EP0143956B1 - Druckwellenmaschine - Google Patents

Druckwellenmaschine Download PDF

Info

Publication number
EP0143956B1
EP0143956B1 EP84112407A EP84112407A EP0143956B1 EP 0143956 B1 EP0143956 B1 EP 0143956B1 EP 84112407 A EP84112407 A EP 84112407A EP 84112407 A EP84112407 A EP 84112407A EP 0143956 B1 EP0143956 B1 EP 0143956B1
Authority
EP
European Patent Office
Prior art keywords
pressure wave
gas
cells
catalyst
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84112407A
Other languages
English (en)
French (fr)
Other versions
EP0143956A1 (de
Inventor
Ibrahim Dr. El Nashar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0143956A1 publication Critical patent/EP0143956A1/de
Application granted granted Critical
Publication of EP0143956B1 publication Critical patent/EP0143956B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners
    • F02G2254/11Catalytic burners

Definitions

  • the present invention relates to a gas dynamic pressure wave machine according to the preamble of the claim.
  • catalysts are used in both gasoline and diesel engines in the exhaust system.
  • gasoline engines these consist of ceramic filters coated with catalyst materials, for example platinum powder. This reduces the emissions of pollutants in the exhaust gases, such as carbon monoxide, unburned hydrocarbons and nitrogen oxides.
  • pollutants such as carbon monoxide, unburned hydrocarbons and nitrogen oxides.
  • the most common exhaust gas catalysts are so-called three-way catalysts, ie NO is reduced to N 2 , CO is oxidized to C0 2 , the oxygen from NO being converted into this compound, and the hydrocarbons are oxidized.
  • These catalysts work with lambda values, ie with excess air values of 1 ⁇ 0.02. A lambda probe is required to adjust the mixture accordingly.
  • Similar catalysts are used for diesel engines, with ceramic or metallic support materials also being used.
  • the task of the diesel engine is pure oxidation, because a reduction is not possible due to the excess air.
  • a catalytic converter therefore has the task of burning carbon monoxide, hydrocarbons and soot.
  • soot particle filters are used in diesel engines to reduce the soot impact, and these can also be catalytically coated in order to lower the ignition temperature of the accumulated soot and thus burn the soot particles. Filter regeneration can then be achieved.
  • the exhaust gas emission is also influenced favorably.
  • the three-way catalytic converter When charging a gasoline engine with a gas-dynamic pressure wave charger, the three-way catalytic converter must be arranged on the high-pressure side, since the excess air in the low-pressure exhaust can reach very high values as a result of flushing the cellular wheel of the pressure wave charger, and thus the condition for the lambda value 1 ⁇ 0. 02 is not to be fulfilled. Furthermore, when the catalyst is arranged in the low-pressure exhaust, its back pressure rises sharply, so that adequate flushing of the cells of the cellular wheel would not be ensured.
  • CH-A-478 339 It is known from CH-A-478 339 to provide the cellular wheel with a coating in a gas-dynamic pressure wave machine for charging internal combustion engines.
  • This is a coating made of a poorly heat-conducting material, for example glass or ceramic, in particular enamel.
  • the purpose of this coating is to delay the heat absorption of the rotor in order to reduce the thermal expansion of the rotor, which generally heats up faster and more strongly than the housing. This is to minimize leakage losses at the front of the rotor.
  • the described nitrogen reduction due to the blade coating is not transferable to pressure wave machines, since there due to the alternating loading of the cells Air and exhaust gas the oxygen content of the cell content is much too high.
  • the supercharging unit can also perform the function of a catalyst for exhaust gas detoxification in supercharged internal combustion engines. It can take over the oxidation effect alone or in addition to a conventional catalyst.
  • the three-way catalytic effect in the cell rotor is not possible, the reduction from NO to N 2 is not possible due to the excess air.
  • the catalytic effect of the rotor satisfies the oxidation requirements of the diesel engine; in the gasoline engine, it only meets the pure oxidation requirements.
  • 1 denotes the hub of the cell wheel of a pressure wave machine, which is formed from individual cells 2 that conduct the air and gas flow and which are encased on the outside by a jacket 3.
  • the surfaces of the individual cells 2 surrounded by exhaust gas and air are coated with a catalyst material 4 known per se, for example platinum or rhodium.
  • a surface-enlarging ceramic underlayer is applied to the metal rotor in a conventional manner, to which the actual catalytic material is then applied.
  • the surface area can also be increased by increasing the number of cells and / or the number of floods of the rotor.
  • the cellular wheel 1 In an embodiment of the cellular wheel 1 according to FIG. 2, it consists of a ceramic material.
  • the Kataiysatormateriais 4 can be sprayed onto the ceramic cells 2 either before firing the cellular wheel 1 or only after the firing process in an additional operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Supercharger (AREA)

