EP0109218B1 - Parallel path coriolis mass flow rate meter - Google Patents

Parallel path coriolis mass flow rate meter Download PDF

Info

Publication number
EP0109218B1
EP0109218B1 EP83306511A EP83306511A EP0109218B1 EP 0109218 B1 EP0109218 B1 EP 0109218B1 EP 83306511 A EP83306511 A EP 83306511A EP 83306511 A EP83306511 A EP 83306511A EP 0109218 B1 EP0109218 B1 EP 0109218B1
Authority
EP
European Patent Office
Prior art keywords
shaped flow
flow tubes
fluid
oscillation
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83306511A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0109218A2 (en
EP0109218A3 (en
Inventor
James Everett Smith
Ronald Reed Cage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23743007&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0109218(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of EP0109218A2 publication Critical patent/EP0109218A2/en
Publication of EP0109218A3 publication Critical patent/EP0109218A3/en
Application granted granted Critical
Publication of EP0109218B1 publication Critical patent/EP0109218B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits

Definitions

  • a mechanical configuration and measurement technique which, among other advantages, avoid the need to measure or control the magnitude of the angular velocity of the conduit, and concurrently provide requisite sensitivity and accuracy of measurement of the effects caused by generated Coriolis forces is taught in United States Patent 4,187,721.
  • the mechanical configuration disclosed in that patent incorporates a resilient U-shaped flow tube which has no pressure sensitive joints, and is cantilever mounted at the open ends of the U-shaped flow tube so as to be capable of being elastically oscillated about an axis perpendicular to the side legs of the U-shaped flow tube, which axis is located near the fixed mounting and in the plane in which the U-shaped flow tube lies when at rest; i.e. the mid-plane of oscillation.
  • the mounted U-shaped flow tube By designing the mounted U-shaped flow tube so that it has a resonant frequency about the axis perpendicular to the side legs of the U-shaped flow tube that is lower than the resonant frequency about the axis parallel to the side legs of the U-shaped flow tube and by then oscillating the U-shaped flow tube about the axis perpendicular to the side legs of the U-shaped flow tube at its resonant frequency, a mechanical situation is created whereby the forces which oppose the generated Coriolis forces are predominantly linear spring forces. This fact, that the forces opposing the generated Coriolis forces are predominantly linear spring forces, causes one side leg of the U-shaped flow tube to pass through the mid-plane of oscillation before the other side leg does so, in a linear fashion.
  • cantilever mounting of a second structure in conjunction with the U-shaped flow tube is so mounted and designed that when it is sinusoidally driven in opposition to the U-shaped flow tube the combination of the second structure and the U-shaped flow tube operate as a tuning fork.
  • tuning fork operation is substantial attenuation, at the support, of vibration forces associated with the sinusoidal driving of the U-shaped flow tube and the second structure.
  • the cantilever mounted second structure is a spring arm.
  • Substituting for the spring arm and a second flow tube similarly configured to the first flow tube an expedient within the ordinary skill of the art, provides an inherently balanced tuning fork structure because of the symmetries incorporated in the operation of the tines. Recognition of this fact has been used in the design of densimeters where measurements of the resonance frequency of cantilever mounted filled flow tubes are made to determine the density of fluids in the tubes, see, e.g. United States Patents 2,635,462 and 3,456,491.
  • the double flow tube configuration has also been used for making mass flow rate measurements, see, e.g. United States Patents 4,127,028; 4,192,184; and 4,311,054.
  • These double flow tube meters utilize a fluid flow path wherein the fluid enters one leg of one of the flow tubes, through which it is passed, and then is transported via an inter-connecting conduit to the second flow tube, through which it is passed, before exiting from the meter.
  • Such a fluid flow path through the two flow tubes can be accurately described as a serial flow path configuration.
  • Coriolis flow meters which use cantilever mounted U-shaped flow tubes, are effectively dictated by the quantity of fluid to be measured.
  • a primary example of how dimensions for such flow meters are related to the quantity of fluid to be measured is the sizing of the inside diameter of the U-shaped flow tube. This sizing can be understood by considering the fact that it is the cross-sectional area of the supply conduit and drain conduit connected to the flow meter which substantially controls the quantity of fluid capable of being passed through the flow meter. Therefore, the cross-sectional area of these conduits should in part be determinative of the inside diameter of the U-shaped flow tube.
  • a significant design problem, accordingly, associated with vibrating U-shaped flow tube Coriolis flow meters is compensating for the adverse effects resulting from the increased physical size of the flow meter dictated by increased quantities of fluid.
  • the adverse effects resulting from increased physical size are substantially reduced by a configuration utilizing two flow tubes where the flow through the flow meter permits use of smaller U-shaped flow tubes.
  • This configuration is based on essentially evenly dividing the flow of fluid injected into the meter, and then conducting one half of the flow through one U-shaped flow tube and the other half through a second U-shaped flow tube. At the output ends of each flow tube the ejected fluid is collected for injection into the drain conduit.
  • the two U-shaped flow tubes through which fluid is passed are arranged in a tuning fork configuration with the direction of fluid flow in the adjacent legs of the two U-shaped flow tubes being parallel.
  • Coriolis forces are produced when the two U-shaped flow tubes are sinusoidally driven with fluid flowing through them.
  • These Coriolis forces alternately deflect adjacent legs of the two U-shaped flow tubes.
  • the alternating deflections result in configurations, at the instant when the vibrating tubes are at their mid-planes of oscillation, wherein one pair of adjacent legs are deflected closer together and the other pair is deflected part.
  • the fluid mass flow rate passing through the meter can be determined by mounting sensors on the side legs of these U-shaped flow tubes so that the time required for the side legs of each U-shaped flow tube to pass through the mid-plane of oscillation can be measured.
  • the accuracy in making fluid mass flow rate measurements with such a parallel path flow meter will be dependent on both the accuracy with which fluid flow is evenly divided between the two U-shaped flow tubes, and the equivalence of the angular velocities with which the two U-shaped flow tubes are sinusoidally driven. For, if a higher mass flow rate is passing through one U-shaped flow tube than the other, the U-shaped flow tube conducting the higher mass flow rate will generate larger Coriolis force effects. Similarly, if one U-shaped flow tube is sinusoidally driven at a higher angular velocity than the other, the U-shaped flow tube driven at the higher angular velocity will generate larger Coriolis force effects.
  • Advantages resulting from the parallel double flow path configuration include among others: (a) increased sensitivity over a Coriolis flow meter configuration with a single flow tube or a series flow path configuration, because for the parallel path configuration the pressure rating for the two flow tubes equals that of the supply conduit which results in tubing with thinner walls, and therefore, tubing that is more sensitive to generated Coriolis forces; (b) more stable operation compared to a single flow tube combined with a non-fluid conducting member configured as a tuning fork, because the parallel path configuration with fluid passing through both flow tubes results in a dynamically balanced pair of tuning fork tines, i.e., as the mass of one tine varies due to increased fluid density so will the mass of the other tine; (c) substantially decreased sensitivity to external vibration sources which can affect the accuracy of measuring the time required for the side legs of a flow tube to pass through the mid-plane of oscillation, because for the parallel path configuration the sensors are mounted on the flow tubes without physical reference to any structure needing to be immutably fixed with respect to the mid
  • the present invention provides a direct method, utilizing an essentially autonomous apparatus, for measuring the mass flow rate of fluids. Only insertion onto the conduit transporting the fluid to be measured is required. No special piping, pumping or reference standards are required. There is a difference, however, with respect to actual field installation between the present invention and those disclosed in United States Patent 4,187,721 and EP-A1-83144. This difference is that the present invention can be affixed to a conduit and separate mounting of the meter case is not required as it is for the meters disclosed in United States Patent 4,187,721 and EP-A1-83144. In fact the meter of the present invention can be supported by the structure of the conduit transporting the fluid to be measured.
  • Measuring device 10 includes pipe 12 from which two U-shaped flow tubes 14 and 14' are cantilever mounted in substantially parallel fashion.
