EP0111116B1 - Plasmabrenner mit einer konischen Elektrode und einer Düse mit zumindest teilweise konischen Innenmantel - Google Patents

Plasmabrenner mit einer konischen Elektrode und einer Düse mit zumindest teilweise konischen Innenmantel Download PDF

Info

Publication number
EP0111116B1
EP0111116B1 EP83110451A EP83110451A EP0111116B1 EP 0111116 B1 EP0111116 B1 EP 0111116B1 EP 83110451 A EP83110451 A EP 83110451A EP 83110451 A EP83110451 A EP 83110451A EP 0111116 B1 EP0111116 B1 EP 0111116B1
Authority
EP
European Patent Office
Prior art keywords
electrode
nozzle
conical
frustoconical portion
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110451A
Other languages
English (en)
French (fr)
Other versions
EP0111116A3 (en
EP0111116A2 (de
Inventor
Hans Josef Dr. Bebber
Heinrich-Otto Rossner
Gebhard Tomalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Fried Krupp AG
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG, Mannesmann AG filed Critical Fried Krupp AG
Priority to AT83110451T priority Critical patent/ATE46419T1/de
Publication of EP0111116A2 publication Critical patent/EP0111116A2/de
Publication of EP0111116A3 publication Critical patent/EP0111116A3/de
Application granted granted Critical
Publication of EP0111116B1 publication Critical patent/EP0111116B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the invention relates to a plasma torch according to the preamble of claim 1 and a plasma torch according to the preamble of claim 2.
  • Such plasma torches are known from FR-A-1 375 669 and DE-C-1 440 628.
  • the durability of the electrodes and nozzles is particularly important in their operation.
  • the problems associated with this come to the fore wherever longer arc lengths of sometimes far more than 200 mm have to be used and where the atmosphere surrounding the torch contains gases that chemically, e.g. B. can attack by oxidation.
  • Such difficult conditions occur very often, for example, when operating metal melting furnaces with plasma torches.
  • the main wear mechanism for well-cooled electrodes made of refractory metals such as molybdenum, tantalum or tungsten with small amounts of emission material such as thorium oxide or zirconium oxide is the chemical one, insofar as the torches do not work in an environment inert to the electrodes Destruction of the electrodes.
  • FR-A-1 375 669 (there Fig. 7) is a generic plasma torch according to the preamble of claim 1 for generating a transmitted arc between its central electrode and a z. B. known by a workpiece counter pole.
  • the electrode is provided with a rounded tip, which is at a considerable distance from the front end of the nozzle channel.
  • the cooled nozzle has a strong cooling effect on the plasma arc, which in turn impairs its stability.
  • the arc attaches to the pointed electrode in a correspondingly small area, as a result of which the electrode is exposed to high thermal loads and corresponding wear.
  • the surface lines of the conical outer surfaces of the electrode and nozzle lying opposite one another are at least partially, preferably in the region of the electrode tip, arranged parallel to one another or the annular channel formed by the outer surfaces has a tapering profile toward the arc side.
  • the described shape of the nozzle and the electrode maintains this through the ring channel escaping gas a direction that ultimately brings about a decisive improvement in both the arc stability and the electrode protection against oxidation.
