium remain in the organic phase, corresponding to a rhodium removal of 74%.
  • Example 2 The procedure is as in Example 2, but the mixture is stirred at a temperature of 80.degree. The two phases are separated in 9 seconds. 1 ppm rhodium remains in the crude product, corresponding to a rhodium removal of 74%.
  • Example 4 1000 g of crude propionaldehyde, the and 9.6 ppm of rhodium each treated with 100 g of 20% sodium TPPTS solution in 5 extraction steps at 36 ° C.
  • the rhodium content of the organic phase is 1 ppm after the 1st extraction corresponding to a rhodium removal of 90% and after the 5th extraction 0.6 ppm corresponding to a rhodium removal of 94%.
  • diisobutylene which contains about 90% 2,4,4-trimethylpentene
  • diisobutylene is hydroformylated at 250 bar. After leaving the reactor, the product is cooled and first expanded to 20 bar, then to normal pressure. 3.0 m 3 of diisobutylene are fed into the plant every hour.
  • the reaction product Before the first relaxation stage, the reaction product has the following composition 80 l / h of an 11% sodium TPPTS solution were added under synthesis pressure. This corresponds to a molar ratio of phosphorus to rhodium of around 40.
  • the phases are only mixed when the pressure is released in the short line section to the low-pressure separator. The phases separate continuously in the low pressure separator. The maximum volume for the aqueous phase is about 13 hours. A temperature of approx. 30 to 40 ° C is maintained.
  • the aqueous phase contains 94.2 mg rhodium per liter of solution and is continuously drawn off.
  • the rhodium content of the organic phase is reduced from 3.5 ppm to values below 0.2 ppm (with an analytical detection limit of 0.2 ppm), corresponding to a rhodium separation of 95%.
  • composition of the organic phase has not changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung von Rhodium aus den Produkten der Oxosynthese, wobei Rhodium allein, d. h. ohne speziellen Komplexbildner, wie organische Phosphine, als Katalysator verwendet wurde.
  • Bei der unter dem Namen Oxosynthese oder Hydroformylierung bekannten Anlagerung von Kohlenmonoxid und Wasserstoff an olefinischen Doppelbindungen zur Herstellung von Aldehyden und Alkoholen werden als Katalysatoren Metalle oder Metallverbindungen eingesetzt, die unter den Reaktionsbedingungen Carbonyle oder Carbonylhydride bilden.
  • Der klassische und auch heute noch am häufigsten eingesetzte Katalysator ist Kobalt, daneben fand schon frühzeitig, wenn auch in begrenztem Umfang, Rhodium als Katalysator Anwendung.
  • Neue Verfahren verwenden Katalysatorsysteme, die Rhodium in Kombination mit einem Komplexbildner enthalten. Beispiele für solche Komplexbildner sind organische Phosphine, wie das in Wasser nicht lösliche Triphenylphosphin, oder die wasserlöslichen Triphenylphosphin-trisulfonate und Triphenylphosphintricarboxylate.
  • Der besondere Vorteil der Anwendung von einfachen Rhodiumkatalysatoren, d. h. solchen ohne zusätzlichen Komplexbildner, liegt in der hohen Reaktionsgeschwindigkeit, die erzielt werden kann. Sie übersteigt die mit Kobaltkatalysatoren erreichbare Reaktionsgeschwindigkeit um den Faktor 102 bis 104. Darüber hinaus werden mit Rhodiumkatalysatoren erheblich geringere Mengen Nebenprodukte gebildet, als mit Kobaltkatalysatoren.
  • Gegenüber Verfahren mit Katalysatorsystemen aus Rhodium und einem Komplexbildner zeichnen sich Verfahren, die einfache Rhodiumkatalysatoren einsetzen, durch höhere Raumzeitausbeute und höheren Olefinumsatz, sowie durch weniger komplizierte Reaktionsführung und Produktausbringung aus. Die Hydroformylierung mit Rhodium ohne zusätzlichem Komplexbildner als Katalysator kann bei deutlich höherer Temperatur durchgeführt werden. Dadurch wird eine problemlose Nutzung der beträchtlichen Reaktionswärme möglich. Für Kobaltkatalysatoren vorgesehene Reaktoren können ohne größere Änderung auch mit Rhodiumkatalysatoren betrieben werden.
