EP0130908B1 - Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante - Google Patents
Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante Download PDFInfo
- Publication number
- EP0130908B1 EP0130908B1 EP84401360A EP84401360A EP0130908B1 EP 0130908 B1 EP0130908 B1 EP 0130908B1 EP 84401360 A EP84401360 A EP 84401360A EP 84401360 A EP84401360 A EP 84401360A EP 0130908 B1 EP0130908 B1 EP 0130908B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- process according
- phase
- calories
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000006243 chemical reaction Methods 0.000 title claims description 19
- 239000012071 phase Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 16
- 239000012047 saturated solution Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000007791 liquid phase Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000001273 butane Substances 0.000 claims description 2
- KYTKSXHWSWXEGA-UHFFFAOYSA-N chloro(difluoro)silane Chemical compound F[SiH](F)Cl KYTKSXHWSWXEGA-UHFFFAOYSA-N 0.000 claims description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 2
- XLYDDTRTCYCGPT-UHFFFAOYSA-N difluoromethylsilane Chemical compound FC(F)[SiH3] XLYDDTRTCYCGPT-UHFFFAOYSA-N 0.000 claims description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 claims 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 claims 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims 1
- 239000011592 zinc chloride Substances 0.000 claims 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 9
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000012429 reaction media Substances 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- VXJIMUZIBHBWBV-UHFFFAOYSA-M lithium;chloride;hydrate Chemical compound [Li+].O.[Cl-] VXJIMUZIBHBWBV-UHFFFAOYSA-M 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005502 phase rule Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/04—Heat pumps of the sorption type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
Definitions
- the present invention relates to a thermochemical process for carrying out calorie transfers between a first source of calories and a second source of calories.
- the process is implemented according to an intermittent cycle of heat storage and destocking.
- thermochemical processes having either continuous operation or intermittent operation, which can operate to supply calories - heating or to take off - cooling.
- the invention provides, on the contrary, a method which implements a monovariant system, that is to say a system for which the relationship between the logarithm of the pressure and I / T is unique and almost linear.
- thermochemical heat pumps a process implementing a three-phase monovariant system for which the absorption of gas by a saturated solution corresponds to a single equilibrium, c that is to say that one has only one reaction, whereas Mar considered that the heat exchange takes place during two distinct reactions each concerning a different solid compound.
- the invention provides a thermochemical process for transferring calories from a first heat source to a second heat source by using a reaction medium.
- This process is characterized in that the exchange of calories between one of the two sources and the said reaction medium takes place during a reaction between a gas and a liquid phase constituted by a solution saturated with solid whereas the exchange of calories between the second source and the reaction medium takes place during a gas-liquid phase change reaction of said gas or of absorption of the gas on a solid, the two reactions taking place in a closed medium and being monovariant.
- the gas may consist of water vapor or ammonia, or alternatively chosen from methanol, ethanol, butanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, fluoroalkanes , chlorinated fluoroalkanes, difluoromethylsilane, chlorodifluorosilane, disiloxane, propane, butane, acetone and acetaldehyde, the fluoroalkanes themselves being chosen from CC1 3 F, CCl 2 F 2 , CHCI 2 F, CHCIF 2 , C1 3 C 2 F 3 , C1 2 C 2 F 4 , C 2 HCIF 4 , C 2 H 2 CIF 3 , CH 2 CIF and C 2 H 2 F 4 .
- the heat pump comprises a saturated solution, in the liquefied gas, of a solid chosen from CaCI 2 , KOH, LiCI, LiBr, ZnCl 2 , ZnBr 2 and the gas, in these cases, is H 2 0.
- a solid chosen from CaCI 2 , KOH, LiCI, LiBr, ZnCl 2 , ZnBr 2 and the gas, in these cases, is H 2 0.
- the heat pump comprises a reactor (1) and a reactor (2), interconnected by the pipe (3).
- Each reactor is provided with a heat exchanger (4) to (5) allowing the exchange of calories between the reaction medium and the external sources of calories.
- the reactor (1) contains the liquid in equilibrium with its vapor phase
- the reactor (2) contains the saturated solid solution.
