EP0130908B1 - Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante - Google Patents

Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante Download PDF

Info

Publication number
EP0130908B1
EP0130908B1 EP84401360A EP84401360A EP0130908B1 EP 0130908 B1 EP0130908 B1 EP 0130908B1 EP 84401360 A EP84401360 A EP 84401360A EP 84401360 A EP84401360 A EP 84401360A EP 0130908 B1 EP0130908 B1 EP 0130908B1
Authority
EP
European Patent Office
Prior art keywords
gas
process according
phase
calories
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401360A
Other languages
German (de)
English (en)
Other versions
EP0130908A1 (fr
Inventor
Didier Payre
Georges Crozat
Bernard Spinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe National Elf Aquitaine
Original Assignee
Societe National Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine filed Critical Societe National Elf Aquitaine
Priority to AT84401360T priority Critical patent/ATE29578T1/de
Publication of EP0130908A1 publication Critical patent/EP0130908A1/fr
Application granted granted Critical
Publication of EP0130908B1 publication Critical patent/EP0130908B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type

Definitions

  • the present invention relates to a thermochemical process for carrying out calorie transfers between a first source of calories and a second source of calories.
  • the process is implemented according to an intermittent cycle of heat storage and destocking.
  • thermochemical processes having either continuous operation or intermittent operation, which can operate to supply calories - heating or to take off - cooling.
  • the invention provides, on the contrary, a method which implements a monovariant system, that is to say a system for which the relationship between the logarithm of the pressure and I / T is unique and almost linear.
  • thermochemical heat pumps a process implementing a three-phase monovariant system for which the absorption of gas by a saturated solution corresponds to a single equilibrium, c that is to say that one has only one reaction, whereas Mar considered that the heat exchange takes place during two distinct reactions each concerning a different solid compound.
  • the invention provides a thermochemical process for transferring calories from a first heat source to a second heat source by using a reaction medium.
  • This process is characterized in that the exchange of calories between one of the two sources and the said reaction medium takes place during a reaction between a gas and a liquid phase constituted by a solution saturated with solid whereas the exchange of calories between the second source and the reaction medium takes place during a gas-liquid phase change reaction of said gas or of absorption of the gas on a solid, the two reactions taking place in a closed medium and being monovariant.
  • the gas may consist of water vapor or ammonia, or alternatively chosen from methanol, ethanol, butanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, fluoroalkanes , chlorinated fluoroalkanes, difluoromethylsilane, chlorodifluorosilane, disiloxane, propane, butane, acetone and acetaldehyde, the fluoroalkanes themselves being chosen from CC1 3 F, CCl 2 F 2 , CHCI 2 F, CHCIF 2 , C1 3 C 2 F 3 , C1 2 C 2 F 4 , C 2 HCIF 4 , C 2 H 2 CIF 3 , CH 2 CIF and C 2 H 2 F 4 .
  • the heat pump comprises a saturated solution, in the liquefied gas, of a solid chosen from CaCI 2 , KOH, LiCI, LiBr, ZnCl 2 , ZnBr 2 and the gas, in these cases, is H 2 0.
  • a solid chosen from CaCI 2 , KOH, LiCI, LiBr, ZnCl 2 , ZnBr 2 and the gas, in these cases, is H 2 0.
  • the heat pump comprises a reactor (1) and a reactor (2), interconnected by the pipe (3).
  • Each reactor is provided with a heat exchanger (4) to (5) allowing the exchange of calories between the reaction medium and the external sources of calories.
  • the reactor (1) contains the liquid in equilibrium with its vapor phase
  • the reactor (2) contains the saturated solid solution.
  • the gas coming from the reactor (1) condenses at the saturated solution and releases its latent heat of condensation ⁇ H while diluting the solution.
  • the differential heat of dilution of the saturated solution is ⁇ H D , it is an exothermic reaction.