  • Erhebliche Schwierigkeiten bereiten jedoch die annähernd verlustfreie Abtrennung und Wiedergewinnung des Rhodiums, das ohne Komplexbildner als Katalysator eingesetzt wird. Es findet sich nach Beendigung der Umsetzung als Carbonylverbindung im Hydroformylierungsprodukt gelöst. Zur Aufarbeitung wird das Oxorohprodukt mehrstufig entspannt, indem man den Druck von Synthesedruck, d. h. etwa 250 bis 300 bar, zunächst auf 15 bis 25 bar reduziert. Hierbei wird im Rohprodukt gelöstes Synthesegas frei. Anschließend kann man auf Normaldruck entspannen. Vor der Reindarstellung durch Destillation oder der Weiterverarbeitung des Reaktionsproduktes müssen die Rhodiumverbindungen entfernt werden, die im Rohprodukt in einer Konzentration von nur wenigen ppm homogen gelöst sind. Außer durch die niedrige Konzentration können Schwierigkeiten noch dadurch auftreten, daß das Rhodium bei der Entspannung teilweise in metallische Form übergeht oder daß sich mehrkernige Rhodiumcarbonyle bilden. In beiden Fällen kommt es dann zur Ausbildung eines heterogenen Systems, das aus der flüssigen organischen Phase und der festen, Rhodium oder Rhodiumverbindungen enthaltenden Phase besteht.
  • Nach einem bekannten Verfahren (DE-PS 1 290 535) behandelt man zur Abtrennung des Rhodiums das Hydroformylierungsprodukt bei erhöhter Temperatur mit der wässrigen Lösung einer organischen Säure, trennt die entstandene wässrige Lösung der Rhodiumverbingung von der organischen Phase ab und führt sie, gegebenenfalls nach vorheriger Aufarbeitung, wieder der Hydroformylierungsstufe zu.
  • Diese Arbeitsweise hat sich zwar bewährt, sie liefert aber im allgemeinen sehr verdünnte wässrige Rhodiumsalzlösungen, die sich nur mit erheblichem Aufwand wieder in den aktiven Katalysaton überführen lassen. Überdies benötigt man zur Vervollständigung der Umsetzung eine Reaktionszeit von 1 bis 2 Stunden, während der die empfindlichen Aldehyde Temperaturen bis zu 200°C ausgesetzt werden. In Gegenwart von Ameisensäure oder Essigsäure können dann Nebenreaktionen auftreten. Außerdem ist dieses Verfahren vorzugsweise auf Reaktionsprodukte anwendbar, die Wasser nicht oder kaum lösen. Aldehyde mit stärkerem Lösungsvermögen für Wasser wie Propionaldehyd und Butyraldehyd, können einen Teil der rhodiumhaltigen, wässrigen Lösung aufnehmen, wodurch Rhodiumverluste eintreten.
  • Es bestand daher die Aufgabe, eine Arbeitsweise zu entwickeln, die es erlaubt, in Hydroformylierungsprodukten gelöste Rhodiumverbindungen in einfacher Weise möglichst vollständig wiederzugewinnen.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese, die keine Komplexbildner enthalten, mit Hilfe komplexbildender Reagenzien. Es ist dadurch gekennzeichnet, daß als komplexbildende Reagenzien Sulfonate und Carboxylate organischer Phosphine der allgemeinen Formel
    Figure imgb0001
    in Form einer mit dem Oxorohprodukt nicht mischbaren Lösung eingesetzt werden, wobei Ar1, Ar2, Ar3 jeweils eine Phenyl- oder Naphthylgruppe, Y1, Y2, Y3 jeweils eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen, eine Alkoxygruppe, ein Halogenatom, die OH-, CN-, NO2- oder R1R2N-Gruppe, in der R1 und R2 für geweils eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen stehen, bedeuten, Xl, X2, X3 jeweils ein Sulfonat-(S03--) und/oder ein Carboxylat-(COO--)Rest ist, m1, m2, m3 gleiche oder verschiedene ganze Zahlen von 0 bis 3 sind und mindestens eine Zahl m1, m2, m3 gleich oder größer als 1 ist, n1, n2, n3 gleiche oder verschiedene ganze Zahlen von 0 bis 5 sind und in den Sulfonaten und Carboxylaten Alkalimetall-, Erdalkalimetall-, Zink-, Ammonium- oder quaternäre Ammoniumionen der allgemeinen Formel N(R3R4R5R6)+ in der R3, R4, R5, R6 jeweils für eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen steht, enthalten sind.