- the gas coming from the reactor (1) condenses at the saturated solution and releases its latent heat of condensation ⁇ H while diluting the solution.
- the differential heat of dilution of the saturated solution is ⁇ H D , it is an exothermic reaction.
- excess solid dissolves to maintain the concentration at saturation, with a heat ⁇ H S of dissolution of the salt in the saturated solution.
- the gas evaporates from the solution contained in the reactor (2) to go to the reactor (1) which then plays the role of condenser.
- the solution is concentrated and the solid must crystallize.
- the enthalpies involved are the same as before, in opposite sign.
- FIG. 4 shows a heating installation allowing the implementation of the method according to the invention, and in which the heating period corresponds only to the destocking phase. It is understood that, as mentioned above, the installation could also be used for heating during the storage period.
- Part A of Figure 4 represents the storage phase while part B represents the destocking phase.
- the heat pump is symbolized by its two reactors (1) and (2) and by the gas line (3).
- the reactor (1) is connected to a hot source constituted, in the installation shown, by a solar collector (12).
- the calories given up in the reactor (2) during the condensation of the gas are released into the atmosphere, but they could as well be used for heating or even be stored.
- the reactor (2) is supplied with calories by a cold source, symbolized by the arrow (11). The calories are recovered in the reactor (1) and used for heating.
- the three-phase system used was the saturated solution of lithium chloride, water vapor and lithium chloride monohydrate.
- the range of existence of the hydrate in solid form with the saturated solution is between 19 and 95 ° C.
- the mass storage capacity, measured between a storage operation at 90 ° C and a destocking operation at 45 ° C, was 146 Wh / kg.
- a temperature rise of approximately 41 ° C. (AT) was obtained.
- phase rule shows that the system is monovariant.
- FIG. 3 shows the LiCI / LiCI H 2 0 absorption curve, referenced by the reference (9). This curve is located to the right of the curve corresponding to the saturated solution.
- the assembly works as in the previous example, with a storage phase and a destocking phase and gives identical results.
- a compressor can be provided on the tube (3) so as to improve the reaction kinetics or else to place a stirring device inside the reactor (1).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
- La présente invention concerne un procédé thermochimique permettant de réaliser des transferts de calories entre une première source de calories et une deuxième source de calories.
- Le procédé est mis en œuvre selon un cycle intermittent de stockage de chaleur et de déstockage.
- On a déjà proposé plusieurs types de procédés thermochimiques ayant soit un fonctionnement continu, soit un fonctionnement intermittent et qui peuvent fonctionner pour fournir des calories- chauffage ou en prélever-refroidissement.
- Pour obtenir de bons échanges de chaleur entre le milieu réactionnel et la source de calories, on a essayé de réaliser des systèmes pour lesquels le milieu réactionnel comporte une phase liquide, c'est ce qui est. par exemple, réalisé dans les systèmes à absorption gaz liquide. Malheureusement, ces systèmes présentent l'inconvénient d'être divariants, c'est-à-dire que les échanges de chaleur ne se font pas à température constante, ce qui soulève de nombreux problèmes lorsque l'on veut prévoir une gestion efficace de l'énergie. Un tel système est par exemple décrit dans le brevet US-A-4.332.139 relatif à une méthode de stockage et de déstockage de l'énergie thermique.
- On peut aussi se reporter à la publication faite par Jaeger F. A. et Hall C. A. « Ammoniated salt heat pump, thermal storage system », International Seminar on Thermo-chemical energy storage, Stockholm, 1980, p.339. Ces auteurs ont étudié l'ammoniacation de NH4CI, NH4SCN et ne se sont intéressés qu'aux domaines de composition présentant une phase liquide unique pour lesquels la variance est deux.
- L'invention prévoit, au contraire, un procédé qui met en oeuvre un système monovariant, c'est-à-dire un système pour lequel la relation entre le logarithme de la pression et I/T est unique et quasi linéaire.