Description

  • Die vorliegende Erfindung betrifft eine gasdynamische Druckwellenmaschine gemäss dem Oberbegriff des Patentanspruches.
  • Zur Abgasentgiftung werden sowohl bei Otto-, als auch bei Dieselmotoren im Abgassystem Katalysatoren verwendet. Diese bestehen bei Ottomotoren aus mit Katalysatormaterialien, beispielsweise Platinpulver, beschichteten Keramikfiltern. Dadurch werden die Emissionen von Schadstoffen in den Abgasen, wie Kohlenmonoxyd, unverbrannte Kohlenwasserstoffe und Stickoxyde verringert. Die gebräuchlichsten Abgaskatalysatoren sind sogenannte Dreiwegkatalysatoren, d. h. NO wird zu N2 reduziert, CO wird zu C02 oxydiert, wobei der Sauerstoff aus NO in diese Verbindung überführt wird, und es werden die Kohlenwasserstoffe oxydiert. Diese Katalysatoren arbeiten bei Lambdawerten, d. h. bei Luftüberschusswerten von 1 ± 0.02. Zur entsprechenden Gemischeinstellung auf diesen Wert ist eine Lambda-Sonde erforderlich.
  • Für Dieselmotoren werden ähnliche Katalysatoren verwendet, wobei ebenfalls keramische oder metallische Trägermaterialien angewendet werden. Jedoch ist beim Dieselmotor die Aufgabenstellung eine reine Oxydation, weil wegen des Luftüberschusses eine Reduktion nicht möglich ist. Beim Dieselmotor hat ein Katalysator also die Aufgabe, Kohlenmonoxyd, Kohlenwasserstoffe und Russ zu verbrennen. Daneben werden bei Dieselmotoren zwecks Reduzierung des Russ stosses Russpartikelfilter verwendet, wobei diese ebenfalls katalytisch beschichtet sein können, um die Zündtemperatur des angesammelten Russes herabzusetzen und damit die Russpartikel zu verbrennen. Damit kann dann eine Filterregenerierung erzielt werden. Gleichzeitig wird auch die Abgasemission damit günstig beeinflusst.
  • Bei der Aufladung eines Ottomotors durch einen gasdynamischen Druckwellenlader muss der Dreiweg-Katalysator auf der Hochdruckseite angeordnet sein, da infolge der Spülung des Zellenrades des Druckwellenladers der Luftüberschuss im Niederdruck-Auspuff sehr hohe Werte erreichen kann und somit die Bedingung für den Lambdawert 1 ± 0,02 nicht zu erfüllen ist. Weiterhin steigt bei der Anordnung des Katalysators im Niederdruck-Auspuff dessen Gegendruck stark an, so dass damit eine ausreichende Spülung der Zellen des Zellenrades nicht sichergestellt wäre.
  • Es ist Aufgabe der im Patentanspruch gekennzeichneten Erfindung, ein Zellenrad für einen Druckwellenlader zu schaffen, welcher auch bei erhöhten Kriterien betreffend Senkung der Abgasemissionen betrieben werden kann, indem er die Oxydationswirkung eines Katalysators ausübt.
  • Zwar ist es aus der CH-A-478 339 bekannt, bei einer gasdynamischen Druckwellenmaschine zur Aufladung von Verbrennungskraftmaschinen das Zellenrad mit einem Ueberzug zu versehen. Dabei handelt es sich um eine Beschichtung aus einem schlecht wärmeleitenden Material, beispielsweise Glas oder Keramik, insbesondere Email. Mit diesem Ueberzug wird eine verzögerte Wärmeaufnahme des Rotors bezweckt, um die Wärmedehnung des sich in der Regel schneller und stärker erwärmenden Rotors gegenüber dem Gehäuse zu reduzieren. Dadurch sollen die Leckageverluste an den Stirnseiten des Rotors auf ein Minimum beschränkt werden.
  • Bekannt ist ferner aus der US-A-4 122 673, die Turbinenschaufeln eines Abgasturboladers mit einem Katalyten zu beschichten. Hierzu wird auf das aus Edelstahl bestehende Turbinenrad eine Metallschicht, vorzugsweise Kupfer aufgalvanisiert, mit dem die Stickoxyde der Abgase reduziert werden sollen. Die brennbaren Anteile von Kohlenoxyd und Kohlenwasserstoffen werden hingegen durch Nachverbrennung entfernt, wozu stromaufwärts und stromabwärts der Turbine Monolithen als Katalysatoren vorgesehen sind. Abgesehen von der Tatsache, dass die verfügbare Oberfläche der Turbinenschaufeln und die vorherrschenden Turbulenzgrade bei der kurzen Verweilzeit in der Turbine für eine ausreichende Konversion unzureichend sind, ist die beschriebene Stickstoffreduktion aufgrund der Schaufelbeschichtung auf Druckwellenmaschinen nicht übertragbar, da dort infolge der abwechselnden Beaufschlagung der Zellen mit Luft und Abgas der Sauerstoffanteil des Zelleninhaltes viel zu hoch ist.
