EP0109096A1 - Dispositif à inductance variable - Google Patents

Dispositif à inductance variable Download PDF

Info

Publication number
EP0109096A1
EP0109096A1 EP83111475A EP83111475A EP0109096A1 EP 0109096 A1 EP0109096 A1 EP 0109096A1 EP 83111475 A EP83111475 A EP 83111475A EP 83111475 A EP83111475 A EP 83111475A EP 0109096 A1 EP0109096 A1 EP 0109096A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
phase
control
magnetic field
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83111475A
Other languages
German (de)
English (en)
Other versions
EP0109096B1 (fr
Inventor
Gérald Roberge
André Doyon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of EP0109096A1 publication Critical patent/EP0109096A1/fr
Application granted granted Critical
Publication of EP0109096B1 publication Critical patent/EP0109096B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F29/146Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • the present invention relates to a variable inductance device and relates more particularly to a device, the effective permeability of which is controlled by a closed magnetic circuit through which a magnetic flux with constant and adjustable current flows.
  • variable inductance device or “variable inductance” will be used interchangeably.
  • One of the aims of the present invention is to avoid the drawbacks mentioned above, relating to known devices, and aims to provide an inductance with a low level of harmonics by appropriate control of its permeability or reluctance.
  • the present invention relates to a variable inductor for three-phase circuit comprising for each of its phases a first magnetic circuit formed of an anisotropic material through which an alternating magnetic field circulates.
  • the inductor further comprises a closed magnetic control circuit, also formed from an anisotropic material, through which a magnetic field with adjustable direct current flows, the magnetic control circuit being arranged relative to each of the first magnetic circuits. to define for each phase at least one common magnetic space in which the respective alternating and direct magnetic fields are superposed orthogonally to orient the magnetic dipoles of the common spaces in a direction predetermined by the intensity of the direct current magnetic field of the magnetic control circuit and thus to control the permeability of the first magnetic circuits to the alternating field.
  • the first magnetic circuits are formed by first and second ferromagnetic cores, the first and second cores each including three protuberances arranged symmetrically around each core and mounted opposite each other in pairs, in each of which circulates an alternating magnetic field coupled to a phase of a three-phase source, the closed magnetic control circuit being formed of a ferromagnetic control core disposed relative to the first and second core so as to define for each phase a common magnetic space where the magnetic field of this phase and the continuous magnetic field overlap orthogonally to orient the magnetic dipoles of each common space in a predetermined direction and thus to control the permeability of the first magnetic circuits to the alternating field of said phases.
  • Figures 1 and 2 illustrate an arrangement of three-phase inductance in a stack of cylindrical cores of identical cross section.
  • This arrangement allows a symmetrical distribution of PA, PB and PC phase windings around the legs 1-l ', 2-2' and 3-3 'of the nuclei M' and M "respectively.
  • the control nucleus N of which l the winding is supplied with adjustable direct current via the terminals E1 and E2, also comprises legs N1, N2 and N3 which are mounted opposite the legs 1, 2 and 3 of the core M ', on the one hand, and legs N'l, N'2 and N'3 mounted opposite the legs 1 ', 2' and 3 'of the core M ", on the other hand.
  • the magnetic core N connects the legs of the cores M 'and M " through junction zones belonging to the magnetic core N and subsequently called "common magnetic spaces".
  • the orthogonal arrangement of the direct current magnetic circuit with respect to the alternating current magnetic circuits has the effect of producing in the common magnetic spaces a magnetic torque proportional to the value, in the core N, of the direct current magnetic field, which polarizes the dipoles of these common magnetic spaces.
  • the respective alternating current magnetic fluxes of the three phases cannot take the same path as the direct current magnetic flux; the direct current magnetic field orients, by polarizing them, the magnetic dipoles of the common magnetic spaces so as to act on the permeability of the magnetic circuits excited by the alternating current windings of the different phases as desired.
  • the nuclei M 'M ", and N are made of ferromagnetic materials of the same cross section, either ferrite or rolled iron, and consequently have an inherent anisotropic property.
  • the dipoles of the different common spaces in the absence of direct current polarizing field in the N core tend to orient in the direction of the alternating maanetic field, the permeability of the magnetic circuits in alternating current then being a measure of the ease with which the magnetic dipoles orient in the direction of the corresponding magnetic field.
  • the alternating current magnetic circuits become saturated when their di-poles are completely oriented in the direction of the alternating magnetic field.
  • This three-phase variable inductance device therefore essentially consists in producing in common magnetic spaces a direct current magnetic field, which has the effect of opposing the rotation of the dipoles of these common spaces for adequate control of the effective permeability of alternating magnetic circuits.
  • FIG. 2 also allows elimination of the third and ninth harmonic currents by means of a star connection of the three phases PA, PB and PC, with floating neutral, not connected to ground, and elimination of the fluxes.