  • the two U-shaped flow tubes 14 and 14' are free of pressure sensitive joints.
  • Fixedly attached to both U-shaped flow tubes 14 and 14' are supports 16 and 16'which in combination with pipe 12 provide a cantilever mounting for U-shaped flow tubes 14 and 14'.
  • These supports, 16 and 16' are sufficiently spaced from pipe 12 so that the combination of the supports 16 and 16' with pipe 12 provides a rigid structural connection between the U-shaped flow tubes 14 and 14'.
  • the spacing between pipe 12 and supports 16 and 16' should approximate at least three times the diameter of U-shaped flow tubes 14 and 14'.
  • the U-shaped flow tubes 14 and 14' are selected and mounted so as to have substantially the same moments of inertia and spring constants about bending axes W-W and W'-W' respectively. These bending axes are perpendicular to the side legs of U-shaped flow tubes 14 and 14', and are located near and in front of supports 16 and 16'. Since U-shaped flow tubes 14 and 14' are cantilever mounted in an essentially parallel fashion with free ends and have substantially equal moments of inertia and equal spring constants about their respective bending axes, these U-shaped flow tubes can be sinusoidally driven in opposition about their bending axes at essentially the same resonant frequency so as to function as the tines of a tuning fork.
  • the sinusoidal driving forces are applied to U-shaped flow tubes 14 and 14' in the preferred embodiment by drive mechanism 18.
  • Drive mechanism 18 can consist of such known means as a magnet and a coil through which an oscillating electrical current is passed or can consist of any other arrangement for applying forces to U-shaped flow tubes 14 and 14' so that these tubes are sinusoidally driven about their respective bending axes, W-W and W'-W' at their common resonant frequency, whereby the tubes operates as the two tines of a tuning fork.
  • U-shaped flow tubes 14 and 14' are fixedly attached to pipe 12 at manifold 20 so as to permit flow of fluid from inlet pipe 22 into the U-shaped flow tubes through the plenum formed by manifold 20 and end plate 24, which is attached to pipe 12 in a fluid tight manner.
  • the flow of fluid out of the U-shaped flow tubes is achieved by having the U-shaped flow tubes 14 and 14' fixedly attached to pipe 12 at manifold 26 so as to permit flow of fluid from the U-shaped flow tubes into exit pipe 28 through the plenum formed by manifold 26 and end plate 30, which is attached to pipe 12 in a fluid tight manner.
  • Inlet pipe 22 and exit pipe 28 are attached to flanges 32 and 34 respectively.
  • Flanges 32 and 34 are used to connect the measuring device 10 to the conduit system (not shown) through which the fluid mass flow rate to be measured is supplied and drained from the flow meter.
  • the plenum formed by manifold 20 and end plate 24 is so configured that fluid flow from inlet pipe 22 is essentially evenly divided between U-shaped flow tubes 14 and 14'. This is accomplished by using several design criteria including the fabrication of each of the U-shaped flow tubes 14 and 14' such that both have essentially equal and uniform inside cross sectional areas, and both have essentially equal internal volumes for fluid containment.
  • manifold 20 is configured so that inlets 36 and 38 to U-shaped flow tubes 14 and 14' are located essentially at symmetrical locations with respect to the flow profile from inlet pipe 22 (i.e., one inlet is not downstream with respect to the other when distance is measured from the exit of inlet pipe 22 at manifold 20). Such symmetrical positioning of inlets 36 and 38 contributes to assuring essentially equal fluid pressure at these inlets.
  • the inlet plenum formed by manifold 20 and plate 24 has symmetrical boundaries with respect to inlets 36 and 38, and the inlet plenum is large enough to produce an essentially uniform fluid pressure in the region where inlets 36 and 38 are located.
  • the exit plenum formed by manifold 26 and plate 30 has symmetrical boundaries with respect to outlets 44 and 46, and the outlet plenum is large enough to permit equalization of fluid pressure differentials produced by fluid exiting U-shaped flow tubes 14 and 14' so that essentially equal fluid back pressures are present in the region where outlets 44 and 46 are located.
  • inlet pipe 22, exit pipe 28, manifolds 20 and 26, and U-shaped flow tubes 14 and 14' are shown configured so that the mass flow rate measuring device 10 can be connected to a fluid conducting conduit in an essentially straight line fashion.
  • An alternative configuration for inlet pipe 22, exit pipe 28, manifolds 20 and 26, and U-shaped flow tubes 14 and 14' is shown in Fig. 2.
  • the configuration shown in Fig. 2 incorporates the design features which facilitate even division of fluid mass flow rate flow through U-shaped flow tubes 14 and 14'.
  • the configuration shown in Fig. 2 permits connection at flanges 32 and 34, to a fluid conducting conduit by other than a straight line connection while still accomplishing the essentially even division of fluid mass flow rate from inlet pipe 22 into U-shaped flow tubes 14 and 14', as required by the present invention.
  • the proportionality factor between this time interval and the total mass flow rate passing through device 10 is composed of constants determined by the mechanical configuration of device 10; and, (b) the uncertainty in measurement of the total mass flow rate is only the product of the differences in the mass flow rates passing through U-shaped flow tubes 14 and 14' and the differences in the angular velocities at which U-shaped flow tubes 14 and 14' are sinusoidally driven.
  • coils 40 are attached near the free ends of the side legs of either U-shaped flow tube 14 and 14', and permanent magnets 42 are attached near the free ends of the side legs of the other U-shaped flow tube so as to have the coils 40 located in the volume of space surrounding the permanent magnets 42 in which the magnetic flux fields are essentially constant.
  • the electrical signal outputs generated by coils 40 can be processed in the manner taught in EP-A1-83144 to provide a measure of the time interval.
  • the time interval measurements made during one half cycle of the oscillation of U-shaped flow tubes 14 and 14' can be subtracted from the time interval measurements made during the other half cycle of the oscillation of U-shaped flow tubes 14 and 14', in order to eliminate errors caused by misalignment of the U-shaped flow tubes, so that the difference measurement is proportional to the total mass flow rate passing through device 10.
  • the U-shaped flow tubes 14 and 14' are so configured about their cantilever mountings that the resonant frequency about the bending axes W-W and W'-W' is lower than the resonant frequency about the torsion axes O ⁇ O and O' ⁇ O'.
  • These torsion axes are located essentially midway between and parallel to the side legs of U-shaped flow tubes 14 and 14' and are in the same plane as the side legs for each of these U-shaped flow,tubes. It is about these torsion axes, 0-0 and 0'-0', that the generated Coriolis forces act.
  • the requirement for the resonant frequency about the bending axes W-W and W'-W' to be lower than the resonant frequency about the torsion axes O ⁇ O and O' ⁇ O' includes the further constraint that the resonant frequency about the torsion axes 0-0 and 0'-0' not be equal to or near any odd harmonic value (i.e., an odd multiple) of the resonant frequency about the bending axes W ⁇ W and W'-W'.
  • is the angle of deflection from the mid-plane of oscillation A-A at which U-shaped flow tube 14 is caused to be located at the instant depicted in Fig. 3 by generated Coriolis forces
  • ⁇ ' is the angle of deflection from the mid-plane of oscillation A'-A' at which U-shaped flow tube 14' is caused to be located at the instant depicted in Fig. 3 by generated Coriolis forces.
  • K and K' are the individual torsional spring constants for each of the U-shaped flow tubes 14 and 14' about axes O ⁇ O and O' ⁇ O' respectively,
  • K o is the essentially common value for the torsional spring constant about either axis O ⁇ O or O' ⁇ O' because these torsional spring constants are essentially of equal value as a result of design criteria for the construction of device 10.
  • F c and Fe' are the magnitudes of the opposing generated Coriolis forces acting about torsion axes O ⁇ O and 0'-0' respectively.
  • the first term, Q on the right hand side of the equation represents the average mass flow rate passing through either U-shaped flow tube 14 or 14'
  • the second term AQ (DW 1 /W 1 ) represents the error associated with using mass flow rate measuring device 10, if the mass flow rates passing through U-shaped flow tubes 14 and 14' are unequal and the angular velocities associated with U-shaped flow tubes 14 and 14' are unequal.
  • This error is the product of the difference in mass flow rates passing through U-shaped flow tubes 14 and 14' from the average mass flow rate passing through those flow tubes, times the percentage of difference from the average angular velocity about axes W-W and W'-W'.
  • equation 6 shows that by measuring the time interval At the mass flow rate of the fluid passing through device 10 can be calculated as a linear proportional factor of only essentially invariable physical constants associated with the design of device 10 times ⁇ t.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
EP83306511A 1982-11-03 1983-10-26 Parallel path coriolis mass flow rate meter Expired EP0109218B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/439,035 US4491025A (en) 1982-11-03 1982-11-03 Parallel path Coriolis mass flow rate meter
US439035 1982-11-03