  • Unter dem Begriff Oxorohprodukte wird dabei das nach Entspannen und gegebenenfalls Abkühlen anfallende Reaktionsgemisch verstanden.
  • Die erfindungsgemäß verwendeten Komplexbildner sind z. B. aus der FR-A-2 489 308 und der DE-A-2 627 354 bekannt. In diesen Druckschriften werden Hydroformylierungsreaktionen mit Rhodiumkomplexen dieser Verbindungen beschrieben, die in einem Zweiphasensystem ablaufen. Die Katalysatoren werden nach Beendigung der Reaktion durch Phasentrennung weidergewonnen. Eine Extraktion des Rhodiums aus der organischen in die wässrige Phase findet bei diesen Verfahren nicht statt.
  • Die neue Arbeitsweise erlaubt es, auf sehr einfachem Wege Rhodium schonend und unter Vermeiden von Neben- und Folgereaktionen des Hydroformylierungsproduktes aus dem Reaktionsgemisch abzutrennen.
  • Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man als komplexbildende Reagenzien Verbindungen der vorstehend beschriebenen allgemeinen Formel, in der Arl, Ar2, Ar3 jeweils einen Phenylrest, Xl, X2, X3 jeweils einen Sulfonatrest und m1, m2, m3 jeweils die Zahl 0 oder 1 bedeuten, wobei die Summe von ml, m2 und m3 1, 2 oder 3 ist.
  • Bezogen auf Rhodium werden die Komplexbildner im Überschuß angewendet. Da man sie rezirkulieren kann, ist die Höhe des Überschusses an sich beliebig, jedoch sollen je g-Atom Rhodium mindestens 5 mol Komplexbildner vorhanden sein. Besonders bewährt hat es sich, je g-Atom Rhodium 20 bis 40 mol Komplexbildner anzuwenden.
  • Der Komplexbildner wird in Form einer Lösung eingesetzt. Hierbei ist darauf zu achten, daß der Komplexbildner ebenso wie der entstehende Rhodiumkomplex, im Hydroformylierungsprodukt weitgehend unlöslich, dagegen im Lösungsmittel für das komplexbildende Reagenz gut löslich ist. Selbstverständlich darf auch das Lösungsmittel mit dem Reaktionsprodukt nicht oder lediglich in ganz geringem Umfang mischbar sein.
  • Bei Erfüllung dieser Bedingungen bildet sich ein Zweiphasensystem aus, das aus dem Reaktionsprodukt und der Lösung des Komplexbildners bzw. der entstandenen Rhodium-Komplexverbindung besteht. Der Komplexbildner wirkt als Extraktionsmittel, d.h. im Anfangszustand befindet sich das Rhodium im Reaktionsprodukt gelöst, im Endzustand in der Lösung des Komplexbildners. Die Trennung von Reaktionsprodukt und Rhodium enthaltender Lösung erfolgt einfach durch Dekantieren der beiden Phasen voneinander.
  • Das bevorzugte Lösungsmittel für das komplexbildende Reagenz und den Rhodiumkomplex ist Wasser. Auch Methanol kann als Lösungsmittel verwendet werden, sofern sichergestellt ist, daß Oxoprodukt und Methanol sich miteinander nicht mischen.
  • Die Konzentration des komplexbildenden Reagenzes im Lösungsmittel ist in weiten Grenzen variabel. Sie hängt insbesondere davon ab, in welchem Maße das Rhodium angereichert werden soll. Dementsprechend können nicht nur stark verdünnte, sondern sogar gesättigte Lösungen Anwendung finden. In der Regel setzt man Lösungen ein, die 0,5 bis 25 Gew.-% des Komplexbildners enthalten.
  • Sofern der Komplexbildner unter den Extraktionsbedingungen flüssig und im Hydroformylierungsprodukt unlöslich oder schwerlöslich und der Rhodiumkomplex im Komplexbildner löslich ist kann auf die Mitverwendung eines Lösungsmittels auch verzichtet, also der reine Komplexbildner eingesetzt werden.