  • third and ninth harmonics using a superimposed secondary winding, PSA, PSB and PSC, connected in a triangle.
  • This delta connection of the PSA, PSB and .PSC windings is illustrated in Figure 3.
  • the losses in the control core N are considerably reduced due to the fact that no bidirectional reaction remains between the control core and phase nuclei, since there is no alternating magnetic flux in the control nucleus N, the sum of the effects of the three phases being zero.
  • the neutral of the star connection being isolated from ground, it is not possible for zero sequence components to establish a transient state.
  • the three-phase variable inductor can also operate in self-control.
  • the diagram of connection of the phases and the control coils which include a variable source with direct current V providing a reverse flux is represented in FIG. 3.
  • the excitation mode proposed in FIG. 3 comprises two superimposed control systems, that is to say a control supplied directly by the high voltage power circuit and a reverse low power control connected to the DC source V constant, but adjustable.
  • the three-phase current is rectified using diode bridges T and crosses the excitation winding El-E2 before completing its return circuit.
  • a second winding is superimposed on the first in the control core and is supplied by a constant direct current source V of low power.
  • V constant direct current source
  • This latter winding is arranged so that the direct current magnetic field generated in the control core N opposes the main direct current magnetic field generated by the self-monitoring winding.
  • the magnetic field resulting in the control core will then be a function of the magnetic field generated by the three-phase alternating current, rectified by T, which flows in the winding in self-control and, therefore, a function of the voltage level across the terminals. variable inductance.
  • This control is simple and does not require any feedback loop to correct the desired magnetic torque on the dipoles in the common magnetic space N.
  • This magnetic torque is generated directly by the resulting direct current magnetic field injected into the control core and the choice of the number of turns of the self-check winding plays a very important role.
  • the attached table shows the harmonic distortion rates of the phase current obtained when the three-phase inductor of Figure 3 is used either in self-control, or in self-control with reverse control.
  • the figures in parentheses refer to the operating points indicated in Figure 4.
  • FIG. 4 represents the characteristic curves of the three-phase cylindrical inductance of FIG. 3 as a function of the ampere-turns of direct current control and as a function of a self-control. More particularly, the curve “X" is that obtained for the operation in self-checking only of the inductor while the curve “Y" represents the operating characteristic of the three-phase inductor in self-checking with reverse DC power supply of the control core.
  • variable permeability inductor described above lends itself particularly well to an application as a static compensator when used in parallel with a capacitor bank for power transmission networks.
  • the response time of the variable inductor is of the order of, or less than, one cycle for a network voltage of 60 Hertz and the transition is made without deformation of the current.
  • the harmonic distortion of the inductor being very low, no filter other than the connection of the secondary delta is necessary, which contributes to very significantly reducing the cost and increasing the reliability of the static compensator.
  • this variable inductor can be connected directly at the high voltage of the network and that its losses of iron and copper are comparable to those of a transformer.
  • control mode proposed for the inductor with variable permeability of the cylindrical type illustrated in FIG. 3 is particularly advantageous in an application to the static compensator.
  • This three-phase inductor includes a self-control circuit from the rectification of the inductor current and a low-power reverse control from an independent direct current source.
  • the inductance thus controlled offers an ideal element for controlling the energy conveyed by an energy transmission line, because the operating range of this inductor is threefold (voltage rise, regulation and overvoltage, the saturation level of the inductance is never reached, the response to a voltage disturbance on the transmission line is instantaneous and its reliability is considerable mainly due to the simplicity of this control.
  • this inductance three-phase becomes the variable element for a static compensator whose performance meets the present needs of energy transmission networks.
  • the phase currents pass from l the capacitive state to the inductive state in an interval of about 0.5 cycles on a basis of 60 Hertz.
  • This transition from the capacitive state, where I is less than zero, to the inductive state is particularly ent well shown in Figure 5 whose curves illustrate the operating points of the static compensator using a variable inductance with reverse control ranging from 0 to 500 negative ampere-turns.
  • the variable inductance described above therefore allows transmission without deformation of the current wave, except for the angle adjustment from + 90 ° to - 90 ° with respect to the supply voltage of the compensator; as for the phase current distortion, it remains negligible.
  • the three-phase variable inductor can also be connected in series with a capacitor bank, the result being inductive, in order to increase the power variation of the variable inductor as a function of direct current ampere-turns.
  • the number of turns of the direct current coil supplied by the diode bridges could possibly be modified to l using thyristors slaved to a voltage setpoint, which would have the effect of shifting the curve of the operating point of the inductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