  • excess solid dissolves to maintain the concentration at saturation, with a heat ⁇ H S of dissolution of the salt in the saturated solution.
  • the gas evaporates from the solution contained in the reactor (2) to go to the reactor (1) which then plays the role of condenser.
  • the solution is concentrated and the solid must crystallize.
  • the enthalpies involved are the same as before, in opposite sign.
  • FIG. 4 shows a heating installation allowing the implementation of the method according to the invention, and in which the heating period corresponds only to the destocking phase. It is understood that, as mentioned above, the installation could also be used for heating during the storage period.
  • Part A of Figure 4 represents the storage phase while part B represents the destocking phase.
  • the heat pump is symbolized by its two reactors (1) and (2) and by the gas line (3).
  • the reactor (1) is connected to a hot source constituted, in the installation shown, by a solar collector (12).
  • the calories given up in the reactor (2) during the condensation of the gas are released into the atmosphere, but they could as well be used for heating or even be stored.
  • the reactor (2) is supplied with calories by a cold source, symbolized by the arrow (11). The calories are recovered in the reactor (1) and used for heating.
  • the three-phase system used was the saturated solution of lithium chloride, water vapor and lithium chloride monohydrate.
  • the range of existence of the hydrate in solid form with the saturated solution is between 19 and 95 ° C.
  • the mass storage capacity, measured between a storage operation at 90 ° C and a destocking operation at 45 ° C, was 146 Wh / kg.
  • a temperature rise of approximately 41 ° C. (AT) was obtained.
  • phase rule shows that the system is monovariant.
  • FIG. 3 shows the LiCI / LiCI H 2 0 absorption curve, referenced by the reference (9). This curve is located to the right of the curve corresponding to the saturated solution.
  • the assembly works as in the previous example, with a storage phase and a destocking phase and gives identical results.
  • a compressor can be provided on the tube (3) so as to improve the reaction kinetics or else to place a stirring device inside the reactor (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • La présente invention concerne un procédé thermochimique permettant de réaliser des transferts de calories entre une première source de calories et une deuxième source de calories.
  • Le procédé est mis en œuvre selon un cycle intermittent de stockage de chaleur et de déstockage.
  • On a déjà proposé plusieurs types de procédés thermochimiques ayant soit un fonctionnement continu, soit un fonctionnement intermittent et qui peuvent fonctionner pour fournir des calories- chauffage ou en prélever-refroidissement.
  • Pour obtenir de bons échanges de chaleur entre le milieu réactionnel et la source de calories, on a essayé de réaliser des systèmes pour lesquels le milieu réactionnel comporte une phase liquide, c'est ce qui est. par exemple, réalisé dans les systèmes à absorption gaz liquide. Malheureusement, ces systèmes présentent l'inconvénient d'être divariants, c'est-à-dire que les échanges de chaleur ne se font pas à température constante, ce qui soulève de nombreux problèmes lorsque l'on veut prévoir une gestion efficace de l'énergie. Un tel système est par exemple décrit dans le brevet US-A-4.332.139 relatif à une méthode de stockage et de déstockage de l'énergie thermique.
  • On peut aussi se reporter à la publication faite par Jaeger F. A. et Hall C. A. « Ammoniated salt heat pump, thermal storage system », International Seminar on Thermo-chemical energy storage, Stockholm, 1980, p.339. Ces auteurs ont étudié l'ammoniacation de NH4CI, NH4SCN et ne se sont intéressés qu'aux domaines de composition présentant une phase liquide unique pour lesquels la variance est deux.
  • L'invention prévoit, au contraire, un procédé qui met en oeuvre un système monovariant, c'est-à-dire un système pour lequel la relation entre le logarithme de la pression et I/T est unique et quasi linéaire.
