EP0134466B1 - Procédé et dispositif de réglage du lambda du mélange combustible d'un moteur à combustion - Google Patents

Procédé et dispositif de réglage du lambda du mélange combustible d'un moteur à combustion Download PDF

Info

Publication number
EP0134466B1
EP0134466B1 EP84107679A EP84107679A EP0134466B1 EP 0134466 B1 EP0134466 B1 EP 0134466B1 EP 84107679 A EP84107679 A EP 84107679A EP 84107679 A EP84107679 A EP 84107679A EP 0134466 B1 EP0134466 B1 EP 0134466B1
Authority
EP
European Patent Office
Prior art keywords
time period
combustion engine
oxygen sensor
monitoring time
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107679A
Other languages
German (de)
English (en)
Other versions
EP0134466A2 (fr
EP0134466A3 (en
Inventor
Richard Bertsch
Dieter Günther
Hans Schnürle
Ulrich Steinbrenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0134466A2 publication Critical patent/EP0134466A2/fr
Publication of EP0134466A3 publication Critical patent/EP0134466A3/de
Application granted granted Critical
Publication of EP0134466B1 publication Critical patent/EP0134466B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the invention relates to a method and a device for regulating the air-fuel ratio of an internal combustion engine according to the preamble of claim 1 and 4.
  • the probe used here and sensitive to the oxygen content of the burned operating mixture provides practically a binary output signal in such a way that the value «high (corresponds to approx. 1 volt) for a rich mixture and the value « low (corresponds to approx. 50 mV) is assumed for a lean mixture.
  • the output signal of the oxygen probe is applied to a control device, which in turn influences the air-fuel ratio via actuators. If the probe detects a rich mixture, the fuel supply is throttled, for example, so that after a certain delay time, which is given by the running time of the air-fuel mixture by the internal combustion engine, a lean fuel mixture is indicated by the probe output signal. Accordingly, the mixture is enriched again via the fuel metering system until the oxygen probe again indicates a mixture that is too rich. Accordingly, in the steady state, the output signal of the oxygen probe constantly swings back and forth between its two possible states "high and" low ".
  • a speed-adaptive PI controller is used in the known x controls.
  • the P and I components of these controllers cannot be chosen to be of any size for various reasons. The reason for this is, on the one hand, an undesirably high exhaust gas emission due to dynamic mismatches which result from the running time of the air / fuel mixture by the internal combustion engine mentioned above. On the other hand, the running behavior of the internal combustion engine would only deliver unsatisfactory values even in stationary operation.
  • an x control device is disclosed in DE-A-22 06 276, in which the time period between two switching processes of the probe output signal is detected and after a predetermined period of time in which no switching takes place , is switched to another integration time constant, in particular a smaller time constant of the integral controller.
  • a pilot control is provided in an air-fuel control system.
  • the pilot control values are changed by a predetermined value, analogous to counting up / down a counter, and stored in a RAM. These saved values will later be used for control.
  • the method according to the invention and the device for carrying out the method for x-regulation of the fuel mixture for an internal combustion engine with the features of claims 1 and 4, on the other hand, ensure a further improvement in the dynamic behavior of the x-regulation, in particular in the event of mismatches due to an inaccurate idling setting, so that there is a reduction in the exhaust emission level or an improvement in the overall conversion rate of a catalytic converter installed in the exhaust system.
  • the fact that mismatches are largely eliminated proves to be particularly advantageous.
  • the device according to the invention is equally suitable for use in an analog or digital signal processing unit for processing the output signal of the oxygen probe.
  • FIG. 1 a shows an exemplary embodiment of the device for x control according to the invention
  • 1b shows a detailed illustration of the reset device to avoid overshoots of the signal processing unit
  • FIG. 2 shows a time diagram of various signal curves occurring at specially marked points of the device according to the invention to explain the functioning of the exemplary embodiment in FIG. 1a.
  • an oxygen probe is designated with the number 10, this oxygen probe 10 can be represented in the equivalent circuit diagram by a voltage source U s and a resistor R.
  • the output signal of the oxygen probe 10, which is identified by the letter A, is fed to a signal processing unit 13 which consists of the series circuit of a comparison device 14, an X shift circuit 15, an integrator control 16 and an amplifier 17.
  • the output signal of the amplifier 17, which is denoted by the letter E, is used at least to correct the actuation of the actuators for setting the air-fuel ratio.
  • the integrator control 16 can be supplied with various operating parameters of the internal combustion engine, indicated by arrows, such as, for example, the current fuel or air throughput Q, the speed n, load signals L or the temperature Temperatur.
  • the integrator controller 16 is connected to the comparison device 14, a control circuit 18 and a counter 19 via a connecting line.