- Des essais dans ce sens ont été effectués par R. W. Mar qui, dans son article « Chemical heat pump reactions above the solidus. A feasibility study »‾ Rapport S. A. N. D. 79-8036, indique que des systèmes basés sur la réaction de CaCI2 et de l'eau, au-dessus de la courbe de solidus ne peuvent pas être utilisés pour réaliser des pompes à chaleur thermochimiques, car ils présentent des vitesses de réactions très faibles. Au contraire, les demandeurs se sont aperçus qu'il était possible d'utiliser dans des pompes à chaleur thermochimiques, un procédé mettant en oeuvre un système triphasique monovariant pour lequel l'absorption du gaz par une solution saturée correspond à un seul équilibre, c'est-à-dire que l'on a une seule réaction, alors que Mar a considéré que l'échange thermique se faisait au cours de deux réactions distinctes concernant chacune un composé solide différent.
- Pour cela, l'invention prévoit un procédé thermochimique permettant de transférer des calories d'une première source de chaleur vers une deuxième source de chaleur par utilisation d'un milieu réactionnel. Ce procédé est caractérisé en ce que l'échange de calories entre une des deux sources et ledit milieu réactionnel a lieu lors d'une réaction entre un gaz et une phase liquide constituée par une solution saturée en solide alors que l'échange de calories entre la deuxième source et le milieu réactionnel se fait lors d'une réaction de changement de phase gaz-liquide dudit gaz ou d'absorption du gaz sur un solide, les deux réactions se faisant en milieu fermé et étant monovariantes.
- Le gaz peut être constitué par de la vapeur d'eau ou de l'ammoniac, ou encore choisi parmi le méthanol, l'éthanol, le butanol, la méthylamine, la diméthylamine, la triméthylamine, l'éthylamine, la diéthylamine, les fluoroalcanes, les fluoroalcanes chlorés, le difluorométhylsilane, le chlorodifluorosilane, le disiloxane, le propane, le butane, l'acétone et l'acétaldéhyde, les fluoroalcanes étant eux-mêmes choisis parmi CC13F, CCl2F2, CHCI2F, CHCIF2, C13C2F3, C12C2F4, C2HCIF4, C2H2CIF3, CH2CIF et C2H2F4.
- De préférence, la pompe à chaleur comporte une solution saturée, dans le gaz liquéfié, d'un solide choisi parmi CaCI2, KOH, LiCI, LiBr, ZnCl2, ZnBr2 et le gaz, dans ces cas-là, est H20.
- Les avantages et les caractéristiques du procédé, selon l'invention, apparaîtront plus clairement à la lecture de la description suivante faite d'une manière non limitative en référence aux dessins dans lequels :
- la figure 1 représente une pompe permettant la mise en ceuvre du procédé selon l'invention pendant la phase de stockage,
- la figure 2 représente la même pompe pendant la phase de déstockage,
- la figure 3 est un diagramme de Clapeyron,
- la figure 4 est une installation de chauffage pour la mise en oeuvre du procédé selon l'invention.
- On a représenté sur la figure 1, d'une manière schématique, une pompe à chaleur pendant la phase de stockage de l'énergie, sur la figure 2 la même pompe pendant la phase de déstockage et sur la figure 3 le diagramme de Clapeyron correspondant.
- La pompe à chaleur comporte un réacteur (1) et un réacteur (2), reliés entre eux par la conduite (3). Chaque réacteur est muni d'un échangeur de chaleur (4) à (5) permettant l'échange de calories entre le milieu réactionnel et les sources extérieures de calories.
- Le réacteur (1) contient le liquide en équilibre avec sa phase vapeur, le réacteur (2) contient la solution saturée de solide.
- Dans cet exemple, les réactifs et les réactions mises en jeu sont les suivantes :
- - réacteur 1. Le liquide est de l'eau, de sorte que l'on a la réaction
- - réacteur 2. Le solide est du chlorure de lithium monohydraté. Il est en solution dans l'eau.
- Lors de la phase de déstockage, le gaz provenant du réacteur (1) se condense au niveau de la solution saturée et libère sa chaleur latente de condensation ΔH tout en diluant la solution. La chaleur différentielle de dilution de la solution saturée est ΔHD, c'est une réaction exothermique. Parallèlement, du solide en excès se dissout pour maintenir la concentration à la saturation, avec une chaleur ΔHS de dissolution du sel dans la solution saturée.