  • the extent of the protrusion of its end face behind the front end of the nozzle channel can be reduced under otherwise identical conditions.
  • the cone angle of the electrode likewise one of the cone angles of the inner jacket of the nozzle, is advantageously 24 °.
  • the otherwise plan-shaped arc end of the electrode according to claim 5 has a chamfer.
  • the arc end of the electrode is concave or convex in accordance with claim 6 and provided with a chamfer.
  • a high-melting metal such as, for example, molybdenum, tantalum or tungsten, is preferably used for the inner jacket of the nozzle.
  • the nozzle front part can consist of an insert which is connected by pouring, welding, soldering, press-fitting or as a removable part by screwing with the nozzle or the entire plasma torch.
  • the plasma torch shown in FIG. 1 essentially consists of an electrode 2, which is fastened to a liquid-cooled electrode holder 1, and a nozzle 9.
  • the electrode 2 in the front region has the shape of a truncated cone with a radius that decreases towards the end on the arc side.
  • the end of the electrode on the arc side which is essentially flat, has a circumferential chamfer 3.
  • the electrode can also be concave or convex. Since it is known that tapered ends round off after prolonged use, corner and edge-shaped designs should be avoided.
  • the length of the electrode 2 is between 10 and 20 mm.
  • the cone angle ⁇ of the electrode 2 is 24 °.
  • the jacket 8 of the electrode 2 is enveloped by the inner jacket 4 of the nozzle 9, so that an annular channel 10 is formed therebetween, the boundary lines (4, 8) generating jacket lines in the region of the. End face of the electrode 2 run parallel to each other or - at ⁇ > ⁇ - run towards each other in the direction of the arc.
  • the ring channel 10 is dimensioned such that the radial exit velocity of the ionizable gas flowing through in the cold state is between 3 and 17 m / s.
  • the outlet of the nozzle channel 5 located in front of the electrode 2 is cylindrical in the exemplary embodiments shown, but can also be conical.
  • the electrode 2 should protrude by about 1/4 to 1/3 of its smallest diameter behind the front end of the nozzle channel 5. This corresponds to e.g. B. at 20 mm diameter an amount of 5 to 6.5 mm. However, this amount should not be significantly greater than 6.5 mm, since then the cooling losses due to the part of the arc running in the nozzle channel become too high and, above all, there is the risk that the arc jumps to the nozzle 9 and secondary arcs form.
  • the ratio of the free length of the nozzle channel 5 to the electrode diameter can be reduced to values from 1/6 to 1/8 with approximately the same protection of the electrodes, so that the desired advantages can be achieved even with electrode diameters of more than 40 mm.
  • the nozzles 5 are not, as is generally the case, made of copper, copper alloys or steel, but instead have an insert 7 made of a high-melting metal, preferably tungsten.
  • This insert 7, which forms the inner jacket of the nozzle, can be cast in, welded, soldered, pressed in or as a removable part by screwing it onto the Plasma torch can be connected.
  • FIG. 2 An exemplary embodiment of a nozzle with a screwed insert 7 made of tungsten is shown in FIG. 2, for example.
  • This device has the particular advantage that a worn nozzle insert can be replaced within a short time and thus the replacement of the entire nozzle is not necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)
  • Discharge Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