Publications (3)

Publication Number Publication Date
EP0109218A2 EP0109218A2 (en) 1984-05-23
EP0109218A3 EP0109218A3 (en) 1984-08-22
EP0109218B1 true EP0109218B1 (en) 1987-02-04

Family

ID=23743007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83306511A Expired EP0109218B1 (en) 1982-11-03 1983-10-26 Parallel path coriolis mass flow rate meter

Country Status (6)

Country Link
US (1) US4491025A (cs)
EP (1) EP0109218B1 (cs)
JP (1) JPS5992314A (cs)
CA (1) CA1198909A (cs)
DE (2) DE109218T1 (cs)
MY (1) MY102710A (cs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027936A1 (de) * 1990-09-04 1992-03-05 Rota Yokogawa Gmbh & Co Kg Massedosierautomat

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559833A (en) * 1982-09-30 1985-12-24 Smith Meter Inc. Meter for measuring mass flow rate
GB8304783D0 (en) * 1983-02-21 1983-03-23 Shell Int Research Coriolis-type mass flow meter
US4711132A (en) * 1984-06-04 1987-12-08 Exac Corporation Apparatus for mass flow rate and density measurement
JPH0718734B2 (ja) * 1984-06-04 1995-03-06 イグザク・コ−ポレ−シヨン 物質の流れにおける質量流量を測定する流量計
EP0188572B1 (en) * 1984-07-11 1992-01-15 Exac Corporation Improved apparatus for mass flow rate and density measurement
DE3443234A1 (de) * 1984-11-27 1986-06-05 Danfoss A/S, Nordborg Massendurchfluss-messgeraet nach dem coriolis-prinzip
DE3505166A1 (de) * 1985-02-15 1986-08-21 Danfoss A/S, Nordborg Massendurchfluss-messgeraet nach dem coriolis-prinzip
US4622858A (en) * 1985-03-25 1986-11-18 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
US4628744A (en) * 1985-04-22 1986-12-16 Lew Hyok S S-tube Coriolis force flow meter
US4655089A (en) * 1985-06-07 1987-04-07 Smith Meter Inc. Mass flow meter and signal processing system
US4895031A (en) * 1985-08-29 1990-01-23 Micro Motion Inc. Sensor mounting for coriolis mass flow rate meter
US4738143A (en) * 1985-08-29 1988-04-19 Micro Motion, Incorporated High temperature Coriolis mass flow rate meter
JPH0754266B2 (ja) * 1985-08-29 1995-06-07 マイクロ・モ−ション・インコ−ポレ−テッド 振動する構造体にセンサ−を取付けるための装置
DE3534288A1 (de) * 1985-09-26 1987-04-02 Danfoss As Massendurchfluss-messgeraet nach dem coriolis-prinzip
JPH0441296Y2 (cs) * 1985-11-08 1992-09-29
US4733569A (en) * 1985-12-16 1988-03-29 K-Flow Division Of Kane Steel Co., Inc. Mass flow meter
JPS62170819A (ja) * 1986-01-23 1987-07-27 Oval Eng Co Ltd 質量流量計
US4756198A (en) * 1986-01-24 1988-07-12 Exac Corporation Sensor apparatus for mass flow rate measurement system
US4716771A (en) * 1986-02-11 1988-01-05 K-Flow Division Of Kane Steel Co., Inc. Symmetrical mass flow meter
US5423221A (en) * 1986-02-11 1995-06-13 Abb K-Flow Inc. Mass flow measuring device
DE3660696D1 (en) * 1986-04-04 1988-10-13 Krohne Messtechnik Kg Mass flow meter for fluids with coriolis force detecting devices
US4729243A (en) * 1986-05-05 1988-03-08 The Singer Company Mass-flow measuring instrument
US4730501A (en) * 1986-05-19 1988-03-15 Exac Corporation Single tube parallel flow coriolis mass flow sensor
US4781069A (en) * 1986-06-05 1988-11-01 Exac Corporation Mode selection apparatus for multiple tube coriolis type mass flow meters
GB8614135D0 (en) * 1986-06-10 1986-07-16 Foxboro Co Coriolis mass flowmeters
GB2192714A (en) * 1986-07-16 1988-01-20 Schlumberger Electronics Coriolis mass flow meter
US4768385A (en) * 1986-08-13 1988-09-06 Micro Motion, Inc. Parallel path Coriolis mass flow meter
US4817448A (en) * 1986-09-03 1989-04-04 Micro Motion, Inc. Auto zero circuit for flow meter
US4911006A (en) * 1986-10-03 1990-03-27 Micro Motion Incorporated Custody transfer meter
US4852410A (en) * 1986-10-03 1989-08-01 Schlumberger Industries, Inc. Omega-shaped, coriolis-type mass flow rate meter
DE3751349T2 (de) * 1986-10-03 1996-03-07 Micro Motion Inc Umschlagsmesser.
US4738144A (en) * 1986-10-03 1988-04-19 Micro Motion, Inc. Drive means for oscillating flow tubes of parallel path coriolis mass flow rate meter
WO1988002477A1 (en) * 1986-10-03 1988-04-07 Micro Motion, Inc. Density insensitive coriolis mass flow rate meter
WO1988002853A1 (en) * 1986-10-09 1988-04-21 Micro Motion, Inc. Apparatus and methods for measuring the density of an unknown fluid using a coriolis meter
US4759223A (en) * 1986-10-14 1988-07-26 Saul Frost Fluid mass flow meter
US5343764A (en) * 1986-10-28 1994-09-06 The Foxboro Company Coriolis-type mass flowmeter
US5271281A (en) * 1986-10-28 1993-12-21 The Foxboro Company Coriolis-type mass flowmeter
KR960000099B1 (ko) * 1986-10-28 1996-01-03 더폭스보로 컴패니 코리올리 유형의 질량유량계
US4777833A (en) * 1986-11-12 1988-10-18 Micro Motion, Inc. Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
US4856346A (en) * 1986-11-13 1989-08-15 K-Flow Division Of Kane Steel Company, Inc. Dual flexures for coriolis type mass flow meters
JP2565708B2 (ja) * 1987-04-17 1996-12-18 富士写真フイルム株式会社 放射線画像情報記録読取装置
JPH0749980B2 (ja) * 1987-08-20 1995-05-31 トキコ株式会社 振動式測定装置
US5027662A (en) * 1987-07-15 1991-07-02 Micro Motion, Inc. Accuracy mass flow meter with asymmetry and viscous damping compensation
JP2575203B2 (ja) * 1987-07-15 1997-01-22 マイクロ・モーション・インコーポレーテッド 非対称および粘性減衰の補償により精度を向上した質量流量計
US4914956A (en) 1987-07-22 1990-04-10 Exac Corporation Method and circuit for processing sensory input signals of the type obtained from coriolis mass flow rate sensors and the like