  • Durch das Beschichten der dem Gasstrom ausgesetzten Zellenoberflächen des Zellenrades mit einem Katalysatormaterial kann das Aufladeaggregat bei aufgeladenen Brennkraftmaschinen zusätzlich die Funktion eines Katalysators zur Abgasentgiftung erfüllen. Es kann die Oxydationswirkung alleine oder zusätzlich zu einem herkömmlichen Katalysator übernehmen.
  • Die Dreiweg-Katalytwirkung im Zellenrotor ist nicht möglich, die Reduzierung von NO zu N2 ist wegen des Luftüberschusses nicht möglich. Die Katalytwirkung des Rotors genügt aber den Oxydationsforderungen des Dieselmotors ; beim Ottomotor genügt sie bloss den reinen Oxydationsforderungen.
  • Gegenüber einem herkömmlichen statischen Katalysator hat dieser dynamische Zellenrotor-Katalysator die folgenden Vorteile :
    • - Die in der Druckwellenmaschine neben der Ladeluft geförderte Spülluft, welche auf die Gasseite des Zellenrades und von dort in den Auspuff überspült wird, weist einen hohen Sauerstoffgehalt auf, wodurch gegenüber dem herkömmlichen angebrachten Katalysator die Reaktion verstärkt wird.
    • - Weiterhin werden die Gasmassen im Zellenrad der Druckwellen einer starken Turbulenz und
    • - bedingt durch den Druckwellenprozess - einer langen Verweilzeit in den Zellen unterworfen, wodurch der Kontakt zwischen dem Katalysator und dem Gas verbessert und die Katalysator-Wirksamkeit erhöht wird. Dabei wird die strömungstechnische Funktion des Zellenrades nicht beeinträchtigt.
    • - In den Rotorzellen herrscht zudem ein starkes Fliehkraftfeld, so dass sich der Rotor der Druckwellenmaschine auch als Partikelfänger auszeichnet. Zusammen mit der katalytischen Beschichtung und der damit verbundenen Herabsetzung der Entzündungstemperatur für Russ kommt es bereits im Zellenrotor zum Abbrennen des angesammelten Russes.
  • In der Zeichnung sind Ausführungsbeispiele des Erfindungsgegenstandes vereinfacht dargestellt.
  • Es zeigen :
    • Fig. 1 eine teilweise Frontansicht eines metallischen Zellenrades mit Katalysatormaterial-Beschichtung,
    • Fig. 2 eine perspektivische Teilansicht eines Keramikzellenrades mit Katalysatormaterial-Beschichtung.
  • Was den Aufbau und die Funktionsweise einer Druckwellenmaschine betrifft, so wird auf die Druckschrift Nr. CH-T 123 143 D der Anmelderin verwiesen.
  • Gemäss Fig. 1 der Zeichnung ist mit 1 die Nabe des Zellenrades einer Druckwellenmaschine bezeichnet, das aus einzelnen, den Luft- und Gasstrom führenden Zellen 2 gebildet ist, die aussen von einem Mantel 3 umhüllt sind. Die von Abgas und Luft umstrichenen Oberflächen der einzelnen Zellen 2 sind mit einem an sich bekannten Katalysator-Material 4, beispielsweise Platin oder Rhodium beschichtet. In üblicher Weise wird auf dem Metallrotor eine Oberflächen-vergrössernde keramische Unterschicht aufgetragen, auf welche dann das eigentliche Katalyt-Material aufgebracht wird. Die Oberflächenvergrösserung kann zusätzlich durch Erhöhung der Zellenzahl und/oder der Flutenzahl des Rotors erfolgen.
  • Bei einer Ausführung des Zellenrades 1 nach der Fig. 2 besteht dieses aus einem Keramikmaterial. Das Aufspritzen des Kataiysatormateriais 4 auf die Keramikzellen 2 kann entweder vor dem Brennen des Zellenrades 1 oder erst nach dem Brennvorgang in einem zusätzlichen Arbeitsgang erfolgen.
  • Da die Eindringtiefe der Abgase in das Zellenrad 1 nur über einen Teil der axialen Länge derselben erfolgt, ist eine örtlich begrenzte Beschichtung der Zellen 2 bzw. Beimischung von Katalysator- Material 4 zum Material des Zellenrades 1 möglich. Bei einer derartigen Ausbildung können erhebliche Kostenreduktionen erzielt werden.