  • Die Erfindung betrifft einen Plasmabrenner nach dem Oberbegriff des Anspruchs 1 und einen Plasmabrenner nach dem Oberbegriff des Anspruchs 2.
  • Derartige Plasmabrenner sind aus der FR-A-1 375 669 bzw. der DE-C-1 440 628 bekannt. Bei ihrem Betrieb ist die Haltbarkeit der Elektroden und Düsen besonders wichtig. Die damit verbundenen Probleme treten vor allem dort in den Vordergrund, wo mit größeren Lichtbogenlängen von teilweise weit mehr als 200 mm gearbeitet werden muß und wo die den Brenner umgebende Atmosphäre Gase enthält, die die Elektroden chemisch, z. B. durch Oxidation, angreifen können. Derartig erschwerende Verhältnisse treten beispielsweise beim Betrieb von Metallschmelzöfen mit Plasmabrennern sehr häufig auf. Hier besteht oft die Forderung, daß die Lichtbögen auch bei sehr großen Längen, z. B. bis 700 mm und mehr, sicher, d.h. ohne die Gefahr des Bogenabrisses, brennen.
  • Hierzu, wie auch im Hinblick auf die Düsenhaltbarkeit, muß eine hohe Stabilität des Plasmalichtbogens sichergestellt werden. Je instabiler nämlich der Lichtbogen ausgebildet ist, je weniger straff und scharf begrenzt er ist, um so größer ist die Gefahr der Ausbildung von Nebenlichtbögen, die auf den Außenmantel der Düse springen und zum Schmelzgut oder zum Hauptlichtbogen brennen. Durch solche Nebenlichtbögen aber wird die Düse meist augenblicklich zerstört.
  • Der hauptsächliche Verschleißmechanismus für gut gekühlte Elektroden, die aus hochschmelzenden Metallen wie Molybdän, Tantal oder Wolfram mit kleinen Beträgen von Emissionsmaterial, wie Thoriumoxid oder Zirkonoxid, hergestellt sind, besteht, soweit die Brenner nicht in einer den Elektroden gegenüber inerten Umgebung arbeiten, in der chemischen Zerstörung der Elektroden.
  • Da beim Erschmelzen von Metallen meist oxidische Gase freigesetzt werden und sich im Ofenraum noch Restluft befindet, handelt es sich hierbei in der Regel um Oxidation. Diese wird allerdings durch das aus der Düse ausströmende, die Elektrode umgebende inerte Plasmagas mehr oder weniger gemindert.
  • In besonderem Maße nehmen die anderen Verschleißfaktoren, wie Schmelzen, Verdampfen, Sputtern, mit steigender Temperatur zu. Daher ist vor allem bei sehr hohen Stromstärken für eine intensive Elektrodenkühlung zu sorgen.
  • Aus der FR-A-1 375 669 (dortige Fig. 7) ist ein gattungsgemäßer Plasmabrenner gemäß dem Oberbegriff des Anspruchs 1 zur Erzeugung eines übertragenen Lichtbogens zwischen seiner zentrischen Elektrode und einem z. B. durch ein Werkstück gebildeten Gegenpol bekannt. Bei diesem Brenner ist die Elektrode mit einer abgerundeten Spitze versehen, die einen erheblichen Abstand von dem vorderen Ende des Düsenkanals aufweist. Bei diesem Brenner besteht wegen des großen Abstands zwischen der Elektrodenspitze und dem vorderen Ende des Düsenkanals bei entsprechender Leistung eine starke Neigung zur Bildung von Nebenlichtbögen über die an sich elektrisch neutrale Düse. Zudem bewirkt die gekühlte Düse bei dem großen Abstand zwischen der Elektrodenspitze und dem vorderen Ende des Düsenkanals eine starke Kühlwirkung des Plasmabogens, was wiederum dessen Stabilität beeinträchtigt. Darüber hinaus setzt der Lichtbogen an der spitz ausgebildeten Elektrode entsprechend kleinflächig an, wodurch die Elektrode hohen thermischen Belastungen und einem entsprechenden Verschleiß ausgesetzt ist.
  • Zum Zwecke der Elektrodenkühlung ist bereits in der DE-C-1 440 628 vorgeschlagen worden, dem Lichtbogen einen Anteil des ionisierbaren Gases durch eine zentrale Bohrung in der Elektrodenspitze zuzuleiten. Die Elektrode ist im wesentlichen zylindrisch und an ihrem vorderen Ende mit einer Spitze versehen. Durch die zusätzliche Kühlung infolge des zentralen Gasstroms wird zwar die durch hohe Stromstärken bedingte Elektrodenerosion erniedrigt. Jedoch ist bei einer solchen Anordnung die Elektrode gegen chemische Erosion unzureichend geschützt. Darüber hinaus kann diese Maßnahme auch die Erzeugung langer stabiler Lichtbögen nicht gewährleisten. Mit Wechselstrom können solche Brenner nur begrenzt eingesetzt werden.