L'inductance variable pour circuit triphasé comprend pour chacune des phases un premier circuit magnétique formé d'un matériau anisotrope à travers lequel circule un champ magnétique alternatif. L'inductance variable comprend en outre un circuit magnétique de contrôle fermé à travers lequel circule un champ magnétique à courant continu réglable, ce circuit magnétique de contrôle étant également formé d'un matériau anisotrope. Les premiers circuits magnétiques sont formés par un premier et un second noyaux ferromagnétiques qui incluent chacun trois protubérances (1, 2, 3; 1', 2', 3') disposées symétriquement autour de chaque noyau et montées en vis-à-vis par paires, dans chacune desquelles circule un champ magnétique alternatif couplé à une phase d'une source triphasée. Le circuit magnétique de contrôle fermé est formé d'un noyau ferromagnétique de contrôle (N) disposé par rapport aux premier et second noyaux de façon à définir un espace magnétique commun où le champ magnétique de chaque phase et le champ magnétique continu se superposent orthogonalement pour orienter les dipôles magnétiques de chaque espace commun suivant une direction prédéterminée et pour ainsi commander la perméabilité des premiers circuits magnétiques au champ alternatif de chaque phase.

Description

  • La présente invention est relative à un dispositif à inductance variable et vise plus particulièrement un dispositif, dont la perméabilité efficace est commandée par un circuit magnétique fermé à travers lequel circule un flux magnétique à courant constant et réglable.
  • Dans cette demande de brevet, on utilisera indifféremment les termes "dispositif à inductance variable" ou "inductance variable".
  • Présentement, il existe plusieurs dispositifs à configurations diverses susceptibles d'être utilisés comme inductance variable en préconisant un contrôle de la perméabilité ou de la réluctance du matériau formant l'inductance par superposition longitudinale d'un flux magnétique soit alternatif, soit constant, comme par exemple dans le brevet U.S. N° 1,788,152 de Dowling émis en 1931; le brevet U.S. N° 2,844,804 de Roe, du 22 juillet 1958; le brevet U.S. N° 2,976,478 de Aske, du 21 mars 1961; et le brevet U.S. N° 3,735,305 de Sinnott et al, du 22 mai 1973. On connait également le brevet U.S. N° 3,757,201 de Cornwell, émis le 4 septembre 1973 qui décrit un appareil destiné à régulariser une tension, un courant ou une charge, côté secondaire, au moyen d'un couplage magnétique variable qui affecte considérablement le facteur de puissance de l'inductance. Dans ce brevet, la perméabilité du circuit magnétique est affectée au moyen d'un flux constant, contrôlable dans un plan normal à celui d'un flux alternatif, mais il en résulte une augmentation considérable du courant. d'excitation et du flux de fuite du circuit magnétique. Ces dispositifs connus possèdent toutefois des inconvénients majeurs dûs au fait que plusieurs de ceux-ci fonctionnent à saturation, présentent une distorsion très appréciable de l'onde courant dû aux harmoniques générées dans les circuits magnétiques, et possèdent un faible facteur de puissance.
  • Un des buts de la présente invention est d'éviter les inconvénients mentionnés ci-dessus, relatifs aux dispositifs connus, et vise à proposer une inductance à faible taux d'harmoniques par un contrôle approprié de sa perméabilité ou réluctance.
  • Plus spécifiquement, la présente invention a trait à une inductance variable pour circuit triphasé comprenant pour chacune de ses phases un premier circuit magnétique formé d'un matériau anisotrope à travers lequel circule un champ magnétique alternatif. L'inductance comprend en outre un circuit magnétique de contrôle fermé, également formé d'un matériau anisotrope, à travers lequel circule un champ magnétique à courant continu réglable, le circuit magnétique de contrôle étant disposé par rapport à chacun des premiers circuits magnétiques de façon à définir pour chaque phase au moins un espace magnétique commun dans lequel les champs magnétiques alternatif et continu respectifs se superposent orthogonalement pour orienter les dipôles magnétiques des espaces communs suivant une direction prédéterminée par l'intensité du champ magnétique à courant continu du circuit magnétique de contrôle et pour contrôler ainsi la perméabilité