Claims (1)

  1. Gasdynamische Druckwellenmaschine zur Aufladung von Brennkraftmaschinen, im wesentlichen bestehend aus einem Statorgehäuse mit darin angeordneten, aus einzelnen Zellen gebildeten Zellenrad, wobei die Zellen von einem Mantel (3) umhüllt sind und abwechselnd von Luft und Abgas beaufschlagt sind und wobei der Kontakt zwischen den Arbeitsmitteln mit den Zellenwandungen während des Maschinenbetriebes infolge von Fliehkraft und starker Turbulenz, bedingt durch den Druckwellenprozess gefördert wird, dadurch gekennzeichnet, dass mindestens die dem Gastrom ausgesetzten Oberflächen der einzelnen Zellen (2) des Zellenrades (1) einen aus Katalysator-Material (4) bestehenden Ueberzug aufweisen.
EP84112407A 1983-11-30 1984-10-15 Druckwellenmaschine Expired EP0143956B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6402/83 1983-11-30
CH640283 1983-11-30

Publications (2)

Publication Number Publication Date
EP0143956A1 EP0143956A1 (de) 1985-06-12
EP0143956B1 true EP0143956B1 (de) 1988-05-04

Family

ID=4309006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112407A Expired EP0143956B1 (de) 1983-11-30 1984-10-15 Druckwellenmaschine

Country Status (4)

Country Link
US (1) US4744213A (de)
EP (1) EP0143956B1 (de)
JP (1) JPS60135615A (de)
DE (1) DE3470904D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532170A1 (de) * 1995-08-31 1997-03-06 Ppv Verwaltungs Ag Verfahren zur Bildung eines platinhaltigen Überzugs auf einem Substrat und Vorrichtung zur Durchführung des Verfahrens