  • Es ist daher Aufgabe der Erfindung, einen Plasmabrenner zu schaffen, der die vorerwähnten Nachteile nicht besitzt und auch unter den erschwerten Bedingungen beim Betrieb in Schrottschmelzöfen mit Lichtbogenlängen über 200 mm und vornehmlich auch beim Betrieb mit Wechsel- bzw. Drehstrom hohe Düsen- und Elektrodenstandzeiten aufweist.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil der Ansprüche 1 oder 2 beschriebenen Merkmale gelöst. Im Unterschied zu spitz ausgebildeten Elektroden ergibt sich durch die flache Endfläche der Elektrode ein verhältnismäßig großflächiger Ansatz der Lichtbogensäule mit entsprechend geringer Energiedichte. Bei einem Plasmabrenner mit einem mit den angegebenen Winkeln ausgebildeten Ringkanal und einem auf den angegebenen Bereich beschränktes Zurückstehen der Endfläche der Elektrode hinter dem vorderen Ende des Düsenkanals strömt das ionisierbare Gas unter einem spitzen Winkel flach an die Lichtbogensäule heran und wird so erst allmählich in das Plasma derselben überführt. Hierzu ist es erforderlich, daß die Mantellinien der sich gegenüberliegenden kegelförmigen Mantelflächen von Elektrode und Düse zumindest teilweise, bevorzugt im Bereich der Elektrodenspitze, parallel zueinander angeordnet sind bzw. der durch die Mantelflächen gebildete Ringkanal entsprechend Anspruch 4 einen sich zur Lichtbogenseite hin verjüngenden Verlauf hat.
  • Durch die geschilderte Gestalt der Düse und der Elektrode erhält das durch den Ringkanal ausströmende Gas eine Richtung, die letztlich eine entscheidende Verbesserung sowohl der Bogenstabilität als auch des Elektrodenschutzes vor Oxidation bewirkt.
  • Bei einem Plasmabrenner mit einer nach Anspruch 2 mit einem oder mehreren Kanälen versehenen Elektrode kann das Maß des Zurückstehens ihrer Endfläche hinter dem vorderen Ende des Düsenkanals bei sonst gleichen Verhältnissen noch vermindert werden.
  • Vorteilhafterweise beträgt der Kegelwinkel der Elektrode, ebenso ein der Kegelwinkel des Innenmantels der Düse, 24° entsprechend Anspruch 3.
  • Vorteilhafterweise weist das ansonsten plangestaltete lichtbogenseite Ende der Elektrode nach Anspruch 5 eine Fase auf. Alternativ ist das lichtbogenseitige Ende der Elektrode entsprechend Anspruch 6 konkav oder konvex geformt und mit einer Fase versehen.
  • Für den Innenmantel der Düse wird nach Anspruch 7 bevorzugt ein hochschmelzendes Metall, wie beispielsweise Molybdän, Tantal oder Wolfram verwendet. Das Düsenvorderteil kann entsprechend Anspruch 8 aus einem Einsatz bestehen, der durch Eingießen, Schweißen, Löten, Preßpassung oder als herausnehmbares Teil durch Verschraubung mit der Düse bzw. dem gesamten Plasmabrenner verbunden ist.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt. Es zeigen:
    • Fig. 1 eine Düse mit mittig angeordneter Elektrode im Querschnitt und
    • Fig. 2 eine entsprechende Düsenanordnung mit einem Düseneinsatz im Querschnitt.
  • Der in Fig. 1 dargestellte Plasmabrenner besteht im wesentlichen aus einer Elektrode 2, die an einem flüssigkeitsgekühlten Elektrodenhalter 1 befestigt ist, und einer Düse 9. Die Elektrode 2 hat im vorderen Bereich die Form eines Kegelstumpfes mit zum lichtbogenseitigen Ende abnehmendem Radius. Das lichtbogenseitige Ende der Elektrode, das im wesentlichen eben gestaltet ist, weist eine umlaufende Fase 3 auf. In diesem Bereich kann die Elektrode auch konkav oder konvex geformt sein. Da bekannt ist, daß sich spitz zulaufende Enden nach längerem Gebrauch abrunden, sollte allerdings auf ecken-und kantenförmige Ausbildungen verzichtet werden. Die Länge der Elektrode 2 beträgt zwischen 10 und 20 mm. Kürzere Elektroden