  • the control circuit 18 is supplied with further variables which characterize the operating parameters of the internal combustion engine, such as, for example, Q, n, e and signals which indicate idling (LL) or full load (VL).
  • the output signal of the comparison device 14 marked B is not only present at the counter 19 but also at a clock generator designated 20. This clock generator is also acted upon by different sizes of the internal combustion engine, such as Q, n or.
  • the connecting line between the clock generator 20 and the counter 19 can be interrupted by a switch 21 shown in broken lines, so that the output signals of the clock generator 20 denoted by the letter C are connected via a reset device 22 to the input of the counter 19 denoted by the letter F.
  • the reset device 22 is supplied with the output signal B of the comparison device 14 via a delay circuit 23.
  • the output signals of the counter 19 go to a digital-to-analog converter 24, which is connected on the output side via the line labeled with the letter D via the series connection of two capacitors 25 and 26 to the input of the amplifier 17.
  • the capacitor 25 is also bridged by a resistor 27.
  • the output signal C of the clock generator 20 is supplied on the one hand to a monoflop 28, the pulse duration of which is set to a time period t 2 , and on the other hand to an OR gate 29.
  • the monoflop 28 controls a second monoflop 30 at the “enable” input.
  • the second monoflop 30 is connected to the delay stage 23, which in turn is connected to the output of the comparison device 14.
  • the output signal of the second monoflop 30 is also applied to an input of the OR gate 29, the output of which drives the counter 19.
  • the operation of the switch 21 is to be understood in such a way that either the points C and F are connected and the reset device 22 is out of operation or that the points C and F are connected via the ready-to-use reset device 22.
  • the mode of operation of the device according to the invention will be explained in the following with reference to the signal diagrams in FIG. 2:
  • the output signal of the oxygen probe 10, the temporal course of which should correspond to diagram A in FIG. 2, is sent to the comparison device 14, which can be designed, for example, as a Schmitt trigger. fed so that at the output of the comparison device at point B, a steep-sided signal behavior occurs as shown in FIG.
  • the clock generator 20 is reset in each case with the falling and rising edge of the signal B, so that the monitoring time interval labeled t, can be started again. It is envisaged to vary the length of this time interval t as a function of various operating parameters with which the clock generator 20 is controlled. In any case, care must be taken to ensure that the monitoring time t is always greater than the system dead time of the entire control arrangement.
  • the clock generator 20 If the case arises that the output variable B of the comparison device 14 does not change during a monitoring time interval t, the clock generator 20 generates a pulse which is counted by the counter 19. If, on the other hand, a change in the output variable of the comparison device 14 occurs during the monitoring time t, the clock generator is reset again and no output signal is generated.
  • the corresponding pulse sequence at the output of the clock generator for the arbitrarily selected probe signal curve A is indicated in diagram C in FIG. 2. The dashed lines are intended to indicate the resetting of the clock 20.
  • the counter 19 is acted upon directly by this pulse sequence C.
  • the counting direction of the counter 19, which is preferably designed as an up / down counter. is also determined by the level of the output signal B of the comparison device 14.
  • the signal span present at the output of the digital / analog converter voltage is shown in diagram D. It can be seen that for a low signal level, the pulses generated by the clock generator 20 are counted down. Accordingly, the output voltage supplied by the digital / analog converter increases as a function of the pulse sequence C when the output voltage of the comparison device assumes positive values.
  • the counter reading of the counter 19 is thus essentially a measure of the size of the correction factor of the ⁇ control, ie of the deviation of the air / fuel ratio preset from the stoichiometric value.
  • the output signals of the comparison device 14 are also fed to an x-shift circuit 15, which delays the rectangular pulses, for example in dependence on the slope. With this unit it is possible to set ratios other than the stoichiometric for the air-fuel ratio.
  • the integrator control 16 two current sources of opposite polarity are alternately activated depending on the output signal of the A shift circuit 15. It is first assumed that the output of the digital / analog converter 24 is at a constant potential. The signal E then appears at the output of the amplifier 17, which is shown in broken lines in the diagram in FIG. E to explain the prior art and with which the fuel supply is at least corrected. In particular, the transition between two load points, for example, at which different correction values result, is shown.
  • the capacitor 26 is charged by one of the two current sources of the integrator control 16.
  • the second current source comes into action and the capacitor 26 is discharged again.