US4845989A (en) * 1987-09-04 1989-07-11 Titlow Joseph D Method and apparatus for determining elastic constants in tubes
DE3738018A1 (de) * 1987-11-09 1989-05-24 Flowtec Ag Verfahren zur fehlererkennung und -korrektur, insbesondere bei einem massendurchfluss-messgeraet
JPH0749981B2 (ja) * 1987-11-20 1995-05-31 トキコ株式会社 振動式測定装置
DE3877907D1 (de) * 1987-11-20 1993-03-11 Flowtec Ag Verfahren zur massendurchflussmessung nach dem coriolisprinzip und nach dem coriolisprinzip arbeitendes massendurchfluss-messgeraet.
US4884441A (en) * 1988-05-11 1989-12-05 Lew Hyok S Variable capacity flowmeter
US4879911A (en) * 1988-07-08 1989-11-14 Micro Motion, Incorporated Coriolis mass flow rate meter having four pulse harmonic rejection
US4876879A (en) * 1988-08-23 1989-10-31 Ruesch James R Apparatus and methods for measuring the density of an unknown fluid using a Coriolis meter
US4876898A (en) * 1988-10-13 1989-10-31 Micro Motion, Inc. High temperature coriolis mass flow rate meter
US4996871A (en) * 1989-06-02 1991-03-05 Micro Motion, Inc. Coriolis densimeter having substantially increased noise immunity
US4934196A (en) * 1989-06-02 1990-06-19 Micro Motion, Inc. Coriolis mass flow rate meter having a substantially increased noise immunity
USRE36376E (en) * 1989-06-09 1999-11-09 Micro Motion, Inc. Stability coriolis mass flow meter
RU2122182C1 (ru) * 1989-06-09 1998-11-20 Микро Моушн, Инк. Прибор для измерения массовой скорости текучих материалов
US5073208A (en) * 1989-09-14 1991-12-17 K-Flow Corporation Method for cryogenic treatment of Coriolis mass flow meter structures
DE4016907C3 (de) * 1990-05-25 1998-06-10 Krohne Ag Massendurchflußmeßgerät
CN1058565C (zh) * 1990-06-08 2000-11-15 微运转机械股份有限公司 科氏质量流量计
DE4124296A1 (de) * 1990-07-28 1992-02-06 Krohne Messtechnik Massametron Massendurchflussmessgeraet
US5373745A (en) * 1991-02-05 1994-12-20 Direct Measurement Corporation Single path radial mode Coriolis mass flow rate meter
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
US5497665A (en) * 1991-02-05 1996-03-12 Direct Measurement Corporation Coriolis mass flow rate meter having adjustable pressure and density sensitivity
AU1410692A (en) * 1991-02-05 1992-09-07 Donald Reed Cage Improved coriolis mass flow rate meter
US5228327A (en) * 1991-07-11 1993-07-20 Micro Motion, Inc. Technique for determining a mechanical zero value for a coriolis meter
US5231884A (en) * 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
DE4124295A1 (de) 1991-07-22 1993-01-28 Krohne Ag Massendurchflussmessgeraet
JPH0820295B2 (ja) * 1991-08-01 1996-03-04 マイクロ モーション,インコーポレイティド コリオリ効果質量流量計
DE4224379C2 (de) * 1992-07-06 1998-05-20 Krohne Messtechnik Kg Massendurchflußmeßgerät
US5344717A (en) * 1993-01-25 1994-09-06 Micro Motion, Incorporated Method of brazing and apparatus
US5796011A (en) * 1993-07-20 1998-08-18 Endress + Hauser Flowtech Ag Coriolis-type mass flow sensor
HU215143B (hu) * 1993-08-03 1998-12-28 MMG Automatika Művek Rt. Eljárás és berendezés áramló közeg tömegáramának mérésére
US5469747A (en) * 1994-01-21 1995-11-28 Detroit Diesel Corporation System and method of using Coriolis mass flow rate meter
US5429002A (en) * 1994-05-11 1995-07-04 Schlumberger Industries, Inc. Coriolis-type fluid mass flow rate measurement device and method employing a least-squares algorithm
DE4423168C2 (de) 1994-07-04 1998-09-24 Krohne Ag Massendurchflußmeßgerät
US5469748A (en) * 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US5497666A (en) * 1994-07-20 1996-03-12 Micro Motion, Inc. Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors
DE4435809A1 (de) 1994-10-07 1996-04-11 Krohne Messtechnik Kg Meßgerät für strömende Medien
US5546814A (en) * 1994-10-26 1996-08-20 The Foxboro Company Parallel-flow coriolis-type mass flowmeter with flow-dividing manifold
US5679906A (en) * 1995-03-15 1997-10-21 Micro Motion, Inc. Coriolis effect mass flowmeter using a single rotor having a flexible sensing element
MX9706824A (es) * 1995-03-15 1997-11-29 Micro Motion Inc Medidor de gasto masico de efecto de coriolis que usa rotores concentricos.
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
US5753827A (en) * 1995-10-17 1998-05-19 Direct Measurement Corporation Coriolis meteR having a geometry insensitive to changes in fluid pressure and density and method of operation thereof
US5907104A (en) * 1995-12-08 1999-05-25 Direct Measurement Corporation Signal processing and field proving methods and circuits for a coriolis mass flow meter
US5661232A (en) * 1996-03-06 1997-08-26 Micro Motion, Inc. Coriolis viscometer using parallel connected Coriolis mass flowmeters
US5827979A (en) * 1996-04-22 1998-10-27 Direct Measurement Corporation Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a Coriolis mass flow meter
US5804741A (en) * 1996-11-08 1998-09-08 Schlumberger Industries, Inc. Digital phase locked loop signal processing for coriolis mass flow meter
US6332367B1 (en) 1997-03-11 2001-12-25 Micro Motion, Inc. Dual loop Coriolis effect mass flowmeter
US6230104B1 (en) * 1997-09-30 2001-05-08 Micro Motion, Inc. Combined pickoff and oscillatory driver for use in coriolis flowmeters and method of operating the same
US5892159A (en) * 1997-10-17 1999-04-06 Smith; James Everett Mass flow rate meter
US8447534B2 (en) 1997-11-26 2013-05-21 Invensys Systems, Inc. Digital flowmeter