haben den Nachteil, daß sie trotz eines etwas langsameren Rückbrandes früher ausgetauscht werden müssen, zu lange Elektroden dagegen werden an der Lichtbogenseite zu heiß und verschleißen daher schneller. Der Kegelwinkel a der Elektrode 2 beträgt, ebenso wie der Kegelwinkel β des Innenmantels der Düse 9, 24°. Der Mantel 8 der Elektrode 2 wird von dem Innenmantel 4 der Düse 9 umhüllt, so daß sich dazwischen ein Ringkanal 10 bildet, wobei die Begrenzungsflächen (4, 8) erzeugenden Mantellinien im Bereich der. Endfläche der Elektrode 2 parallel zueinander verlaufen oder - bei β > α - in Richtung auf den Lichtbogen aufeinander zulaufen. Der Ringkanal 10 ist so bemessen, daß die radiale Austrittsgeschwindigkeit des durchströmenden ionisierbaren Gases im kalten Zustand zwischen 3 und 17 m/s beträgt. Der vor der Elektrode 2 befindliche Auslauf des Düsenkanals 5 ist in den dargestellten Ausführungsbeispielen zylindrisch, kann aber auch konisch ausgebildet sein.
  • Durch diese erfindungsgemäße Ausführung von Düse 9 und Elektrode 2 erhält das durch den Ringspalt 10 ausströmende Gas eine Richtung, die, wie zahlreiche Versuche zeigten, eine entscheidende Verbesserung sowohl der Bogenstabilität als auch des Elektrodenschutzes vor Oxidation bewirkt. So wurden beim Betrieb mit Wechselstrom bis zu 700 mm lange, stabil brennende Lichtbögen erzeugt. Hierbei zeigten Elektroden mit einem stirnseitigen Durchmesser bis zu 19 mm auch nach einigen Stunden Betriebszeit keinerlei Oxidationsspuren.
  • Bei Verwendung von Elektroden größeren Durchmessers bzw. Querschnittes, z. B. zum Zwecke einer Erhöhung der Stromstärke, kann es zweckmäßig sein, einen Anteil des ionisierbaren Gases durch eine oder mehrere Bohrungen oder Kanäle 6 in der Elektrode 2 zuzuführen. Es hat sich zwar herausgestellt, daß die alleinige Zuführung eines Anteils an ionisierbarem Gas durch Kanäle in der Elektrode nicht ausreicht, um die erfindungsgemäße Aufgabe zu lösen, jedoch bewirkt die erfindungsgemäße Gaszuführung kombiniert mit der zusätzlichen Zuführung durch eine oder mehrere Kanäle in der Elektrode einen vorteilhaften Schutz für die Elektrode.
  • Bei der erfindungsgemäßen Ausführung ohne zentrale Gaszufuhr soll die Elektrode 2 um etwa 1/4 bis 1/3 ihres kleinsten Durchmessers hinter dem vorderen Ende des Düsenkanals 5 zurückstehen. Dies entspricht z. B. bei 20 mm Durchmesser einem Betrag von 5 bis 6,5 mm. Wesentlich größer als 6,5 mm sollte dieser Betrag allerdings nicht sein, da dann die Kühlverluste durch den im Düsenkanal verlaufenden Teil des Lichtbogens zu hoch werden und vor allem auch die Gefahr besteht, daß der Bogen zur Düse 9 springt und sich Nebenbögen bilden.
  • Durch die genannte Kombination der Gaszufuhr durch den Ringkanal 10 und durch Bohrungen bzw. Kanäle 6 in der Elektrode kann aber das Verhältnis der freien Länge des Düsenkanals 5 zum Elektrodendurchmesser auf Werte von 1/6 bis 1/8 bei etwa gleich gutem Elektrodenschutz vermindert werden, so daß sich auch bei Elektrodendurchmessern von mehr als 40 mm die angestrebten Vorteile erzielen lassen.
  • Um auch bei längerer Betriebszeit die Form des Ringkanals 10 weitgehend bestehen zu lassen, werden die Düsen 5, nicht wie allgemein üblich, aus Kupfer, Kupferlegierungen oder Stahl hergestellt, sondern erhalten einen Einsatz 7 aus einem hochschmelzenden Metall, vorzugsweise Wolfram. Dieser den Innenmantel der Düse bildende Einsatz 7 kann durch Eingießen, Schweißen, Löten, Einpressen oder als herausnehmbares Teil durch Verschraubung mit dem Plasmabrenner verbunden werden.
  • Ein Ausführungsbeispiel einer Düse mit geschraubtem Einsatz 7 aus Wolfram ist beispielsweise in Fig. 2 dargestellt. Diese Vorrichtung hat insbesondere den Vorteil, daß ein verschlissener Düseneinsatz innerhalb kurzer Zeit gewechselt werden kann und somit der Ersatz der gesamten Düse nicht erforderlich wird.