  • Die Extraktion des Rhodiums mit dem gelösten oder reinen Komplexbildner wird bei Temperaturen von 0 bis 200°C, vorzugsweise 20 bis 100°C durchgeführt. In einzelnen Fällen hat sich aber auch eine Arbeitsweise bei einer Temperatur zwischen 120 bis 150° C bewährt.
  • Der neue Prozeß kann absatzweise oder kontinuierlich durchgeführt werden. Schon bei einfacher Rezirkulierung des teilweise beladenen Komplexbildners in das Reaktionsprodukt lassen sich hohe Rhodiumkonzentrationen im Extraktionsmittel erreichen. In einer anderen Variante des erfindungsgemäßen Verfahrens erfolgt die Extraktion mehrstufig, wobei das rhodiumhaltige Reaktionsprodukt im Gegenstrom zum Extraktionsmittel geführt wird.
  • Die Weiterbehandlung oder Weiterverwendung der das abgetrennte Rhodium enthaltenden Phase richtet sich nach den jeweiligen Gegebenheiten. So kann das Rhodium in bekannter Weise, z. B. durch Überführung in das Salz einer höheren Carbonsäure abgetrennt und wiederum als Katalysator eingesetzt werden. Es ist aber auch möglich, die aus Lösungsmittelbar als Katalysatorsystem zu verwenden.
  • Das erfindungsgemäße Verfahren ist zur Abtrennung und Rückgewinnung von Rhodium aus den verschiedensten Produkten der Oxosynthese geeignet. Es kann nicht nur mit Erfolg bei Rohprodukten angewandt werden, die durch Hydroformylierung olefinischer Kohlenwasserstoffe, insbesondere solchen mit 2 bis 20 Kohlenstoffatomen entstehen. Auch bei der Abtrennung von Rhodium aus Produkten der Hydroformylierung anderer olefinisch ungesättigter Verbindungen, z. B. ungesättigter Alkohole, Aldehyde, Carbonsäuren, ferner Diolefine, cyclischer Olefine wie Dicyclopentadien, hat es sich ausgezeichnet bewährt.
  • Die erfindungsgemäß eingesetzten Sulfonate und Carboxylate stören die anschließende Phasentrennung nicht. Schon nach wenigen Sekunden trennen sich die Phasen sehr scharf voneinander.
  • Nachstehend wird die Durchführung der neuen Arbeitsweise anhand einer technischen Ausführungsform beschrieben. Selbstverständlich läßt sich der erfindungsgemäße Prozeß auch in anderen Verfahrensvarianten realisieren.
  • Einem Reaktor 4 werden über Leitungen 1, 2 und 3 Synthesegas, Olefin und in einer organischen Phase homogen gelöster Rhodiumkatalysator zugeführt. Das über einen Standregler 5 abgezogene Produkt wird in einem Wärmetauscher 6 auf eine für die Komplexbildung geeignete Temperatur abgekühlt.
  • Dem aus dem Wärmetauscher 6 kommenden Produktstrom wird aus einem Trenngefäß 7 über eine Pumpe 8 in einem Rohrleitungsabschnitt 9 eine den Komplexbildner enthaltende wässrige Phase zugemischt. Auf diese Weise erreicht man eine intensive Durchmischung der Phasen und eine nahezu vollständige Extraktion des Rhodiums. Organische Phase und Wasser werden im Trenngefäß 7 getrennt. Freiwerdendes Entspannungsgas wird über eine Leitung 10, die rhodiumfreie Produktphase über eine Leitung 11 abgeführt.
  • Wegen der geringen Edelmetallmengen erfolgt der Abzug der mit Rhodium angereicherten wässrigen Phase über eine Leitung 12 absatzweise im Austausch gegen Ergänzungsmengen an Komplexbildnern. Dadurch wird die Kontrolle des Extraktionsprozesses wesentlich erleichtert, da nur der letzte Abschnitt der Anreicherung eine analytische Überwachung erfordert.
  • In den folgenden Beispielen wird die Erfindung näher beschrieben, jedoch nicht auf diese Ausführungsformen beschränkt.
  • Die Abkürzung TPPTS steht für Triphenylphosphin-trisulfonat. Alle Konzentrationsangaben erfolgen in Gewichtsprozent (Gew.-0/o).
  • Biespiele
  • In den Beispielen 1 bis 5 wird jeweils ein Rohprodukt der Hydroformylierung von etwa 20 bis 25° C eingesetzt, wie es nach Entspannung und Abkühlung anfällt. Zwischen der Ausschleusung des Rohproduktes aus der technischen Anlage und der Rhodiumabtrennung liegen Lagerzeiten von mehreren Stunden.