  • Des essais dans ce sens ont été effectués par R. W. Mar qui, dans son article « Chemical heat pump reactions above the solidus. A feasibility study » Rapport S. A. N. D. 79-8036, indique que des systèmes basés sur la réaction de CaCI2 et de l'eau, au-dessus de la courbe de solidus ne peuvent pas être utilisés pour réaliser des pompes à chaleur thermochimiques, car ils présentent des vitesses de réactions très faibles. Au contraire, les demandeurs se sont aperçus qu'il était possible d'utiliser dans des pompes à chaleur thermochimiques, un procédé mettant en oeuvre un système triphasique monovariant pour lequel l'absorption du gaz par une solution saturée correspond à un seul équilibre, c'est-à-dire que l'on a une seule réaction, alors que Mar a considéré que l'échange thermique se faisait au cours de deux réactions distinctes concernant chacune un composé solide différent.
  • Pour cela, l'invention prévoit un procédé thermochimique permettant de transférer des calories d'une première source de chaleur vers une deuxième source de chaleur par utilisation d'un milieu réactionnel. Ce procédé est caractérisé en ce que l'échange de calories entre une des deux sources et ledit milieu réactionnel a lieu lors d'une réaction entre un gaz et une phase liquide constituée par une solution saturée en solide alors que l'échange de calories entre la deuxième source et le milieu réactionnel se fait lors d'une réaction de changement de phase gaz-liquide dudit gaz ou d'absorption du gaz sur un solide, les deux réactions se faisant en milieu fermé et étant monovariantes.
  • Le gaz peut être constitué par de la vapeur d'eau ou de l'ammoniac, ou encore choisi parmi le méthanol, l'éthanol, le butanol, la méthylamine, la diméthylamine, la triméthylamine, l'éthylamine, la diéthylamine, les fluoroalcanes, les fluoroalcanes chlorés, le difluorométhylsilane, le chlorodifluorosilane, le disiloxane, le propane, le butane, l'acétone et l'acétaldéhyde, les fluoroalcanes étant eux-mêmes choisis parmi CC13F, CCl2F2, CHCI2F, CHCIF2, C13C2F3, C12C2F4, C2HCIF4, C2H2CIF3, CH2CIF et C2H2F4.
  • De préférence, la pompe à chaleur comporte une solution saturée, dans le gaz liquéfié, d'un solide choisi parmi CaCI2, KOH, LiCI, LiBr, ZnCl2, ZnBr2 et le gaz, dans ces cas-là, est H20.
  • Les avantages et les caractéristiques du procédé, selon l'invention, apparaîtront plus clairement à la lecture de la description suivante faite d'une manière non limitative en référence aux dessins dans lequels :
    • la figure 1 représente une pompe permettant la mise en ceuvre du procédé selon l'invention pendant la phase de stockage,
    • la figure 2 représente la même pompe pendant la phase de déstockage,
    • la figure 3 est un diagramme de Clapeyron,
    • la figure 4 est une installation de chauffage pour la mise en oeuvre du procédé selon l'invention.
  • On a représenté sur la figure 1, d'une manière schématique, une pompe à chaleur pendant la phase de stockage de l'énergie, sur la figure 2 la même pompe pendant la phase de déstockage et sur la figure 3 le diagramme de Clapeyron correspondant.
  • La pompe à chaleur comporte un réacteur (1) et un réacteur (2), reliés entre eux par la conduite (3). Chaque réacteur est muni d'un échangeur de chaleur (4) à (5) permettant l'échange de calories entre le milieu réactionnel et les sources extérieures de calories.
  • Le réacteur (1) contient le liquide en équilibre avec sa phase vapeur, le réacteur (2) contient la solution saturée de solide.
  • Dans cet exemple, les réactifs et les réactions mises en jeu sont les suivantes :
    • - réacteur 1. Le liquide est de l'eau, de sorte que l'on a la réaction
      Figure imgb0001
    • - réacteur 2. Le solide est du chlorure de lithium monohydraté. Il est en solution dans l'eau.
      Figure imgb0002
      Figure imgb0003
  • Lors de la phase de déstockage, le gaz provenant du réacteur (1) se condense au niveau de la solution saturée et libère sa chaleur latente de condensation ΔH tout en diluant la solution. La chaleur différentielle de dilution de la solution saturée est ΔHD, c'est une réaction exothermique. Parallèlement, du solide en excès se dissout pour maintenir la concentration à la saturation, avec une chaleur ΔHS de dissolution du sel dans la solution saturée.