  • the jump height between the charging and discharging process of the capacitor 26 is determined by the parallel connection of the capacitor 25 and the resistor 27. In the present case, this is denoted by P, as shown in diagram E.
  • the switchable current sources of the integrator control 16 can be controlled as a function of various operating parameters of the internal combustion engine, such as, for example, the speed n of the load L or the air or fuel quantity or the temperature.
  • the signal curve at the output of the amplifier 17, which occurs in accordance with the device according to the invention, is shown in diagram E of FIG. 2 by the thick line curve. Deviations from the course shown in dashed lines occur when the switching times of the oxygen probe 10 exceed the monitoring time t 1. If this is the case, a pulse is generated by clock generator 20, which, in accordance with what was predicted, causes an abrupt change in potential at the output of digital / analog converter 24, which change via the elements capacitor 25, 26 and resistor 27 to the input of amplifier 17 becomes.
  • the dashed line indicates how the switching behavior of the probe would look when using known arrangements.
  • the probe would switch from H to L by the time difference ⁇ t F between t F and t F , St.dT later.
  • the level of the potential jump P 2 is determined by the sensitivity of the digital / analog converter 24 and can also be adjusted by this. With the output signal E of the amplifier 17, for example, the injection times are correctively controlled in such a way that when a lean ("low •) mixture is present the fuel supply is increased and when a rich (" high •) mixture is present the fuel supply is reduced.
  • the reset device 22 shown in dashed lines in FIG. 1a has the following advantageous, additional properties: If, for example, the probe signal changes within a relatively short time after the monitoring time t has elapsed, “in retrospect there is no longer any need to cause an additional increase or decrease in the potential at point D. Then the reset device 22 is activated, which neutralizes the intervention previously carried out, ie resets the output signal of the digital / analog converter 24 to the previous value.
  • a further time period t 2 is defined with the aid of the first monostable flip-flop 28, which advantageously accounts for half the time period t 1 , but can also assume other values.
  • the second monostable multivibrator 30 is sensitive to signal changes of the comparison device 14 via a control input during this time period t 2 . If the clock generator 20 has generated a pulse, the monostable multivibrator 30 is activated for a period of time t 2 . If the oxygen probe switches from "high to" low or vice versa during this time period t 2 , the monostable multivibrator 30 generates an additional output signal as a function of this voltage jump, which is supplied to the counter 19 via the OR gate 29. With the aid of this voltage pulse, the pulse previously supplied by the clock generator 20 is always reversed, since the direction of the counter 19 also changes as a result of the jump in the oxygen probe output signal.
  • the delay stage 23 is used for a small delay in the pulse sequence B in order to ensure that the counting direction of the counter 19 is switched reliably.
  • the corresponding pulse train F at the output of the Reset device 22 is shown in diagram F of Figure 2.
  • the time t 2 was chosen as half the monitoring period t.
  • the time interval t 2 always runs after the time interval t 1 has elapsed. In the present example, only one switching operation of the oxygen probe falls in such a time interval t 2 .
  • the pulse additionally generated by the reset device 22 is identified in diagram F in FIG. 2 by an arrow.
  • the counter reading of the counter 19 and the voltage denoted D 'at the output of the digital / analog converter 24 also change accordingly.
  • control circuit 18 it is possible to control the occurrence of certain operating situations of the internal combustion engine, for. B. in idle or full load operation u. ⁇ ., switch off and go to a controlled mixture formation.
  • the counter 19 can be set by the control circuit 18 to a counter reading which is in particular dependent on the operating parameters.
  • This device ensures a very fast response behavior of the control arrangement, so that one comes very close to an optimal power output of the internal combustion engine with minimal pollutant emissions.
  • the length of the monitoring time t 2 can of course also be set depending on the operating parameters of the internal combustion engine or on the monitoring time t 1 .
  • the device is not limited to a signal processing unit of the type described in the exemplary embodiment, but is also ideally suitable for use in a microcomputer-controlled signal processing unit.
  • a signal processing unit of the type described in the exemplary embodiment but is also ideally suitable for use in a microcomputer-controlled signal processing unit.
  • Such a version is no longer described in detail here, since such a computer-controlled embodiment does not pose any difficulties for the person skilled in the art.
  • the integrator control 16 can be controlled directly by the counter 19.
  • the output variable of the integrator control 16 can then be output directly from a counter 19, which can also be implemented by software, via an ALU33 (arithmetic logic unit) which is connected to the counter 19 via the line 32. to be influenced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (6)