US6505519B2 (en) * 2000-03-23 2003-01-14 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US7784360B2 (en) * 1999-11-22 2010-08-31 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US7404336B2 (en) 2000-03-23 2008-07-29 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US7124646B2 (en) * 1997-11-26 2006-10-24 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US20030216874A1 (en) * 2002-03-29 2003-11-20 Henry Manus P. Drive techniques for a digital flowmeter
US8467986B2 (en) 1997-11-26 2013-06-18 Invensys Systems, Inc. Drive techniques for a digital flowmeter
US6092409A (en) 1998-01-29 2000-07-25 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter
DE19819753C2 (de) * 1998-05-04 2002-02-07 Rota Yokogawa Gmbh & Co Kg Verfahren zum Messen eines Massestromes nach dem Coriolis-Prinzip und Massedurchflußmeßgerät
US6327914B1 (en) 1998-09-30 2001-12-11 Micro Motion, Inc. Correction of coriolis flowmeter measurements due to multiphase flows
US6796173B1 (en) 1998-10-09 2004-09-28 Fti Flow Technology, Inc. Fuel flowmeter
US6513392B1 (en) 1998-12-08 2003-02-04 Emerson Electric Co. Coriolis mass flow controller
US6748813B1 (en) 1998-12-08 2004-06-15 Emerson Electric Company Coriolis mass flow controller
DE59904728D1 (de) 1998-12-11 2003-04-30 Flowtec Ag Coriolis-massedurchfluss-/dichtemesser
US6227059B1 (en) 1999-01-12 2001-05-08 Direct Measurement Corporation System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter
US6374478B1 (en) * 1999-06-30 2002-04-23 Micro Motion, Inc. Method for manufacturing a Coriolis flow meter assembly
US6477901B1 (en) 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
US6688176B2 (en) * 2000-01-13 2004-02-10 Halliburton Energy Services, Inc. Single tube densitometer
WO2001076338A1 (en) * 2000-03-31 2001-10-11 Micro Motion, Inc. Housing for an intrinsically-safe signal conditioner
US6226195B1 (en) * 2000-03-31 2001-05-01 Micro Motion, Incorporated Circuitry for supplying a controlled signal to a drive system
US6556931B1 (en) 2000-11-03 2003-04-29 Micro Motion, Inc. Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
US6456057B1 (en) 2000-11-06 2002-09-24 Micro Motion, Inc. Universal booster amplifier for a coriolis flowmeter
US6471487B2 (en) 2001-01-31 2002-10-29 Micro Motion, Inc. Fluid delivery system
US6535826B2 (en) 2001-02-16 2003-03-18 Micro Motion, Inc. Mass flowmeter methods, apparatus, and computer program products using correlation-measure-based status determination
US6694279B2 (en) 2001-02-16 2004-02-17 Micro Motion, Inc. Methods, apparatus, and computer program products for determining structural motion using mode selective filtering
US6466880B2 (en) 2001-02-16 2002-10-15 Micro Motion, Inc. Mass flow measurement methods, apparatus, and computer program products using mode selective filtering
US6807866B2 (en) * 2001-02-22 2004-10-26 Endress + Hauser Flowtec Ag Transducer of the vibration type, such as an electromechanical transducer of the coriollis type
US20040258541A1 (en) * 2002-01-03 2004-12-23 Greg Glatzmaier Orbital fluid pump
EP1590651B1 (en) * 2003-02-05 2015-08-19 Micro Motion, Inc. Determination of amount of proppant added to a fracture fluid using a coriolis flow meter
US7188534B2 (en) * 2003-02-10 2007-03-13 Invensys Systems, Inc. Multi-phase coriolis flowmeter
US7059199B2 (en) 2003-02-10 2006-06-13 Invensys Systems, Inc. Multiphase Coriolis flowmeter
US7013740B2 (en) * 2003-05-05 2006-03-21 Invensys Systems, Inc. Two-phase steam measurement system
US7072775B2 (en) * 2003-06-26 2006-07-04 Invensys Systems, Inc. Viscosity-corrected flowmeter
US20070186684A1 (en) * 2003-07-24 2007-08-16 Pham Nghieu Q Vibrating tube mass flow meter
US7065455B2 (en) * 2003-08-13 2006-06-20 Invensys Systems, Inc. Correcting frequency in flowtube measurements
EP1788362B1 (en) * 2003-09-29 2010-11-17 Micro Motion, Inc. Apparatus and method for a coriolis flow meter using multiple vibration modes
US7446582B2 (en) * 2003-11-21 2008-11-04 Greg C Glatzmaier Phase angle control method
CN100472189C (zh) * 2003-12-10 2009-03-25 微动公司 流量计类型识别
US7040181B2 (en) 2004-03-19 2006-05-09 Endress + Hauser Flowtec Ag Coriolis mass measuring device
US7284449B2 (en) * 2004-03-19 2007-10-23 Endress + Hauser Flowtec Ag In-line measuring device
DE102004018326B4 (de) 2004-04-13 2023-02-23 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zum Messen einer Dichte und/oder einer Viskosität eines Fluids
WO2006031215A1 (en) 2004-09-09 2006-03-23 Micro Motion, Inc. A method and apparatus for measuring flow through a conduit by measuring coriolis coupling between two vibration modes
JP2008514916A (ja) 2004-09-27 2008-05-08 マイクロ・モーション・インコーポレーテッド コリオリ流量計における左右の固有ベクトルの流入量決定
US7263882B2 (en) * 2005-02-03 2007-09-04 Integrated Sensing Systems, Inc. Fluid system and method of assessing a property of a fluid flowing therein
DE102005046319A1 (de) 2005-09-27 2007-03-29 Endress + Hauser Flowtec Ag Verfahren zum Messen eines in einer Rohrleitung strömenden Mediums sowie Meßsystem dafür
JP4955005B2 (ja) 2005-10-06 2012-06-20 マイクロ・モーション・インコーポレーテッド 磁石アッセンブリ
CN103852120A (zh) * 2005-10-18 2014-06-11 微动公司 确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法
US7360452B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
US7360453B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
JP5114427B2 (ja) 2005-12-27 2013-01-09 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト インライン測定装置、およびインライン測定装置における測定誤差を補正するための方法