  • Lors de phase de stockage, le gaz s'évapore à partir de la solution contenue dans le réacteur (2) pour aller dans le réacteur (1) qui joue alors le rôle de condenseur. La solution se concentre et le solide doit cristalliser. Les enthalpies mises en jeu sont les mêmes que précédemment, en signe opposé.
  • En principe, on néglige les enthalpies ΔHD et ΔHS qui sont d'un ordre de grandeur très inférieur à ΔH1 et généralement de signe opposé.
  • Si on se reporte à la figure 3, qui est un diagramme de Clapeyron des réactions mises en jeu dans lequel la courbe (7) correspond à l'équilibre liquide-vapeur et la courbe (8) correspond à l'équilibre solide + gaz - solution saturée, on voit que si on fournit une quantité de calories H1 à une température Th, on récupère H2 à une température Tu qui est inférieure à Th.
  • De même, pendant la phase de déstockage, si on fournit OHZ à la température Tb, on va récupérer ΔH1 à la température T'u, qui est supérieure à Tb.
  • Dans un but de simplification, on considérera que Tu et Tu sont identiques.
  • On comprend donc que pendant les deux étapes du cycle, stockage et déstockage, de la chaleur est délivrée à la température Tu qui correspond à la température utile pour le chauffage.
  • L'intérêt de ce système réside dans le fait qu'il est monovariant dans les deux réactions et que, alors, la température Tu est constante. De plus, les échanges de calories sont facilités par la présence d'une phase liquide dans chaque réacteur.
  • On représente sur la figure 4 une installation de chauffage permettant la mise en oeuvre du procédé selon l'invention, et dans laquelle la période de chauffage correspond uniquement à la phase de déstockage. Il est bien entendu que, comme il a été mentionné plus haut, l'installation pourrait aussi être utilisée en chauffage pendant la période de stockage.
  • La partie A de la figure 4 représente la phase de stockage alors que la partie B représente la phase de déstockage.
  • La pompe à chaleur est symbolisée par ses deux réacteurs (1) et (2) et par la conduite de gaz (3).
  • Pendant la phase de stockage, le réacteur (1) est relié à une source chaude constituée, dans l'installation représentée, par un capteur solaire (12). Les calories cédées dans le réacteur (2) lors de la condensation du gaz sont rejetées dans l'atmosphère, mais elles pourraient aussi bien être utilisées pour le chauffage ou encore être stockées.
  • Pendant la phase de déstockage, le réacteur (2) est alimenté en calories par une source froide, symbolisée par la flèche (11). Les calories sont récupérées dans le réacteur (1) et utilisées pour le chauffage.
  • Dans cet exemple de réalisation, les résultats énergétiques suivants ont été obtenus.
  • Le système triphasique utilisé était la solution saturée de chlorure de lithium, la vapeur d'eau et le chlorure de lithium monohydraté. Pour ce système, le domaine d'existence de l'hydrate sous forme solide avec la solution saturée est compris entre 19 et 95 °C. La capacité de stockage massique, mesurée entre une opération de stockage à 90 °C et une opération de déstockage à 45 °C, était de 146 Wh/kg. Enfin, on a obtenu, pendant le déstockage, une remontée de température d'environ 41 °C (AT).
  • Le tableau ci-après donne les résultats obtenus avec d'autres sels.
    Figure imgb0004
    On a d'autre part réalisé une pompe à chaleur chimique qui met en jeu une réaction du gaz avec une solution saturée et une réaction d'absorption dudit gaz par un solide.
  • Pour cela, on a pris le même dispositif que précédemment. Dans le premier réacteur, on a placé la solution liquide saturée de solide LiCI, H20.
  • Dans l'autre réacteur, on a placé le solide constitué par du chlorure de lithium anhydre qui est susceptible d'absorber de t'eau vapeur pour donner LiCI H20 qui est solide.
  • La règle des phases montre que le système est monovariant.
  • On a représenté sur la figure 3 la courbe d'absorption LiCI/LiCI H20, référencée par le repère (9). Cette courbe se situe à droite de la courbe correspondant à la solution saturée. L'ensemble fonctionne comme dans l'exemple précédent, avec une phase de stockage et une phase de déstockage et donne des résultats identiques.
  • En variante, on peut prévoir un compresseur sur la tubulure (3) de façon à améliorer la cinétique de réaction ou encore de placer un dispositif d'agitation à l'intérieur du réacteur (1).