des premiers circuits magnétiques au champ alternatif. Selon l'invention, les premiers circuits magnétiques sont formés par un premier et un second noyaux ferromagnétiques, le premier et le second noyaux incluant chacun trois protubérances disposées symétriquement autour de chaque noyau et montées en vis-à-vis par paires, dans chacune desquelles circule un champ magnétique alternatif couplé à une phase d'une source triphasée, le circuit magnétique de contrôle fermé étant formé d'un noyau ferromagnétique de contrôle disposé par rapport au premier et second noyau de façon à définir pour chaque phase un espace magnétique commun où le champ magnétique de cette phase et le champ magnétique continu se superposent orthogonalement pour orienter les dipôles magnétiques de chaque espace commun suivant une direction prédéterminée et pour commander ainsi la perméabilité des premiers circuits magnétiques au champ alternatif desdites phases.
  • Les formes de réalisation préférées de la présente invention seront décrites ci-après avec référence aux dessins, dans lesquels:
    • la figure 1 illustre un mode de réalisation de l'inductance pour circuits triphasés selon l'invention ayant une configuration cylindrique;
    • la figure 2 est une vue explosée de l'inductance variable triphasée illustrée à la figure 1;
    • la figure 3 présente un schéma de raccordement de l'inductance variable de la figure 1 montée en auto-contrôle et contrôle inverse;
    • La figure 4 montre les lieux d'opération de l'inductance variable triphasée de la figure 3; et
    • la figure 5 présente les lieux d'opération d'un compensateur statique utilisant l'inductance triphasée suivant la présente invention.
  • Les figures 1 et 2 illustrent un arrangement d'inductance triphasée suivant un empilement de noyaux cylindriques de section droite identique. Cet arrangement permet une distribution symétrique d'enroulements de phase PA, PB et PC autour des jambes 1-l', 2-2' et 3-3' des noyaux M' et M" respectivement. Le noyau de contrôle N, dont l'enroulement est alimenté en courant continu réglable par les bornes El et E2, comprend également des jambes N1, N2 et N3 qui sont montées en vis-à-vis des jambes 1, 2 et 3 du noyau M', d'une part, et des jambes N'l, N'2 et N'3 montées en vis-à-vis des jambes 1', 2' et 3' du noyau M", d'autre part.
  • Comme on peut le voir sur les Figures 1 et 2, le noyau magnétique N relie les jambes des noyaux M' et M" à travers des zones de jonction appartenant au noyau magnétique N et dénommées ultérieurement "espaces magnétiques communs". La disposition orthogonale du circuit magnétique à courant continu par rapport aux circuits magnétiques à courant alternatif a pour effet de produire dans les espaces magnétiques communs un couple magnétique proportionnel à la valeur, dans le noyau N, du champ magnétique à courant continu, qui polarise les dipôles de ces espaces magnétiques communs. En raison de cette disposition orthogonale, les flux magnétiques à courant alternatif respectifs des trois phases ne peuvent emprunter le même chemin que le flux magnétique à courant continu; le champ magnétique à courant continu oriente, en les polarisant, les dipôles magnétiques des espaces magnétiques communs de façon à agir sur la perméabilité des circuits magnétiques excités par les enroulements à courant alternatif des différentes phases comme on le désire.
  • Dans ce montage les noyaux M' M", et N sont en matériaux ferromagnétiques de même section droite, soit en ferrite, soit en fer laminé, et présentent par conséquent une propriété anisotropique inhérente. Aussi, les dipôles des différents espaces communs en l'absence de champ polarisant à courant continu dans le noyau N, tendent à s'orienter dans la direction du champ maanétique alternatif, la perméabilité des circuits magnétiques à courant alternatif étant alors une mesure de la facilité avec laquelle les dipôles magnétiques s'orientent dans la direction du champ magnétique correspondant. Les circuits magnétiques à courant alternatifs deviennent saturés au moment où leursdi-pôles sont complètement orientés dans la direction du champ magnétique alternatif. En conséquence, l'application d'un champ magnétique à courant continu dans le noyau N dans une direction transverse au champ magnétique alternatif de chaque phase a pour