Claims (8)

1. Plasmabrenner mit einer keine zentrale Gaszufuhr aufweisenden Elektrode (2) mit einem sich zur Lichtbogenseite hin konisch verjüngenden kegelstumpfförmigen Teil (8) und mit einer die Elektrode (2) konzentrisch umgebenden Düse (9) mit einem verengten Düsenkanal (5) mit zumindest teilweise konisch verlaufendem Innenmantel (4),
wobei die Elektrode (2) einerseits in den verengten Düsenkanal (5) hineinragt und andererseits hinter dem vorderen Ende des Düsenkanals zurücksteht und wobei der Mantel des kegelstumpfförmigen Teils (8) der Elektrode (2) und der konische Teil des Innenmantels (4) der Düse (9) einen Ringkanal (10) mit zur Lichtbogenseite hin abnehmender freier Querschnittsfläche zur Einleitung von ionisierbarem Gas in das Plasma eines Lichtbogens bilden,
dadurch gekennzeichnet,
- daß der kegelstumpfförmige Teil (8) der Elektrode (2) eine flache Endfläche aufweist,
- daß der Kegelwinkel (a) des kegelstumpfförmigen Teils (8) der Elektrode (2) zwischen 12° und 60° liegt,
- daß der durch den konischen Teil des Innenmantels (4) der Düse (9) gebildete Kegelwinkel (ß) zwischen 12° und 80° liegt, keinesfalls aber kleiner als der Kegelwinkel (a) des kegelstumpfförmigen Teils (8) der Elektrode (2) ist und
- daß der Abstand zwischen der Endfläche der Elektrode (2) und dem vorderen Ende des Düsenkanals (5) 1/4 bis 1/3 des kleinsten Durchmessers der kegelstumpfförmigen Fläche (8) der Elektrode (2) beträgt.
2. Plasmabrenner mit einer einen oder mehrere Kanäle (6) zum Durchströmen eines Teils eines ionisierbaren Gases aufweisenden Elektrode (2) mit einem sich zur Lichtbogenseite hin konisch verjüngenden kegelstumpfförmigen Teil (8) und mit einer die Elektrode (2) konzentrisch umgebenden Düse (9) mit einem verengten Düsenkanal (5) mit zumindest teilweise konisch verlaufendem Innenmantel (4),
wobei die Elektrode (2) einerseits in den verengten Düsenkanal (5) hineinragt und andererseits hinter dem vorderen Ende des Düsenkanals zurücksteht und wobei der Mantel des kegelstumpfförmigen Teils (8) der Elektrode (2) und der konische Teil des Innenmantels (4) der Düse (9) einen Ringkanal (10) mit zur Lichtbogenseite hin abnehmender freier Querschnittsfläche zur Einleitung von ionisierbarem Gas in das Plasma eines Lichtbogens bilden,
dadurch gekennzeichnet,
- daß der kegelstumpfförmige Teil (8) der Elektrode (2) eine flache Endfläche aufweist,
- daß der Kegelwinkel (a) des kegelstumpfförmigen Teils (8) der Elektrode (2) zwischen 12° und 60° liegt,
- daß der durch den konischen Teil des Innenmantels (4) der Düse (9) gebildete Kegelwinkel (ß) zwischen 12° und 80° liegt, keinesfalls aber kleiner als der Kegelwinkel (a) des kegelstumpfförmigen Teils (8) der Elektrode (2) ist und
- daß der Abstand zwischen der Endfläche der Elektrode (2) und dem vorderen Ende des Düsenkanals (5) 1/8 bis 1/6 des kleinsten Durchmessers der kegelstumpfförmigen Fläche (8) der Elektrode (2) beträgt.
3. Plasmabrenner nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kegelwinkel (a) des kegelstumpfförmigen Teils (8) der Elektrode (2) und der Kegelwinkel (ß) des konischen Teils des Innenmantels (4) der Düse (9) jeweils 24' betragen.
4. Plasmabrenner nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Mantellinien der den Ringkanal (10) bildenden kegelstumpfförmigen Mantelflächen (4, 8) zur Lichtbogenseite hin aufeinander zulaufen.
5. Plasmabrenner nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das ansonsten plangestaltete lichtbogenseitige Ende der Elektrode (2) eine Fase (3) aufweist.
6. Plasmabrenner nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das lichtbogenseitige Ende der Elektrode (2) eine konkave oder konvexe Kontur aufweist und mit einer Fase (3) versehen ist.
7. Plasmabrenner nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Innenmantel (4) der Düse (9) aus einem hochschmelzenden Metall besteht.
8. Plasmabrenner nach Anspruch 4, dadurch gekennzeichnet, daß das Düsenvorderteil einen Einsatz (7) enthält, der durch Eingießen, Schweißen, Löten, Preßpassung oder als herausnehmbares Teil durch Verschraubung mit der Düse (9) verbunden ist.
EP83110451A 1982-11-10 1983-10-20 Plasmabrenner mit einer konischen Elektrode und einer Düse mit zumindest teilweise konischen Innenmantel Expired EP0111116B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110451T ATE46419T1 (de) 1982-11-10 1983-10-20 Plasmabrenner mit einer konischen elektrode und einer duese mit zumindest teilweise konischen innenmantel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823241476 DE3241476A1 (de) 1982-11-10 1982-11-10 Verfahren zur einleitung von ionisierbarem gas in ein plasma eines lichtbogenbrenners und plasmabrenner zur durchfuehrung des verfahrens
DE3241476 1982-11-10