  • Beispiel 1
  • In einem Rührkolben werden 200 g roher Isooctylaldehyd, der
    Figure imgb0002
    und 3,9 ppm Rhodium enthält, mit 20 g einer 0,1 %-igen wässrigen Natrium-TPPTS-Lösung versetzt.
  • Das molare Verhältnis von Phosphor zu Rhodium beträgt 5. Beide Phasen werden 5 Minuten bei 50" C intensiv gerührt. Nach Beendigung des Rührens trennen sich die beiden Phasen innerhalb von 12 Sekunden ohne Emulsionsbildung. Die organische Oxorohprodukt-Phase enthält lediglich noch 1,1 ppm Rhodium, entsprechend einer Rhodiumabtrennung von 72 %.
  • Beispiel 2
  • Es wird wie in Beispiel 1 gearbeitet, jedoch unter Verwendung einer 0,4 %-igen Natrium-TPPTS-Lösung. Das molare Verhältnis von Phosphor zu Rhodium beträgt 20. In der organischen Phase verbleiben 1 ppm Rhodium, entsprechend einer Rhodiumabtrennung von 74 %.
  • Biespiel 3
  • Es wird wie in Beispiel 2 gearbeitet, jedoch bei einer Temperatur von 80° C gerührt. Die Trennung der beiden Phasen erfolgt in 9 Sekunden. Im Rohprodukt bleibt 1 ppm Rhodium zurück, entsprechend einer Rhodiumabtrennung von 74 %.
  • Beispiel 4
  • In einem Rundkolben mit Bodenablaß, Gaseinleitungskapillare und Rührer werden 1000 g Isooctylaldehyd der in Beispiel 1 genannten Zusammensetzung mit jeweils 100 g 20 %-iger Natrium-TPPTS-Lösung extrahiert. Über die Gaseinleitungskapillare wird zunächst Synthesegas (CO/H2, 1 : 1) zur Sättigung der Mischung mit CO und Wasserstoff eingeleitet und anschließend bei 80°C intensiv gerührt. Die Rührzeit sowie die anschließende Ruhezeit betragen 30 sekunden. Darauf wird die wässrige Phase über den Bodenablaß ausgeschleust und die organische Phase erneut mit 100 g einer 20 %-igen Natrium-TPPTS-Lösung behandelt. Insgesamt wird viermal extrahiert. Die organische Phase enthält danach nur noch 0,6 ppm Rhodium entsprechend einer Rhodiumabtrennung von 85 %.
  • Beispiel 5
  • In der Apparatur des Beispiels 4 werden 1000 g roher Propionaldehyd, der
    Figure imgb0003
    und 9,6 ppm Rhodium enthält mit jeweils 100 g 20 %-iger Natrium-TPPTS-Lösung in 5 Extraktionsschritten bei 36°C behandelt. Der Rhodiumgehalt der organischen Phase beträgt nach der 1. Extraktion 1 ppm entsprechend einer Rhodiumabtrennung von 90 % und nach der 5. Extraktion 0,6 ppm entsprechend einer Rhodiumabtrennung von 94 %.
  • Beispiel 6
  • In einer technischen Anlage wird bei 250 bar Diisobutylen (das etwa 90 % 2.4.4-Trimethylpenten enthält) hydroformyliert. Nach Verlassen des Reaktors wird das Produkt gekühlt und zunächst auf 20 bar, dann auf Normaldruck entspannt. In die Anlage werden stündlich 3,0 m3 Diisobutylen eingespeist.
  • Vor der 1. Entspannungsstufe wird das Reaktionsprodukt folgender Zusammensetzung
    Figure imgb0004
    unter Synthesedruck mit 80 I/h einer 11 %-igen Natrium-TPPTS-Lösung versetzt. Das entspricht einem molaren Verhältnis von Phosphor zu Rhodium von etwa 40. Die Vermischung der Phasen erfolgt lediglich bei der Entspannung in dem kurzen Leitungsstück bis zum Niederdruckabscheider. Die Phasen trennen sich kontinuierlich im Niederdruckabscheider. Das maximale Volumen für die wässrige Phase beträgt etwa 13 Stunden. Es wird eine Temperatur von ca. 30 bis 40° C eingehalten.
  • Die wässrige Phase enthält 94,2 mg Rhodium je Liter Lösung und wird kontinuierlich abgezogen. Der Rhodiumgehalt der organischen Phase reduziert sich von 3,5 ppm auf Werte unter 0,2 ppm (bei einer analytischen Nachweisgrenze von 0,2 ppm), entsprechend einer Rhodiumabtrennung von 95 %.
  • Die Zusammensetzung der organischen Phase hat sich nicht geändert.