effet d'agir sur les dipôles des espaces magnétiques communs en les polarisant, pour les éloigner de leur position d'équilibre, de sorte que les champs magnétiques alternatifs des trois phases doivent grandir en module pour que chaque dipôle maintienne sa même position d'équilibre dans les espaces magnétiques communs Ce processus n'affecte aucunement l'inductance de fuite, mais seulement l'inductance de magnétisation de l'inductance variable triphasée. Il en résulte que l'induction magnétique de saturation se trouve augmentée et que les courbes de magnétisation deviennent plus linéaires avec l'augmentation du champ magnétique à courant continu dans les espaces communs. En conséquence, l'application d'un champ magnétique à courant continu perpendiculairement à un champ magnétique alternatif produit un effet d'entrefer variable pour le circuit magnétique alternatif.
  • Le principe de fonctionnement de ce dispositif à inductance variable triphasée consiste donc essentiellement à produire dans des espaces magnétiques communs un champ magnétique à courant continu, qui a pour effet de s'opposer à la rotation des dipôles de ces espaces communs pour un contrôle adéquat de la perméabilité efficace des circuits magnétiques alternatifs.
  • Le montage de la figure 2 permet également une élimination des courants de troisième et neuvième harmoniques au moyen d'un raccordement en étoile des trois phases PA, PB et PC, avec neutre flottant, non raccordé à la masse, et l'élimination des flux de troisième et neuvième harmoniques à l'aide d'un enroulement secondaire superposé, PSA, PSB et PSC, raccordé en triangle. Ce raccordement en triangle des enroulements PSA, PSB et.PSC est illustré à la Figure 3. De plus, les pertes dans le noyau de contrôle N sont considérablement réduites en raison du fait qu'aucune réaction bidirectionnelle ne subsiste entre le noyau de contrôle et les noyaux de phase, puisqu'il n'existe aucun flux magnétique alternatif dans le noyau de contrôle N, la somme des effets des trois phases étant nulle. En outre, le neutre du raccordement en étoile étant isolé de la masse, il n'est pas possible aux composants homopolaires de courant de s'établir en régime transitoire.
  • L'inductance variable triphasée peut également fonctionner en auto-contrôle. Pour un tel fonctionnement, le schéma de raccordement des phases et des bobines de contrôle qui incluent une source variable à courant continu V fournissant un flux inverse, est représenté à la figure 3.
  • Le mode d'excitation proposé à la figure 3 comporte deux systèmes de contrôle superposés, c'est-à-dire un contrôle alimenté directement par le circuit de puissance haute tension et un contrôle inverse de faible puissance relié à la source à courant continu V constante, mais réglable.
  • Dans ce circuit, le courant triphasé est redressé à l'aide de ponts de diodes T et traverse l'enroulement d'excitation El-E2 avant de compléter son circuit de retour. Un deuxième enroulement est superposé au premier dans le noyau de contrôle et se trouve alimenté par une source à courant continu constante V de faible puissance. Ce dernier enroulement est disposé de façon que le champ magnétique à courant continu généré dans le noyau de contrôle N s'oppose au champ magnétique à courant continu principal généré par l'enroulement d'auto-contrôle. Le champ magnétique résultant dans le noyau de contrôle sera alors une fonction du champ magnétique généré par le courant alternatif triphasé, redressé par T, qui circule dans l'enroulement en auto-contrôle et, par conséquent, une fonction du niveau de tension aux bornes de l'inductance variable. Le fonctionnement de ce contrôle est simple et ne requiert aucune boucle de retour pour corriger le couple magnétique désiré sur les dipôles dans l'espace magnétique commun N. Ce couple magnétique est généré directement par le champ magnétique à courant continu résultant injecté dans le noyau de contrôle et le choix du nombre de tours de l'enroulement d'auto-contrôle y joue un rôle très important.
  • Dans le tableau ci-annexé, sont représentés les taux de distorsion harmonique du courant de phase obtenus lorsque l'inductance triphasée de la figure 3 est utilisée soit en auto-contrôle, soit en auto-contrôle avec contrôle inverse. Sur ce tableau, les chiffres entre parenthèses réfèrent aux points de fonctionnement indiqués sur la figure 4.