Publications (3)

Publication Number Publication Date
EP0111116A2 EP0111116A2 (de) 1984-06-20
EP0111116A3 EP0111116A3 (en) 1985-10-09
EP0111116B1 true EP0111116B1 (de) 1989-09-13

Family

ID=6177711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110451A Expired EP0111116B1 (de) 1982-11-10 1983-10-20 Plasmabrenner mit einer konischen Elektrode und einer Düse mit zumindest teilweise konischen Innenmantel

Country Status (7)

Country Link
US (1) US4594496A (de)
EP (1) EP0111116B1 (de)
JP (1) JPS5999700A (de)
AT (1) ATE46419T1 (de)
DE (1) DE3241476A1 (de)
FI (1) FI84548C (de)
ZA (1) ZA838333B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1531652B1 (de) 2003-11-14 2015-09-30 Thermacut s.r.o. Düse für einen Lichtbogen-Plasmaschneidbrenner

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435680A1 (de) * 1984-09-28 1986-04-03 Fried. Krupp Gmbh, 4300 Essen Plasmabrenner
AT381826B (de) * 1984-10-11 1986-12-10 Voest Alpine Ag Plasmabrenner
DE3642375A1 (de) * 1986-12-11 1988-06-23 Castolin Sa Verfahren zur aufbringung einer innenbeschichtung in rohre od. dgl. hohlraeume engen querschnittes sowie plasmaspritzbrenner dafuer
US4926632A (en) * 1988-02-01 1990-05-22 Olin Corporation Performance arcjet thruster
JPH0355792A (ja) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd 溶融炉のプラズマ発生装置
JP2681251B2 (ja) * 1993-07-14 1997-11-26 動力炉・核燃料開発事業団 プラズマジェットトーチ用拘束チップ
DE4440323A1 (de) * 1994-11-11 1996-05-15 Sulzer Metco Ag Düse für einen Brennerkopf eines Plasmaspritzgeräts
US6215089B1 (en) * 1998-06-02 2001-04-10 Inocon Technologie Gesellschaft M.B.H. Plasma welding torch
US6180911B1 (en) * 1999-06-02 2001-01-30 Retech Services, Inc. Material and geometry design to enhance the operation of a plasma arc
TW469757B (en) * 1999-12-13 2001-12-21 Nippon Steel Corp A transferred plasma heating anode
AT4599U1 (de) * 2000-06-21 2001-09-25 Inocon Technologie Gmbh Plasmabrenner
DE10047696A1 (de) * 2000-09-25 2002-04-18 Dilthey Ulrich Plasma-Pluspolbrenner für hohe Leistungsbereiche
ITRM20010291A1 (it) * 2001-05-29 2002-11-29 Ct Sviluppo Materiali Spa Torcia al plasma
US20060091117A1 (en) * 2004-11-04 2006-05-04 United Technologies Corporation Plasma spray apparatus
EP1689216A1 (de) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Plasmastrahl unter atmosphärischem Druck
TWI352368B (en) * 2007-09-21 2011-11-11 Ind Tech Res Inst Plasma head and plasma-discharging device using th
US9144148B2 (en) 2013-07-25 2015-09-22 Hypertherm, Inc. Devices for gas cooling plasma arc torches and related systems and methods
EP3083064B1 (de) * 2013-12-19 2020-04-22 Oerlikon Metco (US) Inc. Langlebige plasmadüse mit auskleidung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1440628B2 (de) * 1955-07-26 1971-04-22 Union Carbide Corp , New York, N Y (V St A) Lichtbogenbrenner fuer einen lichtbogenofen
US3147329A (en) * 1955-07-26 1964-09-01 Union Carbide Corp Method and apparatus for heating metal melting furnaces
NL131703C (de) * 1960-08-01 1900-01-01
US3027447A (en) * 1960-10-17 1962-03-27 Thermal Dynamics Corp Electric arc torch
FR1375669A (fr) * 1962-01-25 1964-10-23 Plasmadyne Corp Procédés et appareils pour souder et pour couper
US3214623A (en) * 1962-02-12 1965-10-26 Sheer Korman Associates Fluid transpiration plasma jet
GB995152A (en) * 1962-05-01 1965-06-16 British Oxygen Co Ltd Improvements in electric arc cutting apparatus
US3644782A (en) * 1969-12-24 1972-02-22 Sheet Korman Associates Inc Method of energy transfer utilizing a fluid convection cathode plasma jet
DE2142331A1 (de) * 1971-08-24 1973-03-08 Messer Griesheim Gmbh Duesenkoerper fuer plasmaschneid- und/ oder schweissbrenner
JPS4834045A (de) * 1971-09-06 1973-05-15
JPS5145638B2 (de) * 1974-06-07 1976-12-04
HU172563B (hu) * 1975-01-27 1978-09-28 Villamos Ipari Kutato Intezet Sposob i plazmennyj generator dlja poverkhnostnogo rasplavlenija tvjordykh stroitel'nykh blokov
JPS5546266A (en) * 1978-09-28 1980-03-31 Daido Steel Co Ltd Plasma torch
JPS564352A (en) * 1979-06-20 1981-01-17 Nippon Steel Corp Electromagnetic rabbling method in continuous casting
DD151249A1 (de) * 1979-12-18 1981-10-08 Armin Gruenler Duese fuer ein hochstromplasmatron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1531652B1 (de) 2003-11-14 2015-09-30 Thermacut s.r.o. Düse für einen Lichtbogen-Plasmaschneidbrenner