JP4254966B2 (ja) * 2006-03-14 2009-04-15 株式会社オーバル 振動方向規制手段を有するコリオリ流量計
DE102006029443B3 (de) * 2006-06-21 2008-01-31 Siemens Ag Sensor in mikromechanischer Bauweise zum Messen des Massendurchflusses nach dem Coriolis-Prinzip
US7617055B2 (en) 2006-08-28 2009-11-10 Invensys Systems, Inc. Wet gas measurement
WO2008064459A1 (en) * 2006-11-30 2008-06-05 Hatch Ltd. Method and apparatus for fluid leak detection
DE102006062600B4 (de) 2006-12-29 2023-12-21 Endress + Hauser Flowtec Ag Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
DE102007050686A1 (de) * 2007-10-22 2009-04-23 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102008016235A1 (de) 2008-03-27 2009-10-01 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines auf einer rotierenden Karussell-Abfüllmachine angeordneten Meßgeräts
US10480977B2 (en) 2008-05-01 2019-11-19 Micro Motion, Inc. Method for generating a diagnostic from a deviation of a flow meter parameter
AU2009347133B2 (en) * 2009-05-27 2013-03-28 Micro Motion, Inc. Method and apparatus for determining a flow rate error in a vibrating flow meter
EP2464947B1 (en) 2009-08-12 2017-12-13 Micro Motion, Inc. Method and apparatus for determining and compensating for a change in a differential zero offset of a vibrating flow meter
RU2545081C2 (ru) 2010-08-02 2015-03-27 Майкро Моушн, Инк. Способ и устройство для определения температуры элемента вибрационного датчика вибрационного измерителя
MX2013001820A (es) 2010-08-27 2013-03-08 Micro Motion Inc Validacion de ensamble de sensor.
US9851239B2 (en) 2011-05-23 2017-12-26 Micro Motion, Inc. System and method for preventing false flow measurements in a vibrating meter
EP2718678B1 (en) 2011-06-08 2021-01-27 Micro Motion, Inc. Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
WO2012177241A1 (en) 2011-06-21 2012-12-27 Halliburton Energy Services, Inc. Fluid densitometer with temperature sensor to provide temperature correction
KR101777154B1 (ko) 2011-07-07 2017-09-12 마이크로 모우션, 인코포레이티드 다중 미터 유체 유동 시스템의 차동 유동 특성을 결정하는 방법 및 장치
KR101753562B1 (ko) 2011-07-07 2017-07-06 마이크로 모우션, 인코포레이티드 진동계를 위한 개선된 전기 구성
WO2013028200A1 (en) 2011-08-25 2013-02-28 Micro Motion, Inc. Transmitter mount for a fluid flowmeter
CN104011512B (zh) 2011-10-26 2017-04-12 微动公司 用于振动流体计量器的并置传感器
CN102494726B (zh) 2011-11-18 2014-03-26 青岛澳波泰克安全设备有限责任公司 科里奥利质量流量计、振动管密度计及其中使用的振动片
JP5559239B2 (ja) 2012-04-26 2014-07-23 株式会社オーバル コリオリ流量計
MX337860B (es) 2012-05-03 2016-03-16 Halliburton Energy Services Inc Densitometro de fluido con iman sencillo.
WO2014084835A1 (en) 2012-11-29 2014-06-05 Micro Motion, Inc. Detection of a change in the cross - sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
US9080908B2 (en) 2013-07-24 2015-07-14 Jesse Yoder Flowmeter design for large diameter pipes
EP3069109B1 (en) 2013-11-13 2021-09-22 Micro Motion, Inc. Brace bar for a vibrating meter
CN103630178B (zh) * 2013-11-28 2016-08-24 中国测试技术研究院流量研究所 质量流量计隔振系统
KR102061724B1 (ko) 2014-04-07 2020-01-02 마이크로 모우션, 인코포레이티드 진동 유량계들에서의 비대칭 유동을 검출하기 위한 장치 및 방법
EP3129755B1 (en) 2014-04-07 2022-07-20 Micro Motion, Inc. Improved vibrating flowmeter and related methods
WO2016003447A1 (en) 2014-07-01 2016-01-07 Micro Motion, Inc. Fluid momentum detection method and related apparatus
WO2016007142A1 (en) 2014-07-08 2016-01-14 Micro Motion, Inc. Vibratory flow meter and method to generate digital frequency outputs
WO2016010514A1 (en) * 2014-07-14 2016-01-21 Micro Motion, Inc. Apparatus for determining a differential zero offset in a vibrating flowmeter and related method
JP6698067B2 (ja) 2014-08-07 2020-05-27 マイクロ モーション インコーポレイテッド ワークピースの内側領域にシールドガスを投与して、溶接浸透プロファイルを制御する方法及び装置
MX363104B (es) 2014-09-04 2019-03-08 Micro Motion Inc Herramienta para flujometro diferencial.
US9368264B2 (en) * 2014-09-08 2016-06-14 Micro Motion, Inc. Magnet keeper assembly and related method
CN106716079B (zh) 2014-09-18 2019-09-10 高准公司 用于确定密度差的方法及设备
RU2665350C1 (ru) 2014-10-21 2018-08-29 Майкро Моушн, Инк. Устройство для применения изменяемого алгоритма обнуления в вибрационном расходомере и связанный способ
CN107430020B (zh) 2015-03-25 2020-06-16 高准公司 减小振动流量计中钎焊接头应力的装置和方法
RU2683413C1 (ru) * 2015-04-14 2019-03-28 Майкро Моушн, Инк. Обнаружение неточного измерения расхода вибрационным измерителем
WO2017091608A1 (en) * 2015-11-24 2017-06-01 Malema Engineering Corporation Integrated coriolis mass flow meters
WO2017099810A1 (en) 2015-12-11 2017-06-15 Micro Motion, Inc. Asymmetric flowmeter and related method
EP3390979B1 (en) 2015-12-18 2021-05-26 Micro Motion, Inc. Compact flowmeter and related method
JP6921280B2 (ja) * 2015-12-18 2021-08-18 マイクロ モーション インコーポレイテッド コンパクトな流量計及び関連する方法
EP3411672B1 (en) 2016-02-04 2021-04-28 Micro Motion, Inc. Pressure compensation for a vibrating flowmeter and related method
CN108603779B (zh) 2016-02-09 2021-12-28 高准公司 用于调制流动通路的方法及设备
CN108700453B (zh) 2016-02-26 2023-11-28 高准公司 确定经校正的所测量流率
CN108700904B (zh) * 2016-02-26 2020-12-11 高准公司 限制由两个或更多个仪表组件汲取的电流
US10173885B2 (en) 2016-03-07 2019-01-08 Gilbarco Inc. Fuel dispenser having acoustic waves coriolis flow meter
US10591336B2 (en) 2016-03-25 2020-03-17 Micro Motion, Inc. Method for maximizing flowmeter turndown and related apparatus
KR102245156B1 (ko) 2016-05-16 2021-04-26 마이크로 모우션, 인코포레이티드 다중-채널 유동 튜브