  • Cette figure 4 représente les courbes caractéristiques de l'inductance triphasée cylindrique de la figure 3 en fonction des ampères-tours de contrôle à courant continu et en fonction d'un auto-contrôle. Plus particulièrement, la courbe "X" est celle obtenue pour le fonctionnement en auto-contrôle seul de l'inductance alors que la courbe "Y" représente la caractéristique de fonctionnement de l'inductance triphasée en auto-contrôle avec alimentation à courant continu inverse du noyau de contrôle.
  • L'inductance à perméabilité variable décrite ci-haut se prête particulièrement bien à une application comme compensateur statique lorsqu'elle est utilisée en parallèle avec une batterie de condensateurs pour les réseaux de transport d'énergie. En effet, le temps de réponse de l'inductance variable est de l'ordre de, ou inférieur à,un cycle pour une tension de réseau de 60 Hertz et la transition se fait sans déformation du courant. En outre, la distorsion harmonique de l'inductance étant très faible, aucun filtre autre que le raccordement du secondaire en delta n'est nécessaire, ce qui contribue à diminuer très sensiblement le coût et augmenter la fiabilité du compensateur statique. Il est également à noter que cette inductance variable peut être branchée directement à la haute tension du réseau et que ses pertes de fer et de cuivre sont comparables à celles d'un transformateur.
  • En effet, le mode de contrôle proposé pour l'inductance à perméabilité variable du type cylindrique illustré à la figure 3, est particulièrement avantageux dans une application au compensateur statique. Cette inductance triphasée comporte un circuit d'auto-contrôle venant du redressement du courant de l'inductance et un contrôle inverse de faible puissance venant d'une source à courant continu indépendante. L'inductance ainsi contrôlée offre un élément idéal pour contrôler l'énergie véhiculée par une ligne de transport d'énergie, car la plage d'opération de cette inductance est triple (montée de tension, régulation et surtensiocl, le niveau de saturation de l'inductance n'est jamais atteint, la réponse à une pertubation de tension sur la ligne de transmission est instantanée et sa fiabilité est considérable dû principalement à la simplicité de ce contrôle. De fait, utilisée en parallèle avec une batterie de condensateurs, cette inductance triphasée devient l'élément variable pour un compensateur statique dont les performances répondent aux besoins présents des réseaux de transport d'énergie. En effet, lors de l'apparition d'une surtension sur la ligne de transport, les courants de phase passent de l'état capacitif à l'état inductif dans un intervalle d'environ 0,5 cycle sur une base de 60 Hertz. Ce passage de l'état capacitif, où I est inférieur à zéro, à l'état inductif est particulièrement bien montré dans la figure 5 dont les courbes illustrent les points de fonctionnement du compensateur statique utilisant une inductance variable avec contrôle inverse allant de 0 à 500 ampères-tours négatifs. L'inductance variable décrite ci-haut permet donc une transmission sans déformation de l'onde courant, si ce n'est l'ajustement de l'angle de + 90° à - 90° par rapport à la tension d'alimentation du compensateur; quant à la distorsion du courant de phase, elle demeure négligeable.
  • L'inductance variable triphasée peut également être reliée en série avec une batterie de condensateurs, la résultante étant inductive, afin d'augmenter la variation de puissance de l'inductance variable en fonction des ampères-tours à courant continu.
  • Par ailleurs, en vue d'effectuer une régulation de tension pour une pente de 3 à 10 % selon le choix de l'utilisateur, le nombre de tours de la bobine à courant continu alimentée par les ponts de diodes pourrait éventuellement être modifié à l'aide de thyristors asservis à une consigne de tension, ce qui aurait pour effet de déplacer la courbe du point de fonctionnement de l'inductance.
  • L'inductance variable triphasée selon l'invention a été décrite précédemment à l'aide d'un mode de réalisation préféré. Bien entendu, ce mode de réalisation peut être modifié, à condition de respecter l'étendue des revendications annexées, sans pour cela sortir du cadre de la présente invention.
    Figure imgb0001