Claims (6)

1. Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese, die keine Komplexbildner enthalten, mit Hilfe komplexbildender Reagenzien, dadurch gekennzeichnet, daß als komplexbildende Reagenzien Sulfonate und Carboxylate organischer Phosphine der allgemeinen Formel
Figure imgb0005
in Form einer mit dem Oxorohprodukt nicht mischbaren Lösung eingesetzt werden, wobei Arl, Ar2, Ar3 jeweils eine Phenyl- oder Naphthylgruppe, Yl, Y2, Y3 jeweils eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen, eine Alkoxygruppe, ein Halogenatom, die OH-, CN-, N02- oder R1R2N-Gruppe, in der R1 und R2 für jeweils eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen stehen, bedeuten, Xl, X2, X3 jeweils ein Sulfonat-(S03--) und/oder ein Carboxylat-(COO--)Rest ist, m1, m2, m3 gleiche oder verschiedene ganze Zahlen von 0 bis 3 sind und mindestens eine Zahl m1, m2, m3 gleich oder größer als 1 ist, n1, n2, n3 gleiche oder verschiedene ganze Zahlen von 0 bis 5 sind und in den Sulfonaten und Carboxylaten Alkalimetall-, Erdalkalimetall-, Zink-, Ammonium- oder quaternäre Ammoniumionen der allgemeinen Formel N(R3R4R5R6)- in der R3, R4, R5, R6 jeweils für eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 C-Atomen steht, enthalten sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Arl, Ar2, Ar3 jeweils einen Phenylrest, Xl, X2, X3 jeweils einen Sulfonatrest und m1, m2, m3 jeweils die Zahl 0 oder 1 bedeuten, wobei die Summe von m1, m2 und m3 1, 2 oder 3 ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß je g-Atom Rhodium mindestens 5 Mol, insbesondere 20 bis 40 Mol komplexbildende Reagenz angewendet werden.
4. Verfahren nach Anspruch 1 - 3, dadurch gekennzeichnet, daß das Lösungsmittel für das komplexbildende Reagenz Wasser oder Methanol ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Konzentration des komplexbildenden Reagenzes im Lösungsmittel 0,5 bis 25 Gew.-%, bezogen auf die Lösung, beträgt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Abtrennung des Rhodiums bei Temperaturen von 0 bis 200° C, vorzugsweise 20 bis 100° C durchgeführt wird.
EP84116071A 1983-12-29 1984-12-21 Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese Expired EP0147824B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3347406 1983-12-29
DE19833347406 DE3347406A1 (de) 1983-12-29 1983-12-29 Verfahren zur abtrennung und wiedergewinnung von rhodium aus den produkten der oxosynthese