Claims (7)

1. Procédé de transfert de calories entre une première source de chaleur et une deuxième source de chaleur par utilisation d'un milieu réactionnel, caractérisé en ce que l'échange de calories entre une des sources et ledit milieu réactionnel est une réaction entre un gaz et une phase liquide constituée par une solution saturée en solide alors que l'échange de calories entre la deuxième source et le milieu réactionnel se fait lors d'une réaction de changement de phase gaz-liquide dudit gaz ou d'absorption du gaz sur un solide, les deux réactions se faisant en milieu fermé et étant manovariantes.
2. Procédé selon la revendication 1, caractérisé en ce que le gaz est la vapeur d'eau.
3. Procédé selon la revendication 1, caractérisé en ce que le gaz est de l'ammoniac.
4. Procédé selon la revendication 1, caractérisé en ce que le gaz est choisi parmi le méthanol, l'éthanol, le butanol, la méthylamine, diméthylamine, la triméthylamine, l'éthylamine, la diéthylamine, les fluoroalcanes, les fluoroalcanes chlorés, le difluorométhylsilane, le chlorodifluorosilane, le disiloxane, le propane, le butane, l'acétone et l'acétaldéhyde.
5. Procédé selon la revendication 4, caractérisé en ce que les fluoroalcanes chlorés sont choisis parmi CCl3F, CCl2F2, CHCl2F; CHCIF2, C13C2F3, C12C2F4, C2HCIF4, C2H2CIF3, CH2CIF et C2H2F4.
6. Procédé selon la revendication 1, caractérisé en ce que la phase liquide est constituée par une solution saturée,, dans le gaz liquéfié, d'un solide choisi parmi CaCl2, KOH, LiCi, LiBr, ZnCl2, ZnBr2.
7. Procédé selon la revendication 1, caractérisé en ce que le gaz liquéfié est de l'eau.
EP84401360A 1983-07-01 1984-06-26 Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante Expired EP0130908B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401360T ATE29578T1 (de) 1983-07-01 1984-06-26 Waermeuebertragungsverfahren mittels einer monovarianten dreiphasen-reaktion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8310955A FR2548340B1 (fr) 1983-07-01 1983-07-01 Pompe a chaleur triphasique
FR8310955 1983-07-01

Publications (2)

Publication Number Publication Date
EP0130908A1 EP0130908A1 (fr) 1985-01-09
EP0130908B1 true EP0130908B1 (fr) 1987-09-09

Family

ID=9290394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401360A Expired EP0130908B1 (fr) 1983-07-01 1984-06-26 Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante

Country Status (7)