1. Procédé pour régler le rapport air/carburant d'un moteur à combustion interne à l'aide d'une sonde à oxygène (sonde x) et d'une unité de traitement de signal reliée à la sonde à oxygène, procédé qui permet d'influencer la caractéristique de traitement entre au moins deux phases d'inversion de la sonde à oxygène, après le déroulement d'une certaine durée de surveillance réglable par exemple suivant les paramètres de fonctionnement, en tenant compte des grandeurs caractéristiques du moteur à combustion interne telles que la charge, la vitesse de rotation ou la température, et selon lequel la grandeur de sortie de l'unité de traitement de signaux varie brusquement après l'arrivée après l'écoulement de la durée de surveillance d'un signal de sortie de la sonde à oxygène qui est resté inchangé pendant la durée de surveillance, procédé caractérisé en ce que le saut de la grandeur de sortie (E, E') de l'unité de traitement de signal (13) est de nouveau annulé si le signal de sortie de la sonde à oxygène varie à l'intérieur d'une autre durée (t2) adjacente à la première durée de surveillance (t1) et qui est relativement plus courte que celle-ci (t2 < t1).
2. Procédé selon la revendication 1, caractérisé en ce que la seconde durée (t2) est réglée en fonction de la durée de surveillance (t1).
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que la seconde durée (tz) est réglée suivant différents paramètres de fonctionnement du moteur à combustion interne.
4. Dispositif pour régler le rapport air/carburant d'un moteur à combustion interne à l'aide d'une sonde à oxygène (sonde x) et d'une unité de traitement de signal reliée à cette sonde à oxygène, et offre la possibilité d'influencer la caractéristique de traitement entre au moins deux phases d'inversion de la sonde à oxygène après le déroulement d'une durée prédéterminée réglable par exemple suivant les paramètres de fonctionnement en tenant compte des grandeurs de fonctionnement du moteur à combustion interne telles que la charge, la vitesse de rotation ou la température, dispositif selon lequel en fonction du signal de sortie de la sonde à oxygène, à la fin d'une première durée de surveillance, un état de comptage qui influence le signal de sortie de l'unité de traitement de signal varie brusquement, dispositif caractérisé en ce qu'il comporte un dispositif de remise à l'état initial (22) activé à la fin de la première durée de surveillance (t,) et remet à l'état initial l'état de comptage si la sonde à oxygène (10) modifie sa grandeur de sortie dans un intervalle (t2) adjacent à la durée de surveillance (t,) et qui est plus court (t2 < t1) que la première durée de surveillance (t1).
5. Dispositif selon la revendication 4, caractérisé en ce que la seconde durée (t2) est réglable en fonction de la durée de surveillance (t1).
6. Dispositif selon l'une des revendications 4 et 5, caractérisé en ce que la seconde durée 5 (t2) est réglable suivant différents paramètres de fonctionnement du moteur à combustion interne.
EP84107679A 1983-07-28 1984-07-03 Procédé et dispositif de réglage du lambda du mélange combustible d'un moteur à combustion Expired EP0134466B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327156 1983-07-28
DE19833327156 DE3327156A1 (de) 1983-07-28 1983-07-28 Verfahren und vorrichtung zur (lambda)-regelung des kraftstoffgemisches fuer eine brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0134466A2 EP0134466A2 (fr) 1985-03-20
EP0134466A3 EP0134466A3 (en) 1986-08-27
EP0134466B1 true EP0134466B1 (fr) 1988-12-21