Publications (3)

Publication Number Publication Date
EP0147824A2 EP0147824A2 (de) 1985-07-10
EP0147824A3 EP0147824A3 (en) 1985-09-25
EP0147824B1 true EP0147824B1 (de) 1989-04-19

Family

ID=6218350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84116071A Expired EP0147824B1 (de) 1983-12-29 1984-12-21 Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese

Country Status (2)

Country Link
EP (1) EP0147824B1 (de)
DE (2) DE3347406A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091350A (en) * 1984-03-26 1992-02-25 Hoechst Aktiengesellschaft Process for hydroformylation with rhodium catalysts and the separation of rhodium therefrom
DE3443474A1 (de) * 1984-11-29 1986-05-28 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur rueckgewinnung von rhodium aus reaktionsprodukten der oxosynthese
GB8515656D0 (en) * 1985-06-20 1985-07-24 Shell Int Research Extraction of group metals from organic solutions
US4716250A (en) * 1986-07-10 1987-12-29 Union Carbide Corporation Hydroformylation using low volatile/organic soluble phosphine ligands
US4731486A (en) * 1986-11-18 1988-03-15 Union Carbide Corporation Hydroformylation using low volatile phosphine ligands
DE3744213A1 (de) * 1987-12-24 1989-07-06 Ruhrchemie Ag Verfahren zur rueckgewinnung von rhodium aus rhodiumkomplexverbindungen enthaltenden waessrigen loesungen
US5294415A (en) * 1988-06-30 1994-03-15 Hoechst Aktiengesellschaft Process for the separation and recovery of rhodium from the products of the oxo synthesis
DE3822037A1 (de) * 1988-06-30 1990-01-04 Hoechst Ag Verfahren zur abtrennung und wiedergewinnung von rhodium aus den produkten der oxosynthese
US4935550A (en) * 1988-08-12 1990-06-19 Union Carbide Chemicals And Plastics Company Inc. Catalytic metal recovery from non-polar organic solutions
US5114473A (en) * 1988-08-25 1992-05-19 Union Carbide Chemicals And Plastics Technology Corporation Transition metal recovery
DE4135049A1 (de) * 1991-10-24 1993-05-06 Hoechst Ag, 6230 Frankfurt, De Verfahren zur rueckgewinnung von rhodium aus den reaktionsprodukten der oxosynthese
DE4228724A1 (de) * 1992-08-28 1994-03-03 Hoechst Ag Verfahren zur Wiedergewinnung von Rhodium aus den Destillationsrückständen von Produkten der Oxosynthese
DE4427428A1 (de) * 1994-08-03 1996-02-29 Basf Ag Verfahren zur Herstellung von Aldehyden
DE10005084C1 (de) * 2000-02-04 2001-09-13 Celanese Chem Europe Gmbh Verfahren zur Wiedergewinnung von Rhodium aus Reaktionsprodukten der Oxosynthese
DE102009001230A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen
DK2430202T3 (en) * 2009-05-14 2015-02-23 Umicore Nv RECOVERY OF PRECIOUS METALS FROM USED homogeneous catalysts
CN111278560B (zh) 2017-11-13 2023-07-21 陶氏技术投资有限责任公司 从氢甲酰化方法回收铑的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248802A (en) * 1975-06-20 1981-02-03 Rhone-Poulenc Industries Catalytic hydroformylation of olefins
US4298499A (en) * 1980-07-14 1981-11-03 Uop Inc. Recovery of catalysts
GB2085874B (en) * 1980-09-04 1984-08-08 Johnson Matthey Plc Hydroformylation of olefins
US4400547A (en) * 1981-04-10 1983-08-23 Eastman Kodak Company Hydroformylation process utilizing an unmodified rhodium catalyst and the stabilization and regeneration thereof
DE3126265A1 (de) * 1981-07-03 1983-01-20 Basf Ag, 6700 Ludwigshafen Verfahren zur hydroformylierung olefinisch ungesaettigter verbindungen