Claims (7)

1. Inductance variable pour circuit triphasé comprenant pour chacune de ses phases un premier circuit magnétique formé d'un matériau anisotrope à travers lequel circule un champ magnétique alternatif, ladite inductance comprenant en outre un circuit magnétique de contrôle fermé, également formé d'un matériau anisotrope, à travers lequel circule un champ magnétique à courant continu réglable, le circuit magnétique de contrôle étant disposé par rapport à chacun des premiers circuits magnétiques de façon à définir pour chaque phase au moins un espace magnétique commun dans lequel les champs magnétiques alternatif et continu respectifs se superposent orthogonalement pour orienter les dipôles magnétiques desdits espaces communs suivant une direction prédéterminée par l'intensité dudit champ magnétique à courant continu du circuit magnétique de contrôle et pour contrôler ainsi la perméabilité desdits premiers circuits magnétiques audit champ alternatif, caractérisée par le fait que les premiers circuits magnétiques sont formés par un premier et un second noyaux ferromagnétiques, le premier et le second noyaux incluant chacun trois protubérances (1,2,3; l', 2', 3') disposées symétriquement autour de chaque noyau et montées en vis-à-vis par paires, dans chacune desquelles circule un champ magnétique alternatif couplé à une phase d'une source triphasée, ledit circuit magnétique de contrôle fermé étant formé d'un noyau ferromagnétique de contrôle (N) disposé par rapport au premier et second noyau de façon à définir pour chaque phase un espace magnétique commun où le champ magnétique de cette phase et le' champ magnétique continu se superposent orthogonalement pour orienter les dipôles magnétiques de chaque espace commun suivant une direction prédéterminée et pour commander ainsi la perméabilité desdits premiers circuits magnétiques au champ alternatif desdites-phases.
2. Inductance variable selon la revendication 1, caractérisée par le fait que lesdits premier et second noyaux de phase et ledit noyau de contrôle sont de configuration cylindrique et de sections droites identiques.
3. Inductance variable selon la revendication 1, caractérisée par le fait que chaque paire de protubérances (1,1' ; 2,2' ; 3,3') montées en vis-à-vis comporte un premier et un second enroulements et que les premiers enroulements sont interconnectés en étoile avec neutre flottant alors que les seconds enroulements sont interconnectés en triangle.
4. Inductance variable selon l'une des revendications 1 ou 3, caractérisée par le fait que ledit noyau de contrôle comporte un premier enroulement à travers lequel circule un courant, dont l'intensité est asservie au courant triphasé de la source au moyen d'un pont de redressement (T), de façon à définir un fonctionnement en auto-contrôle de ladite inductance variable.
5. Inductance variable selon la revendication 4, caractérisée par le fait qu'un second enroulement est prévu sur ledit noyau de contrôle et relié à une source à courant continu de façon à définir un fonctionnement en contrôle inverse de ladite inductance variable par opposition d'un champ magnétique à courant continu inverse à celui généré par le premier enroulement du noyau de contrôle.
6. Inductance variable selon la revendication 1, caractérisée par le fait qu'une batterie de condensateurs est reliée en parallèle avec ladite inductance variable pour déterminer un fonctionnement en compensateur statique à plage inductive et capacitive variable.
7. Inductance variable selon la revendication 1, caractérisée par le fait qu'une batterie de condensateurs est reliée en série avec ladite inductance.
EP83111475A 1978-10-20 1979-10-19 Dispositif à inductance variable Expired EP0109096B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000313821A CA1118509A (fr) 1978-10-20 1978-10-20 Variable inductance
CA313821 1978-10-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP79400766.6 Division 1979-10-19

Publications (2)

Publication Number Publication Date
EP0109096A1 true EP0109096A1 (fr) 1984-05-23
EP0109096B1 EP0109096B1 (fr) 1986-04-30

Family

ID=4112642

Family Applications (3)

Application Number Title Priority Date Filing Date
EP83111475A Expired EP0109096B1 (fr) 1978-10-20 1979-10-19 Dispositif à inductance variable
EP83111087A Expired EP0106371B1 (fr) 1978-10-20 1979-10-19 Inductance variable pour circuit triphase
EP79400766A Expired EP0010502B1 (fr) 1978-10-20 1979-10-19 Inductance variable

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP83111087A Expired EP0106371B1 (fr) 1978-10-20 1979-10-19 Inductance variable pour circuit triphase
EP79400766A Expired EP0010502B1 (fr) 1978-10-20 1979-10-19 Inductance variable

Country Status (6)