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813947A1 (de) * 1988-04-26 1989-11-09 Asea Brown Boveri Verfahren zum aufbringen einer aus edelmetallen und/oder edelmetallverbindungen bestehenden katalysatorschicht auf einen traeger aus keramischem material
DE3813946A1 (de) * 1988-04-26 1989-11-09 Asea Brown Boveri Verfahren zum aufbringen einer aus edelmetallen und/oder edelmetallverbindungen bestehenden katalysatorschicht auf einen traeger aus keramischem material
DE3922019A1 (de) * 1988-09-05 1990-04-05 Richter Gerhard Vorrichtung zum verbrennen der kontaminierten russpartikel in den abgasen von dieselmotoren
DE3900571A1 (de) * 1989-01-11 1990-07-19 Asea Brown Boveri Verfahren zum aufbringen einer aus edelmetallen und/oder edelmetallverbindungen bestehenden katalysatorschicht auf einen traeger aus keramischem material
DE4210543A1 (de) * 1992-03-31 1993-10-07 Asea Brown Boveri Druckwellenmaschine
EP0576716A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Druckwellenmaschine
US5284123A (en) * 1993-01-22 1994-02-08 Pulso Catalytic Superchargers Pressure wave supercharger having a stationary cellular member
AT408785B (de) * 1995-11-30 2002-03-25 Blank Otto Ing Aufladeeinrichtung für die ladeluft einer verbrennungskraftmaschine
US5839416A (en) * 1996-11-12 1998-11-24 Caterpillar Inc. Control system for pressure wave supercharger to optimize emissions and performance of an internal combustion engine
DE19703522A1 (de) * 1997-01-31 1998-03-19 Daimler Benz Ag Verbrennungsmotoranlage mit Druckwellenlader
WO2000068566A2 (en) * 1999-04-26 2000-11-16 Advanced Research & Technology Institute Wave rotor detonation engine
AU2002218781A1 (en) 2000-07-06 2002-01-21 Advanced Research & Technology Institute Partitioned multi-channel combustor
SE520559C2 (sv) * 2001-02-02 2003-07-22 Volvo Lastvagnar Ab Arrangemang och förfarande vid tryckluftsystem för fordon
US6845620B2 (en) 2001-07-06 2005-01-25 Mohamed Razi Nalim Rotary ejector enhanced pulsed detonation system and method
US7555891B2 (en) * 2004-11-12 2009-07-07 Board Of Trustees Of Michigan State University Wave rotor apparatus
FR2878568A1 (fr) * 2004-11-29 2006-06-02 Renault Sas Dispositif de suralimentation par ondes de pression d'un moteur a combustion interne avec des moyens de depollution des gaz d'echappement et moteur equipe d'un tel dispositif
FR2900971A3 (fr) * 2006-05-12 2007-11-16 Renault Sas Systeme d'entrainement pour vehicule automobile et procede de commande d'un tel systeme
EP1878879A1 (de) * 2006-07-14 2008-01-16 Abb Research Ltd. Turbolader mit katalytischer Beschichtung
DE102007021367B4 (de) * 2007-05-04 2008-12-24 Benteler Automobiltechnik Gmbh Gasdynamische Druckwellenmaschine
EP2450121A1 (de) * 2010-11-03 2012-05-09 MEC Lasertec AG Verfahren zur Herstellung eines Zellenrades
DE102011118765A1 (de) * 2011-11-17 2013-05-23 Benteler Automobiltechnik Gmbh Ottomotor mit Druckwellenlader und Dreiwegekatalysator
IT202200013771A1 (it) * 2022-06-29 2023-12-29 Decet Di Giovanni Cipolla Sas Dispositivo smart di sovralimentazione per onde e di post-trattamento per un motore a combustione interna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL175314C (nl) * 1949-05-24 Ciba Geigy Werkwijze voor het bereiden van een produkt, bestaande uit een dispersie van pigment in polyetheen en/of polypropeen.
US3084511A (en) * 1960-08-26 1963-04-09 Gen Electric Wave type pressure exchanger with overall pressure rise
GB993288A (en) * 1962-11-15 1965-05-26 Dudley Brian Spalding Improvements in and relating to pressure exchangers
CH478339A (de) * 1963-08-14 1969-09-15 Bbc Brown Boveri & Cie Druckwellenmaschine
CH552135A (de) * 1972-11-29 1974-07-31 Bbc Brown Boveri & Cie Verfahren zur verminderung der schadstoffemission von verbrennungsmotoren und einrichtung zur durchfuehrung des verfahrens.
US4122673A (en) * 1973-09-28 1978-10-31 J. Eberspacher Internal combustion engine with afterburning and catalytic reaction in a supercharger turbine casing
JPS5840524B2 (ja) * 1975-09-10 1983-09-06 サンスタ−株式会社 歯磨組成物
US4197700A (en) * 1976-10-13 1980-04-15 Jahnig Charles E Gas turbine power system with fuel injection and combustion catalyst
US4369020A (en) * 1980-05-05 1983-01-18 Ford Motor Company Rotor seal for wave compression turbocharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532170A1 (de) * 1995-08-31 1997-03-06 Ppv Verwaltungs Ag Verfahren zur Bildung eines platinhaltigen Überzugs auf einem Substrat und Vorrichtung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
US4744213A (en) 1988-05-17
EP0143956A1 (de) 1985-06-12
DE3470904D1 (en) 1988-06-09
JPS60135615A (ja) 1985-07-19