Family

ID=6205090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107679A Expired EP0134466B1 (fr) 1983-07-28 1984-07-03 Procédé et dispositif de réglage du lambda du mélange combustible d'un moteur à combustion

Country Status (4)

Country Link
US (1) US4603670A (fr)
EP (1) EP0134466B1 (fr)
JP (1) JPS6043140A (fr)
DE (2) DE3327156A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744344A (en) * 1985-02-20 1988-05-17 Fuji Jukogyo Kabushiki Kaisha System for compensating an oxygen sensor in an emission control system
JPH066913B2 (ja) * 1985-02-23 1994-01-26 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JPH0733790B2 (ja) * 1985-12-11 1995-04-12 富士重工業株式会社 自動車用エンジンの空燃比制御装置
DE3719493A1 (de) * 1987-06-11 1988-12-29 Vdo Schindling Verfahren und schaltungsanordnung zur regelung des kraftstoff-luft-verhaeltnisses einer brennkraftmaschine
DE3837719A1 (de) * 1988-11-07 1990-05-10 Vdo Schindling Verfahren zur verbesserung des abgasverhaltens von ottomotoren
DE3904619C2 (de) * 1989-02-16 1994-10-27 Vdo Schindling Verfahren und Anordnung zur Regelung des Kraftstoff-Luft-Verhältnisses einer Brennkraftmaschine
DE9206472U1 (de) * 1992-05-13 1992-08-20 G + M Kat GmbH, 4390 Gladbeck Vorrichtung zur Regelung des Schadstoffgehalts des Abgases eines mit einem Katalysator ausgerüsteten Kraftfahrzeugs
JPH0666186A (ja) * 1992-08-17 1994-03-08 Nissan Motor Co Ltd エンジンの空燃比制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2206276C3 (de) * 1972-02-10 1981-01-15 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Verminderung von schädlichen Anteilen der Abgasemission von Brennkraftmaschinen
DE2229928C3 (de) * 1972-06-20 1981-03-19 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Verminderung von schädlichen Anteilen der Abgasemission von Brennkraftmaschinen
US4364356A (en) * 1972-09-06 1982-12-21 Uop Inc. Exhaust emissions control system
JPS5213250B2 (fr) * 1973-05-31 1977-04-13
JPS5854253B2 (ja) * 1975-05-12 1983-12-03 日産自動車株式会社 クウネンピセイギヨソウチ
FR2379115A1 (fr) * 1977-01-26 1978-08-25 Renault Calculateur numerique de richesse optimum pour moteur a combustion interne
US4290400A (en) * 1980-03-17 1981-09-22 General Motors Corporation Closed loop fuel control system for an internal combustion engine
CA1174334A (fr) * 1980-06-17 1984-09-11 William G. Rado Regulateur de dosage air-carburant par retroaction
JPS5770934A (en) * 1980-10-20 1982-05-01 Nippon Denso Co Ltd Air fuel ratio control method