- Lors de phase de stockage, le gaz s'évapore à partir de la solution contenue dans le réacteur (2) pour aller dans le réacteur (1) qui joue alors le rôle de condenseur. La solution se concentre et le solide doit cristalliser. Les enthalpies mises en jeu sont les mêmes que précédemment, en signe opposé.
- En principe, on néglige les enthalpies ΔHD et ΔHS qui sont d'un ordre de grandeur très inférieur à ΔH1 et généralement de signe opposé.
- Si on se reporte à la figure 3, qui est un diagramme de Clapeyron des réactions mises en jeu dans lequel la courbe (7) correspond à l'équilibre liquide-vapeur et la courbe (8) correspond à l'équilibre solide + gaz - solution saturée, on voit que si on fournit une quantité de calories H1 à une température Th, on récupère H2 à une température Tu qui est inférieure à Th.
- De même, pendant la phase de déstockage, si on fournit OHZ à la température Tb, on va récupérer ΔH1 à la température T'u, qui est supérieure à Tb.
- Dans un but de simplification, on considérera que Tu et Tu sont identiques.
- On comprend donc que pendant les deux étapes du cycle, stockage et déstockage, de la chaleur est délivrée à la température Tu qui correspond à la température utile pour le chauffage.
- L'intérêt de ce système réside dans le fait qu'il est monovariant dans les deux réactions et que, alors, la température Tu est constante. De plus, les échanges de calories sont facilités par la présence d'une phase liquide dans chaque réacteur.
- On représente sur la figure 4 une installation de chauffage permettant la mise en oeuvre du procédé selon l'invention, et dans laquelle la période de chauffage correspond uniquement à la phase de déstockage. Il est bien entendu que, comme il a été mentionné plus haut, l'installation pourrait aussi être utilisée en chauffage pendant la période de stockage.
- La partie A de la figure 4 représente la phase de stockage alors que la partie B représente la phase de déstockage.
- La pompe à chaleur est symbolisée par ses deux réacteurs (1) et (2) et par la conduite de gaz (3).
- Pendant la phase de stockage, le réacteur (1) est relié à une source chaude constituée, dans l'installation représentée, par un capteur solaire (12). Les calories cédées dans le réacteur (2) lors de la condensation du gaz sont rejetées dans l'atmosphère, mais elles pourraient aussi bien être utilisées pour le chauffage ou encore être stockées.
- Pendant la phase de déstockage, le réacteur (2) est alimenté en calories par une source froide, symbolisée par la flèche (11). Les calories sont récupérées dans le réacteur (1) et utilisées pour le chauffage.
- Dans cet exemple de réalisation, les résultats énergétiques suivants ont été obtenus.
- Le système triphasique utilisé était la solution saturée de chlorure de lithium, la vapeur d'eau et le chlorure de lithium monohydraté. Pour ce système, le domaine d'existence de l'hydrate sous forme solide avec la solution saturée est compris entre 19 et 95 °C. La capacité de stockage massique, mesurée entre une opération de stockage à 90 °C et une opération de déstockage à 45 °C, était de 146 Wh/kg. Enfin, on a obtenu, pendant le déstockage, une remontée de température d'environ 41 °C (AT).
-
- Pour cela, on a pris le même dispositif que précédemment. Dans le premier réacteur, on a placé la solution liquide saturée de solide LiCI, H20.
- Dans l'autre réacteur, on a placé le solide constitué par du chlorure de lithium anhydre qui est susceptible d'absorber de t'eau vapeur pour donner LiCI H20 qui est solide.
- La règle des phases montre que le système est monovariant.
- On a représenté sur la figure 3 la courbe d'absorption LiCI/LiCI H20, référencée par le repère (9). Cette courbe se situe à droite de la courbe correspondant à la solution saturée. L'ensemble fonctionne comme dans l'exemple précédent, avec une phase de stockage et une phase de déstockage et donne des résultats identiques.