MX2019002360A (es) 2016-10-04 2019-06-17 Micro Motion Inc Metodo de calibracion de medidor de flujo y aparato relacionado.
BR112019014821A2 (pt) 2017-01-20 2020-02-27 Gilbarco Inc. Analisador, dispensador e ambiente de combustível
EP3677878B1 (en) 2017-03-07 2024-08-21 Micro Motion Inc. Driver, sensor, and brace bar for a vibratory conduit
JP6844024B2 (ja) 2017-03-20 2021-03-17 マイクロ モーション インコーポレイテッド 処理状態における振動計のゼロオフセットの決定
CN110582689B (zh) 2017-05-11 2021-12-31 高准公司 针对粘度效应校正所测量的流率
JP6949151B2 (ja) 2017-06-27 2021-10-13 マイクロ モーション インコーポレイテッド 流体測定システム、およびコリオリ流量計を安定化する方法
US10794744B2 (en) 2017-07-18 2020-10-06 Micro Motion, Inc. Flowmeter sensor with interchangeable flow path and related method
RU2662035C1 (ru) * 2017-09-13 2018-07-23 Общество с ограниченной ответственностью "Компания Штрай" Расходомер и способ его изготовления
US11650091B2 (en) 2017-11-02 2023-05-16 Micro Motion, Inc. Compact vibrating type flowmeter
RU2762783C2 (ru) 2017-11-13 2021-12-22 Майкро Моушн, Инк. Устройство для определения давления протекающих паров и соответственный способ
RU2755869C1 (ru) 2018-02-23 2021-09-22 Майкро Моушн, Инк. Способ и устройство мониторинга растворения
WO2019199268A1 (en) 2018-04-09 2019-10-17 Micro Motion, Inc. Flowmeter phase fraction and concentration measurement adjustment method and apparatus
CN112088291A (zh) 2018-05-15 2020-12-15 高准公司 用于高温的线圈换能器
JP7090212B2 (ja) 2018-10-08 2022-06-23 マイクロ モーション インコーポレイテッド 振動計の洗浄及び洗浄状態の検出
US11885658B2 (en) 2018-12-17 2024-01-30 Micro Motion, Inc. Converting a directly measured mass flow rate to account for buoyancy
MX2021010881A (es) 2019-04-03 2021-10-22 Micro Motion Inc Uso de medicion de densidad de fluido para verificar presion de vapor.
JP7258180B2 (ja) * 2019-04-03 2023-04-14 マイクロ モーション インコーポレイテッド 蒸気圧計器係数を使用する蒸気圧の決定
WO2020204919A1 (en) 2019-04-03 2020-10-08 Micro Motion, Inc. Determining a vapor pressure of a fluid in a meter assembly
CN113661378B (zh) 2019-04-03 2024-10-25 高准有限公司 使用蒸气压确定多组分流体中的组分的浓度
CN114207387B (zh) 2019-07-30 2025-09-12 高准有限公司 可变质量平衡杆
KR102762469B1 (ko) 2019-08-19 2025-02-04 마이크로 모우션, 인코포레이티드 진증기압 및 플래싱 검출 장치 및 관련 방법
EP4103914B1 (en) 2020-02-10 2024-12-18 Micro Motion, Inc. Apparatus for applying a temperature flow coefficient in a vibrating flowmeter and related method
US10782170B1 (en) 2020-02-26 2020-09-22 IDEX India PVT. LTD Method and apparatus to balance a coriolis mass flow meter adding balancing weights by determining reaction forces
US11300435B2 (en) 2020-04-10 2022-04-12 Malema Engineering Corporation Coriolis mass flow sensors having different resonant frequencies
US11619532B2 (en) 2020-04-10 2023-04-04 Malema Engineering Corporation Replaceable, gamma sterilizable Coriolis flow sensors
MX2023000522A (es) 2020-08-06 2023-02-13 Micro Motion Inc Transductor para un medidor de fluido de vibracion.
EP4430365A1 (en) 2021-11-12 2024-09-18 Micro Motion, Inc. Vibrating type fluid flow meter comprising a flow tube bumper
KR20240107173A (ko) 2021-11-12 2024-07-08 마이크로 모우션, 인코포레이티드 코리올리 유량계 외부 자기장 정량화 장치 및 방법
DE102021131866A1 (de) 2021-12-03 2023-06-07 Endress+Hauser Flowtec Ag Verfahren zum Detektieren eines Fremdkörpers in einem Medium
WO2023191762A1 (en) 2022-03-28 2023-10-05 Micro Motion, Inc. Mode excitation detection for a vibratory flowmeter and related methods
JP2025510279A (ja) 2022-03-28 2025-04-14 マイクロ モーション インコーポレイテッド 流量計一次封じ込め障害検出
JP2025518879A (ja) 2022-06-07 2025-06-19 マイクロ モーション インコーポレイテッド 流量計の外部磁気検出
JP2025518880A (ja) 2022-06-07 2025-06-19 マイクロ モーション インコーポレイテッド 流量計用の外部磁石補償
CN119968548A (zh) 2022-09-30 2025-05-09 高准有限公司 流量计磁屏蔽设备和方法
CN120659973A (zh) 2023-03-09 2025-09-16 高准有限公司 包括从计量器线圈伸出的线材挠曲件的振动式计量器和相关方法
US12372390B2 (en) 2023-05-08 2025-07-29 Malema Engineering Corporation Coriolis mass flow rate sensor
WO2025085049A1 (en) 2023-10-16 2025-04-24 Micro Motion, Inc. Coriolis flowmeter with external magnetic field detection and related method
WO2025101188A1 (en) 2023-11-08 2025-05-15 Micro Motion, Inc. Method and related apparatus for monitoring the energy consumption of a coriolis flowmeter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE268353C (cs) * 1947-09-02
US2821084A (en) * 1954-09-07 1958-01-28 American Radiator & Standard Flow control devices for flowmeters
US2877649A (en) * 1955-07-14 1959-03-17 American Radiator & Standard Coriolis mass flowmeter
GB1207997A (en) * 1966-10-22 1970-10-07 Siegfried Brockhaus Device for measuring the density of a fluid
SU426170A1 (ru) * 1972-05-29 1974-04-30 Ю. П. Жуков , В. Н. Бегунов Ярославский технологический институт ВИБРАЦИОННЫЙ ПЛОТНОМЕРВ ПТ БШ f«?^f^*'.'%f»'">&1-4 Щ CRi^iSCi^niiS
SU486247A1 (ru) * 1974-01-25 1975-09-30 Ярославский политехнический институт Вибрационный плотномер жидкости
US4127028A (en) * 1977-06-07 1978-11-28 Halliburton Company Coriolis mass flow rate metering means
US4187721A (en) * 1977-07-25 1980-02-12 S & F Associates Method and structure for flow measurement
US4192184A (en) * 1978-11-13 1980-03-11 Halliburton Company Mass flowmeter
US4311054A (en) * 1978-11-13 1982-01-19 Halliburton Company Mass flowmeter with sensor gain control
US4252028A (en) * 1979-02-26 1981-02-24 S & F Associates Method and apparatus for measuring flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027936A1 (de) * 1990-09-04 1992-03-05 Rota Yokogawa Gmbh & Co Kg Massedosierautomat