Also Published As

Publication number Publication date
DE3347406A1 (de) 1985-07-11
DE3477790D1 (en) 1989-05-24
EP0147824A3 (en) 1985-09-25
EP0147824A2 (de) 1985-07-10

Similar Documents

Publication Publication Date Title
EP0147824B1 (de) Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese
EP0103845B1 (de) Verfahren zur Rückgewinnung von wasserlöslichen, Rhodium enthaltenden Hydroformylierungskatalysatoren
EP0156253B1 (de) Verfahren zur Rückgewinnung von Rhodium aus Reaktionsprodukten der Oxosynthese
EP0255673B1 (de) Verfahren zur Rückgewinnung von Rhodium aus Rhodiumkomplex-verbindungen enthaltenden wässrigen Lösungen
DE3141456A1 (de) Verfahren zum abtrennen und gewinnen von festen komplexen von edelmetallen der gruppe viii
EP0510358B1 (de) Verfahren zur Wiedergewinnung von Rhodium aus den Rückständen der Destillation von Produkten der Oxosynthese
DE3242421A1 (de) Verfahren zur gewinnung von edelmetallen aus der gruppe viii des periodensystems der elemente aus bei edelmetallkatalysierten carbonylierungsreaktionen anfallenden rueckstaenden
EP0183200B1 (de) Verfahren zur Rückgewinnung von Rhodium aus Reaktionsprodukten der Oxosynthese
EP0367957B1 (de) Verfahren zur Rückgewinnung von Rhodium
EP0348833B1 (de) Verfahren zur Abtrennung und Wiedergewinnung von Rhodium aus den Produkten der Oxosynthese
EP0424736B1 (de) Verfahren zur Wiedergewinnung von Rhodium aus den Rückständen der Destillation von Produkten der Oxosynthese
DE3103835A1 (de) Verfahren zur herstellung von alkylnonadienoaten
DE1568350B1 (de) Verfahren zur Herstellung von Aldehyden bzw.Ketonen durch Oxydation von olefinischen Verbindungen mit Thallium(III)-salzloesung
EP0322661B1 (de) Verfahren zur Rückgewinnung von Rhodium aus Rhodiumkomplexverbindungen enthaltenden wässrigen Lösungen
WO2001056932A1 (de) Verfahren zur wiedergewinnung von rhodium aus reaktionsprodukten der oxosynthese
EP0475036B1 (de) Verfahren zur Wiedergewinnung von Rhodium aus den Rückständen der Destillation von Produkten der Oxosynthese
EP0538732A1 (de) Verfahren zur Rückgewinnung von Rhodium aus den Reaktionsprodukten der Oxosynthese
WO2000064913A1 (de) Verfahren zur herstellung von sulfonierten arylphosphinen
EP0584720B1 (de) Verfahren zur Wiedergewinnung von Rhodium aus den Destillationsrückständen von Produkten der Oxosynthese
DE862151C (de) Verfahren zur Abtrennung sauerstoffhaltiger Verbindungen, vorwiegend Carbonsaeuren, aus den Produkten der katalytischen Kohlenoxydhydrierung
DE1568350C (de) Verfahren zur Herstellung von Aide hyden bzw Ketonen durch Oxydation von öle (mischen Verbindungen mit Thallium (III) salzlösung
DE4139651A1 (de) Verfahren zur abtrennung organischer phosphorverbindungen und weiterer verunreinigungen aus verduennter schwefelsaeure
EP0545283A1 (de) Verfahren zur Aufarbeitung von Rhodiumverbindungen, Derivate organischer Phosphine und weitere Verunreinigungen gelöst enthaltender Abwässer
DE1135485B (de) Verfahren zur Gewinnung von Phenolen aus phenolhaltigen waessrigen Gemischen
DE2027536B (de) Verfahren zur Herstellung von Hexanal-(6)-säure-( 1)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19851025

17Q First examination report despatched

Effective date: 19870724

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOECHST AKTIENGESELLSCHAFT

ITF It: translation for a ep patent filed

Owner name: STUDIO MASSARI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3477790

Country of ref document: DE

Date of ref document: 19890524

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84116071.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971212

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981221

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031202

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031209

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20041221

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20041221

EUG Se: european patent has lapsed