- En variante, on peut prévoir un compresseur sur la tubulure (3) de façon à améliorer la cinétique de réaction ou encore de placer un dispositif d'agitation à l'intérieur du réacteur (1).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84401360T ATE29578T1 (de) | 1983-07-01 | 1984-06-26 | Waermeuebertragungsverfahren mittels einer monovarianten dreiphasen-reaktion. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8310955A FR2548340B1 (fr) | 1983-07-01 | 1983-07-01 | Pompe a chaleur triphasique |
FR8310955 | 1983-07-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0130908A1 EP0130908A1 (fr) | 1985-01-09 |
EP0130908B1 true EP0130908B1 (fr) | 1987-09-09 |
Family
ID=9290394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84401360A Expired EP0130908B1 (fr) | 1983-07-01 | 1984-06-26 | Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante |
Country Status (7)
Country | Link |
---|---|
US (2) | US4682476A (fr) |
EP (1) | EP0130908B1 (fr) |
JP (1) | JPS6026261A (fr) |
AT (1) | ATE29578T1 (fr) |
CA (1) | CA1236312A (fr) |
DE (1) | DE3466059D1 (fr) |
FR (1) | FR2548340B1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2548340B1 (fr) * | 1983-07-01 | 1986-03-21 | Elf Aquitaine | Pompe a chaleur triphasique |
FR2582790B1 (fr) * | 1985-06-04 | 1987-07-24 | Elf Aquitaine | Procede et dispositif thermochimiques de stockage et destockage de chaleur |
ES2036677T3 (es) * | 1987-04-14 | 1993-06-01 | Uwe Rockenfeller | Sistema de acumulacion de energia quimica. |
IN171470B (fr) * | 1987-07-07 | 1992-10-24 | Int Thermal Packaging Inc | |
US4759191A (en) * | 1987-07-07 | 1988-07-26 | Liquid Co2 Engineering, Inc. | Miniaturized cooling device and method of use |
US4993239A (en) * | 1987-07-07 | 1991-02-19 | International Thermal Packaging, Inc. | Cooling device with improved waste-heat handling capability |
US4974419A (en) * | 1988-03-17 | 1990-12-04 | Liquid Co2 Engineering Inc. | Apparatus and method for simultaneously heating and cooling separate zones |
US4901535A (en) * | 1987-07-07 | 1990-02-20 | Sabin Cullen M | Temperature changing device improved evaporation characteristics |
US4949549A (en) * | 1987-07-07 | 1990-08-21 | International Thermal Packaging, Inc. | Cooling device with improved waste-heat handling capability |
US4744224A (en) * | 1987-07-27 | 1988-05-17 | Erickson Donald C | Intermittent solar ammonia absorption cycle refrigerator |
FR2629575A1 (fr) * | 1988-03-30 | 1989-10-06 | Elf Aquitaine | Caloduc chimique, procede de regeneration d'un tel caloduc et utilisation de ce caloduc |
DE3837880A1 (de) * | 1988-11-08 | 1990-05-10 | Zeolith Tech | Kuehlbehaelter fuer einen sorptionsapparat |
US5197302A (en) * | 1989-01-05 | 1993-03-30 | International Thermal Packaging, Inc. | Vacuum insulated sorbent-driven refrigeration device |
US5048301A (en) * | 1989-01-05 | 1991-09-17 | International Thermal Packaging | Vacuum insulated sorbent driven refrigeration device |
US5018368A (en) * | 1989-10-12 | 1991-05-28 | International Thermal Packaging, Inc. | Multi-staged desiccant refrigeration device |
US5490398A (en) * | 1993-03-15 | 1996-02-13 | Airex Research And Development, Inc. | High efficiency absorption cooling and heating apparatus and method |
FR2723438B1 (fr) | 1994-08-02 | 1996-09-20 | Lorraine Carbone | Reacteur de pompe a chaleur chimique a puissance amelioree |
AUPM835894A0 (en) * | 1994-09-22 | 1994-10-13 | Thermal Energy Accumulator Products Pty Ltd | A temperature control system for liquids |
FR2748093B1 (fr) * | 1996-04-25 | 1998-06-12 | Elf Aquitaine | Dispositif thermochimique pour produire du froid et/ou de la chaleur |
SE515688C2 (sv) * | 1998-12-18 | 2001-09-24 | Suncool Ab | Kemisk värmepump samt förfarande för kylning och/eller uppvärmning |