Also Published As

Publication number Publication date
US4594496A (en) 1986-06-10
ATE46419T1 (de) 1989-09-15
ZA838333B (en) 1984-07-25
FI84548B (fi) 1991-08-30
DE3241476A1 (de) 1984-05-10
EP0111116A3 (en) 1985-10-09
FI84548C (fi) 1991-12-10
DE3241476C2 (de) 1990-02-22
FI834038A0 (fi) 1983-11-03
EP0111116A2 (de) 1984-06-20
JPS5999700A (ja) 1984-06-08

Similar Documents

Publication Publication Date Title
EP0111116B1 (de) Plasmabrenner mit einer konischen Elektrode und einer Düse mit zumindest teilweise konischen Innenmantel
EP1797747B1 (de) Plasmabrenner
DE1244627B (de) Plasma-Spritzvorrichtung
DE2306022C3 (de) Plasmabrenner mit Achsialzufuhr des stabilisierenden Gases
EP0176004B1 (de) Plasmabrenner
EP0178288B1 (de) Plasmabrenner
EP2457681B1 (de) Brenner für das Wolfram-Inertgas-Schweißen sowie Elektrode zur Verwendung bei einem solchen Brenner
EP0168810B1 (de) Schweissbrenner zum Plasma-MIG-Schweissen
EP2855071B1 (de) BRENNER FÜR DAS WOLFRAM-INERTGAS-SCHWEIßEN
DE3328777C2 (de)
EP2667689B1 (de) Elektrode für Plasmaschneidbrenner sowie deren Verwendung
DE69300563T2 (de) Lichtbogenplasmabrenner mit konische Bohrung enthaltender Elektrode.
DE1940040A1 (de) Plasmabrenner
DE102007041329B4 (de) Plasmabrenner mit axialer Pulvereindüsung
DD201835A5 (de) Elektrode fuer lichtbogenoefen
EP0962277B1 (de) Plasma-Schweissbrenner
AT407022B (de) Plasma - schweissbrenner
DE1790209B1 (de) Gasstabilisierter lichtbogenbrenner
WO2021047708A2 (de) VERSCHLEIßTEIL FÜR EINEN LICHTBOGENBRENNER UND PLASMABRENNER SOWIE LICHTBOGENBRENNER UND PLASMABRENNER MIT DEMSELBEN UND VERFAHREN ZUM PLASMASCHNEIDEN SOWIE VERFAHREN ZUR HERSTELLUNG EINER ELEKTRODE FÜR EINEN LICHTBOGENBRENNER UND PLASMABRENNER
DE1940040C (de) Wirbelstabilisierter Lichtbogen-Plasmabrenner
WO1993013934A1 (de) Vorrichtung zum lichtbogenschweissen und -schneiden
DE68906137T2 (de) Duesenschutz fuer plasmalichtbogenschweissbrenner.
DD283255B5 (de) Plasmabrenner
DD283255A5 (de) Plasmabrenner
EP0642873A1 (de) Vorrichtung zum Schutzgasschweissen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19860312

17Q First examination report despatched

Effective date: 19861203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 46419

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MANNESMANN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;MANNESMANN AG

NLS Nl: assignments of ep-patents

Owner name: MANNESMANN AKTIENGESELLSCHAFT TE DUESSELDORF, BOND

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920928

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931020

Ref country code: AT

Effective date: 19931020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931021

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: MANNESMANN AKTIENGESELLSCHAFT

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 83110451.8

Effective date: 19940510

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031019

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20