Country Link
US (2) US4682476A (fr)
EP (1) EP0130908B1 (fr)
JP (1) JPS6026261A (fr)
AT (1) ATE29578T1 (fr)
CA (1) CA1236312A (fr)
DE (1) DE3466059D1 (fr)
FR (1) FR2548340B1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548340B1 (fr) * 1983-07-01 1986-03-21 Elf Aquitaine Pompe a chaleur triphasique
FR2582790B1 (fr) * 1985-06-04 1987-07-24 Elf Aquitaine Procede et dispositif thermochimiques de stockage et destockage de chaleur
ES2036677T3 (es) * 1987-04-14 1993-06-01 Uwe Rockenfeller Sistema de acumulacion de energia quimica.
IN171470B (fr) * 1987-07-07 1992-10-24 Int Thermal Packaging Inc
US4759191A (en) * 1987-07-07 1988-07-26 Liquid Co2 Engineering, Inc. Miniaturized cooling device and method of use
US4993239A (en) * 1987-07-07 1991-02-19 International Thermal Packaging, Inc. Cooling device with improved waste-heat handling capability
US4974419A (en) * 1988-03-17 1990-12-04 Liquid Co2 Engineering Inc. Apparatus and method for simultaneously heating and cooling separate zones
US4901535A (en) * 1987-07-07 1990-02-20 Sabin Cullen M Temperature changing device improved evaporation characteristics
US4949549A (en) * 1987-07-07 1990-08-21 International Thermal Packaging, Inc. Cooling device with improved waste-heat handling capability
US4744224A (en) * 1987-07-27 1988-05-17 Erickson Donald C Intermittent solar ammonia absorption cycle refrigerator
FR2629575A1 (fr) * 1988-03-30 1989-10-06 Elf Aquitaine Caloduc chimique, procede de regeneration d'un tel caloduc et utilisation de ce caloduc
DE3837880A1 (de) * 1988-11-08 1990-05-10 Zeolith Tech Kuehlbehaelter fuer einen sorptionsapparat
US5197302A (en) * 1989-01-05 1993-03-30 International Thermal Packaging, Inc. Vacuum insulated sorbent-driven refrigeration device
US5048301A (en) * 1989-01-05 1991-09-17 International Thermal Packaging Vacuum insulated sorbent driven refrigeration device
US5018368A (en) * 1989-10-12 1991-05-28 International Thermal Packaging, Inc. Multi-staged desiccant refrigeration device
US5490398A (en) * 1993-03-15 1996-02-13 Airex Research And Development, Inc. High efficiency absorption cooling and heating apparatus and method
FR2723438B1 (fr) 1994-08-02 1996-09-20 Lorraine Carbone Reacteur de pompe a chaleur chimique a puissance amelioree
AUPM835894A0 (en) * 1994-09-22 1994-10-13 Thermal Energy Accumulator Products Pty Ltd A temperature control system for liquids
FR2748093B1 (fr) * 1996-04-25 1998-06-12 Elf Aquitaine Dispositif thermochimique pour produire du froid et/ou de la chaleur
SE515688C2 (sv) * 1998-12-18 2001-09-24 Suncool Ab Kemisk värmepump samt förfarande för kylning och/eller uppvärmning
US7260940B2 (en) * 2002-12-13 2007-08-28 The Tokyo Electric Power Company, Incorporated Heat pump using gas hydrate, and heat utilizing apparatus
SE527721C2 (sv) * 2003-12-08 2006-05-23 Climatewell Ab Kemisk värmepump arbetande enligt hybridpincipen
FR2878940A1 (fr) * 2004-12-06 2006-06-09 Guy Karsenti Dispositif de climatisation du genre pompe a chaleur par absorption, en particulier pour enceintes de faible volume, et enceinte le comportant
CN101737996B (zh) * 2008-11-17 2012-02-01 苏庆泉 热泵循环系统以及冷热联供方法
EP2759679A1 (fr) * 2013-01-23 2014-07-30 Siemens Aktiengesellschaft Dispositif de stockage thermique destiné à l'utilisation de chaleur à basse température
US20210325092A1 (en) * 2018-02-06 2021-10-21 John Saavedra Heat Transfer Device
CN113025281A (zh) * 2021-03-18 2021-06-25 天津大学 一种含有机硅的制冷剂

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE380828A (fr) *
US2144441A (en) * 1932-10-27 1939-01-17 Schlumbohm Peter Method of conditioning an absorption refrigerating system
US2138686A (en) * 1933-02-28 1938-11-29 Altenkirch Edmund Intermittent absorption refrigerating apparatus
US2182453A (en) * 1936-01-18 1939-12-05 William H Sellew Heat transfer process and apparatus
FR2172754A1 (en) * 1972-02-21 1973-10-05 Greiner Leonard Heating and cooling apparatus with absorption chemical - and fluid to be absorbed
US3828566A (en) * 1973-02-05 1974-08-13 C Wetzel Dry adsorption refrigeration system
US4005584A (en) * 1975-04-10 1977-02-01 Allied Chemical Corporation Composition, method and apparatus for absorption heating
US4319626A (en) * 1976-07-06 1982-03-16 Martin Marietta Corp. Chemical storage of energy
SE7706357A0 (sv) * 1977-05-31 1978-12-01 Ray Olsson Sätt vid kylning av ett utrymme samt anordning för genomförande av sättet
JPS5589379A (en) * 1978-12-27 1980-07-05 Agency Of Ind Science & Technol Energy storing medium
DE2923480A1 (de) * 1979-06-09 1980-12-18 Erno Raumfahrttechnik Gmbh Verfahren zur speicherung von insbesondere niedertemperatur-waerme
US4532778A (en) * 1979-11-16 1985-08-06 Rocket Research Company Chemical heat pump and chemical energy storage system
US4309980A (en) * 1980-03-07 1982-01-12 Thermal Energy Storage, Inc. Closed vaporization heat transfer system
US4411384A (en) * 1980-08-29 1983-10-25 The United States Of America As Represented By The Secretary Of The Navy Heat driven heat pump using paired ammoniated salts
US4386501A (en) * 1981-07-29 1983-06-07 Martin Marietta Corporation Heat pump using liquid ammoniated ammonium chloride, and thermal storage system
FR2548340B1 (fr) * 1983-07-01 1986-03-21 Elf Aquitaine Pompe a chaleur triphasique