US7260940B2 (en) * | 2002-12-13 | 2007-08-28 | The Tokyo Electric Power Company, Incorporated | Heat pump using gas hydrate, and heat utilizing apparatus |
SE527721C2 (sv) * | 2003-12-08 | 2006-05-23 | Climatewell Ab | Kemisk värmepump arbetande enligt hybridpincipen |
FR2878940A1 (fr) * | 2004-12-06 | 2006-06-09 | Guy Karsenti | Dispositif de climatisation du genre pompe a chaleur par absorption, en particulier pour enceintes de faible volume, et enceinte le comportant |
CN101737996B (zh) * | 2008-11-17 | 2012-02-01 | 苏庆泉 | 热泵循环系统以及冷热联供方法 |
EP2759679A1 (fr) * | 2013-01-23 | 2014-07-30 | Siemens Aktiengesellschaft | Dispositif de stockage thermique destiné à l'utilisation de chaleur à basse température |
US20210325092A1 (en) * | 2018-02-06 | 2021-10-21 | John Saavedra | Heat Transfer Device |
CN113025281A (zh) * | 2021-03-18 | 2021-06-25 | 天津大学 | 一种含有机硅的制冷剂 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE380828A (fr) * | ||||
US2144441A (en) * | 1932-10-27 | 1939-01-17 | Schlumbohm Peter | Method of conditioning an absorption refrigerating system |
US2138686A (en) * | 1933-02-28 | 1938-11-29 | Altenkirch Edmund | Intermittent absorption refrigerating apparatus |
US2182453A (en) * | 1936-01-18 | 1939-12-05 | William H Sellew | Heat transfer process and apparatus |
FR2172754A1 (en) * | 1972-02-21 | 1973-10-05 | Greiner Leonard | Heating and cooling apparatus with absorption chemical - and fluid to be absorbed |
US3828566A (en) * | 1973-02-05 | 1974-08-13 | C Wetzel | Dry adsorption refrigeration system |
US4005584A (en) * | 1975-04-10 | 1977-02-01 | Allied Chemical Corporation | Composition, method and apparatus for absorption heating |
US4319626A (en) * | 1976-07-06 | 1982-03-16 | Martin Marietta Corp. | Chemical storage of energy |
SE7706357A0 (sv) * | 1977-05-31 | 1978-12-01 | Ray Olsson | Sätt vid kylning av ett utrymme samt anordning för genomförande av sättet |
JPS5589379A (en) * | 1978-12-27 | 1980-07-05 | Agency Of Ind Science & Technol | Energy storing medium |
DE2923480A1 (de) * | 1979-06-09 | 1980-12-18 | Erno Raumfahrttechnik Gmbh | Verfahren zur speicherung von insbesondere niedertemperatur-waerme |
US4532778A (en) * | 1979-11-16 | 1985-08-06 | Rocket Research Company | Chemical heat pump and chemical energy storage system |
US4309980A (en) * | 1980-03-07 | 1982-01-12 | Thermal Energy Storage, Inc. | Closed vaporization heat transfer system |
US4411384A (en) * | 1980-08-29 | 1983-10-25 | The United States Of America As Represented By The Secretary Of The Navy | Heat driven heat pump using paired ammoniated salts |
US4386501A (en) * | 1981-07-29 | 1983-06-07 | Martin Marietta Corporation | Heat pump using liquid ammoniated ammonium chloride, and thermal storage system |
FR2548340B1 (fr) * | 1983-07-01 | 1986-03-21 | Elf Aquitaine | Pompe a chaleur triphasique |
-
1983
- 1983-07-01 FR FR8310955A patent/FR2548340B1/fr not_active Expired
-
1984
- 1984-06-25 US US06/623,964 patent/US4682476A/en not_active Expired - Fee Related
- 1984-06-26 DE DE8484401360T patent/DE3466059D1/de not_active Expired
- 1984-06-26 AT AT84401360T patent/ATE29578T1/de active
- 1984-06-26 EP EP84401360A patent/EP0130908B1/fr not_active Expired
- 1984-06-29 CA CA000457892A patent/CA1236312A/fr not_active Expired
- 1984-06-29 JP JP59133450A patent/JPS6026261A/ja active Pending
-
1987
- 1987-07-28 US US07/078,591 patent/US4873842A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA1236312A (fr) | 1988-05-10 |
EP0130908A1 (fr) | 1985-01-09 |
FR2548340B1 (fr) | 1986-03-21 |
US4682476A (en) | 1987-07-28 |
DE3466059D1 (en) | 1987-10-15 |
JPS6026261A (ja) | 1985-02-09 |
US4873842A (en) | 1989-10-17 |
FR2548340A1 (fr) | 1985-01-04 |
ATE29578T1 (de) | 1987-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0130908B1 (fr) | Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante | |
US20110226004A1 (en) | Absorption cycle system having dual absorption circuits | |
JPH06510595A (ja) | 二重温度熱ポンプ装置およびシステム | |
CA1273199A (fr) | Procede et dispositif thermo-chimiques de stockage et destockage de chaleur | |
EP0425368B1 (fr) | Dispositifs pour produire du froid et/ou de la chaleur par réaction solide-gaz gérés par caloducs gravitationnels | |
FR2547512A1 (fr) | Procede de mise en oeuvre de reactions gaz-solide | |
JPH0432318B2 (fr) | ||
WO2020021039A1 (fr) | Cellule photovoltaïque à thermomanagement | |
WO2006048558A1 (fr) | Production de froid a tres basse temperature dans un dispositif thermochimique. | |
EP2975099A1 (fr) | Mélange de sels | |
WO2015121743A1 (fr) | Dispositif de stockage et de restitution d'énergie thermique | |
Verevkin et al. | Thermodynamics of reversible hydrogen storage: Does alkoxy-substitution of naphthalene yield functional advantages for LOHC systems? | |
Williams et al. | Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces | |
CN105051147A (zh) | 借助硝酸改进硝酸盐组合物用作传热介质或储热介质的方法 | |
FR3074569A1 (fr) | Pompe a chaleur thermochimique et procede de redistribution d'energie calorifique a puissance variable | |
Fangming et al. | Study on the volatilization inhibition performance and mechanism of monolayer during the leakage process of ammonia solution | |
EP1432953B1 (fr) | Procédé pour la production de froid ou chaleur par un système à sorption | |
JP2017160341A (ja) | 潜熱蓄熱材及びそれを用いる蓄熱システム | |
JP6851786B2 (ja) | 化学蓄熱システム | |
WO2024052614A1 (fr) | Dispositif de stockage d'energie thermique a base de l'hydroxyde de lithium | |
EP3543312B1 (fr) | Composition de fusion de milieu de transfert thermique, système de transfert thermique l'utilisant, et dispositif de production d'énergie utilisant le système de transfert thermique | |
EP0160047A1 (fr) | Procede de transfert reversible d'energie thermique et systeme de transfert thermique utile a cet effet | |
Van Den Einde | The effects of internal energy transfers on power cycle efficiency | |
FR2979002A1 (fr) | Procede de remplissage d'un reservoir de stockage de gaz | |
WO1982002589A1 (fr) | Conduites de chaleur a vaporisation/condensation ameliorees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19840630 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 29578 Country of ref document: AT Date of ref document: 19870915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3466059 Country of ref document: DE Date of ref document: 19871015 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19890116 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890616 Year of fee payment: 6 Ref country code: CH Payment date: 19890616 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890622 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890629 Year of fee payment: 6 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890630 Year of fee payment: 6 Ref country code: LU Payment date: 19890630 Year of fee payment: 6 Ref country code: GB Payment date: 19890630 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19890718 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900626 Ref country code: AT Effective date: 19900626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19900627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900630 Ref country code: CH Effective date: 19900630 Ref country code: BE Effective date: 19900630 |
|
BERE | Be: lapsed |
Owner name: SOC. NATIONALE ELF AQUITAINE Effective date: 19900630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19910101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19910228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 84401360.7 Effective date: 19910206 |