Similar Documents

Publication Publication Date Title
EP0143956B1 (de) Druckwellenmaschine
DE19504208B4 (de) Abgaskonverter mit einem Katalysator und einem diesem vorgeschalteten Brenner
EP0314129B1 (de) Katalysatoranlage
DE3842282C2 (de) Vorrichtung zur Verminderung der Abgasemission eines Dieselmotors
DE102008013773B4 (de) Turboladeranordnung mit Katalysatorbeschichtung
EP1747356B1 (de) Katalysator-trägerkörper für einen motornah einzusetzenden katalytischen konverter
DE10103771A1 (de) Verfahren zur Wiederherstellung der katalytischen Aktivität eines Katalysators, welcher im Abgastrakt eines Dieselmotors angeordnet ist und wenigstens eine Oxidationsfunktion aufweist
EP1664519B1 (de) Abgaswärmeüberträger, insbesondere abgaskühler für abgasrückführung in kraftfahrzeugen
DE3608838A1 (de) Verfahren zur regeneration von filtersystemen fuer die abgase von brennkraftmaschinen
WO2009010335A1 (de) Abgasnachbehandlung vor einem turbolader
DE4007516A1 (de) Dieselmotor
AT501463A4 (de) Hybridvorrichtung zum entfernen von russpartikeln aus dieselabgasen
EP0796389B1 (de) Wassergekühlte katalysatoranlage
EP3642462B1 (de) Abgasrohr, brennkraftmaschine und kraftfahrzeug
DE3939921C2 (de)
DE3826600C2 (de) Abgasturbolader mit Abgasreinigungsvorrichtung
DE2348866A1 (de) Verfahren zur reinigung der abgase von mit fluessigem brennstoff betriebenen motoren und einrichtung zur durchfuehrung des verfahrens
EP0215014A1 (de) Herstellungsverfahren für einen Katalysator.
DE2401204A1 (de) Katalytischer abgasreaktor fuer verbrennungsmotoren
DE3322439A1 (de) Einrichtung zur verminderung der schadstoffanteile in den abgasen eines verbrennungsmotors
DE112008001899T5 (de) Filtervorrichtung zur Reduzierung von Kraftfahrzeug-Auspuffrauchgas
DE102019109442A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102008035271B4 (de) Verfahren und Einrichtung zur Verarbeitung von Abgasen (Dieselmotor)
DE2235568A1 (de) Einrichtung zur abgasreinigung durch katalytische umsetzung und abgasrueckfuehrung
DE102019006494B4 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, Antriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 19850628

17Q First examination report despatched

Effective date: 19860325

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REF Corresponds to:

Ref document number: 3470904

Country of ref document: DE

Date of ref document: 19880609

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881031

Ref country code: CH

Effective date: 19881031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901015

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010917

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501