Also Published As

Publication number Publication date
DE3369730D1 (en) 1987-03-12
EP0109218A2 (en) 1984-05-23
EP0109218A3 (en) 1984-08-22
US4491025A (en) 1985-01-01
DE109218T1 (de) 1986-05-22
CA1198909A (en) 1986-01-07
JPH0422209B2 (cs) 1992-04-16
MY102710A (en) 1992-09-30
US4491025B1 (cs) 1988-01-05
JPS5992314A (ja) 1984-05-28

Similar Documents

Publication Publication Date Title
EP0109218B1 (en) Parallel path coriolis mass flow rate meter
US10794744B2 (en) Flowmeter sensor with interchangeable flow path and related method
US6308580B1 (en) Coriolis flowmeter having a reduced flag dimension
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
US4768385A (en) Parallel path Coriolis mass flow meter
US8215185B2 (en) Vibrating flow device and method for fabricating a vibrating flow device
JPH0663808B2 (ja) 物質の流れにおける質量流量を測定する流量計
WO1985005677A1 (en) Apparatus for mass flow rate and density measurement
US10545043B2 (en) Flowmeter manifold with indexing boss
BR112012003654B1 (pt) Medidor de fluxo, e, método de formar o mesmo
KR20010030733A (ko) 코리올리 질량유량계 및 그 제조방법
US12050120B2 (en) Compact vibrating type flowmeter
US8667852B2 (en) Flow meter including a balanced reference member
AU2013200990B2 (en) A flow meter including a balanced reference member
EP4594713A1 (en) Flowmeter magnetic shielding apparatus and method
WO2023191762A1 (en) Mode excitation detection for a vibratory flowmeter and related methods
JPH0454895B2 (cs)
HK40026205A (en) Flowmeter sensor with interchangeable flow path and related method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

RHK1 Main classification (correction)

Ipc: G01F 1/84

17P Request for examination filed

Effective date: 19850125

DET De: translation of patent claims
17Q First examination report despatched

Effective date: 19860423

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3369730

Country of ref document: DE

Date of ref document: 19870312

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020906

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020916

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020924

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031025

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20