Also Published As

Publication number Publication date
DE3475726D1 (en) 1989-01-26
US4603670A (en) 1986-08-05
JPS6043140A (ja) 1985-03-07
EP0134466A2 (fr) 1985-03-20
EP0134466A3 (en) 1986-08-27
DE3327156A1 (de) 1985-02-07

Similar Documents

Publication Publication Date Title
DE2251167C3 (de) Einrichtung zur Abgasentgiftung von Brennkraftmaschinen
DE2551610C3 (fr)
DE2635308C2 (de) Steuereinrichtung für das Luft-Brennstoffverhältnis des einer Brennkraftmaschine zugeführten Gemisches
DE2347729C3 (fr)
DE2702863A1 (de) Verfahren und vorrichtung zur verschiebung des dem ausgangssignal einer im abgaskanal einer brennkraftmaschine angeordneten lambda-sonde entgegengeschalteten schwellwertsignals
DE2206276A1 (de) Verfahren und vorrichtung zur verminderung von schaedlichen anteilen der abgasemission von brennkraftmaschinen
DE2444334A1 (de) Verfahren und einrichtung zur ueberwachung der aktivitaet von katalytischen reaktoren
DE2730100C2 (de) Einrichtung zum Regeln des Luft/Kraftstoff-Verhältnisses des Betriebsgemisches einer Brennkraftmaschine
DE2749369A1 (de) Steuereinrichtung fuer ein magnetventil im umgehungskanal einer drosselklappe bei brennkraftmaschinen
DE2647517A1 (de) Kraftstoffregelsystem fuer brennkraftmotor
DE2604964C3 (de) Brennstoffeinspritzsystem in Form einer geschlossenen Schleife für eine Brennkraftmaschine
DE2247656A1 (de) Verfahren und vorrichtung zur abgasentgiftung von brennkraftmaschinen
EP0134466B1 (fr) Procédé et dispositif de réglage du lambda du mélange combustible d&#39;un moteur à combustion
DE2700629C2 (fr)
DE2530308A1 (de) Verfahren und vorrichtung zur begrenzung der impulsdauer von kraftstoffeinspritz-steuerbefehlen
DE2545759C2 (de) Verfahren und Vorrichtung zur Beeinflussung der Massenverhältnisanteile des einer Brennkraftmaschine zugeführten Kraftstoff-Luftgemisches
DE3315048A1 (de) System zum beeinflussen des betriebszustandes eines verbrennungsmotors zwecks vermeidung eines rauhen laufes des motors
DE2743063A1 (de) Brennstoffregelvorrichtung fuer brennkraftmaschinen
EP0266501B1 (fr) Procédé et arrangement de circuits pour la détection de l&#39;état d&#39;un capteur d&#39;oxygène
DE3214059C2 (fr)
DE4443224A1 (de) Brennstoff-Regelsystem bei einer Brennkraftmaschine von Kraftfahrzeugen
EP0046490A1 (fr) Dispositif électronique pour la stabilisation du ralenti de moteurs à combustion interne
DE1911828C3 (de) Elektronischer Regler für die Drehzahl einer Brennkraftmaschine, insbesondere eines Dieselmotores
EP0153493B1 (fr) Système de dosage de mélange pour moteur à combustion
DE3813219A1 (de) Verfahren und vorrichtung zur lambdaregelung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840703

AK Designated contracting states

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19870622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3475726

Country of ref document: DE

Date of ref document: 19890126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19930915

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030716

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030825

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040702

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20