Also Published As

Publication number Publication date
CA1236312A (fr) 1988-05-10
EP0130908A1 (fr) 1985-01-09
FR2548340B1 (fr) 1986-03-21
US4682476A (en) 1987-07-28
DE3466059D1 (en) 1987-10-15
JPS6026261A (ja) 1985-02-09
US4873842A (en) 1989-10-17
FR2548340A1 (fr) 1985-01-04
ATE29578T1 (de) 1987-09-15

Similar Documents

Publication Publication Date Title
EP0130908B1 (fr) Procédé de transfert de calories mettant en oeuvre une réaction triphasique mono-variante
US20110226004A1 (en) Absorption cycle system having dual absorption circuits
JPH06510595A (ja) 二重温度熱ポンプ装置およびシステム
CA1273199A (fr) Procede et dispositif thermo-chimiques de stockage et destockage de chaleur
EP0425368B1 (fr) Dispositifs pour produire du froid et/ou de la chaleur par réaction solide-gaz gérés par caloducs gravitationnels
FR2547512A1 (fr) Procede de mise en oeuvre de reactions gaz-solide
JPH0432318B2 (fr)
WO2020021039A1 (fr) Cellule photovoltaïque à thermomanagement
WO2006048558A1 (fr) Production de froid a tres basse temperature dans un dispositif thermochimique.
EP2975099A1 (fr) Mélange de sels
WO2015121743A1 (fr) Dispositif de stockage et de restitution d'énergie thermique
Verevkin et al. Thermodynamics of reversible hydrogen storage: Does alkoxy-substitution of naphthalene yield functional advantages for LOHC systems?
Williams et al. Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces
CN105051147A (zh) 借助硝酸改进硝酸盐组合物用作传热介质或储热介质的方法
FR3074569A1 (fr) Pompe a chaleur thermochimique et procede de redistribution d'energie calorifique a puissance variable
Fangming et al. Study on the volatilization inhibition performance and mechanism of monolayer during the leakage process of ammonia solution
EP1432953B1 (fr) Procédé pour la production de froid ou chaleur par un système à sorption
JP2017160341A (ja) 潜熱蓄熱材及びそれを用いる蓄熱システム
JP6851786B2 (ja) 化学蓄熱システム
WO2024052614A1 (fr) Dispositif de stockage d'energie thermique a base de l'hydroxyde de lithium
EP3543312B1 (fr) Composition de fusion de milieu de transfert thermique, système de transfert thermique l'utilisant, et dispositif de production d'énergie utilisant le système de transfert thermique
EP0160047A1 (fr) Procede de transfert reversible d'energie thermique et systeme de transfert thermique utile a cet effet
Van Den Einde The effects of internal energy transfers on power cycle efficiency
FR2979002A1 (fr) Procede de remplissage d'un reservoir de stockage de gaz
WO1982002589A1 (fr) Conduites de chaleur a vaporisation/condensation ameliorees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840630

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 29578

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3466059

Country of ref document: DE

Date of ref document: 19871015

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890616

Year of fee payment: 6

Ref country code: CH

Payment date: 19890616

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890629

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 6

Ref country code: LU

Payment date: 19890630

Year of fee payment: 6

Ref country code: GB

Payment date: 19890630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890718

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900626

Ref country code: AT

Effective date: 19900626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: SOC. NATIONALE ELF AQUITAINE

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84401360.7

Effective date: 19910206