Country Link
US (1) US4393157A (fr)
EP (3) EP0109096B1 (fr)
JP (1) JPS6040171B2 (fr)
BR (1) BR7906797A (fr)
CA (1) CA1118509A (fr)
DE (1) DE2967481D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599162A (zh) * 2023-07-19 2023-08-15 昆明理工大学 一种n-1下新能源渗透率的确定方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102575A (ja) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd ビデオデイスクプレ−ヤ
US5523673A (en) * 1994-03-04 1996-06-04 Marelco Power Systems, Inc. Electrically controllable inductor
US5426409A (en) * 1994-05-24 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy Current controlled variable inductor
EP0969486A4 (fr) * 1997-12-17 2001-03-07 Tohoku Electric Power Co Transformateur variable a commande de flux
KR100510638B1 (ko) * 1999-02-04 2005-08-31 엘지전자 주식회사 반도체 인덕터 소자
KR100621186B1 (ko) * 1999-12-28 2006-09-06 삼성전자주식회사 영상표시기기의 수평 선형성 보정회로
GB2361107A (en) * 2000-04-03 2001-10-10 Abb Ab Magnetic bias of a magnetic core portion used to adjust a core's reluctance
US6933822B2 (en) * 2000-05-24 2005-08-23 Magtech As Magnetically influenced current or voltage regulator and a magnetically influenced converter
NO317045B1 (no) * 2000-05-24 2004-07-26 Magtech As Magnetisk pavirkbar strom- eller spenningsregulerende anordning
US7026905B2 (en) * 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
JP4789030B2 (ja) * 2001-04-27 2011-10-05 財団法人北九州産業学術推進機構 可変リアクトルを用いた誘導発電機の電圧制御方法
NO318397B1 (no) * 2001-11-21 2005-03-14 Magtech As System for styring av impedans i en arbeidskrets
NO319424B1 (no) * 2001-11-21 2005-08-08 Magtech As Fremgangsmate for styrbar omforming av en primaer vekselstrom/-spenning til en sekundaer vekselstrom/-spenning
NO319363B1 (no) * 2002-12-12 2005-07-18 Magtech As System for spenningsstabilisering av kraftforsyningslinjer
NO20033362D0 (no) * 2003-07-25 2003-07-25 Magtech As Mykstarter for asynkrone motorer
GB2407214A (en) * 2003-10-14 2005-04-20 Magtech A S Variable inductor
WO2005076293A1 (fr) * 2004-02-03 2005-08-18 Magtech As Dispositifs et procedes de regulation d'une alimentation electrique
GB2419479A (en) * 2004-10-14 2006-04-26 Magtech A S Symetrization of a three-phase system with a single-phase load
US7378828B2 (en) * 2004-11-09 2008-05-27 The Boeing Company DC-DC converter having magnetic feedback
NO322286B1 (no) * 2004-12-23 2006-09-11 Magtech As Anordning og fremgangsmate for reduksjon av harmoniske i en trefaset spenningsforsyning
DE102006022438A1 (de) * 2006-05-13 2007-11-15 Robert Bosch Gmbh Luftspule als Koppelinduktivität
US7274574B1 (en) * 2006-05-15 2007-09-25 Biegel George E Magnetically controlled transformer apparatus for controlling power delivered to a load with current transformer feedback
US9019061B2 (en) * 2009-03-31 2015-04-28 Power Systems Technologies, Ltd. Magnetic device formed with U-shaped core pieces and power converter employing the same
US8120457B2 (en) 2010-04-09 2012-02-21 Delta Electronics, Inc. Current-controlled variable inductor
RU2451353C1 (ru) * 2010-10-21 2012-05-20 Александр Михайлович Брянцев Трехфазный управляемый подмагничиванием реактор
RU2473999C1 (ru) * 2011-07-15 2013-01-27 "Сиадор Энтерпрайзис Лимитед" Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора
RU2486619C1 (ru) * 2012-02-07 2013-06-27 Александр Михайлович Брянцев Электрический трехфазный реактор с подмагничиванием
KR102032791B1 (ko) * 2013-06-03 2019-10-16 삼성전자주식회사 노이즈 필터 및 이를 포함하는 전자장치
JP6504766B2 (ja) * 2014-08-28 2019-04-24 株式会社日立製作所 静止誘導電器
US9997290B2 (en) * 2015-06-26 2018-06-12 Intel Corporation Variable inductor and wireless communication device including variable device for conversion of a baseband signal to a radio frequency (RF) range
US9979273B2 (en) * 2016-05-19 2018-05-22 Abb Schweiz Ag Resonant converters with variable inductor
RU2643787C1 (ru) * 2016-09-29 2018-02-06 Сергей Александрович Смирнов Способ управления шунтирующим реактором при отключении
RU2643789C1 (ru) * 2016-09-29 2018-02-06 Сергей Александрович Смирнов Способ подключения управляемого шунтирующего реактора ( варианты)
RU2658346C1 (ru) * 2017-06-07 2018-06-20 Илья Николаевич Джус Способ коммутации управляемого шунтирующего реактора
RU2659820C1 (ru) * 2017-07-13 2018-07-04 Илья Николаевич Джус Семистержневой трехфазный подмагничиваемый реактор
US10144035B1 (en) * 2017-08-23 2018-12-04 Teledyne Instruments, Inc. Low-frequency sound source for underwater sound propagation research and calibration
RU2658347C1 (ru) * 2017-10-03 2018-06-20 Илья Николаевич Джус Устройство для регулирования тока шунтирующего реактора
RU2686657C1 (ru) * 2018-07-23 2019-04-30 Илья Николаевич Джус Управляемый шунтирующий реактор (варианты)
RU2686301C1 (ru) * 2018-07-24 2019-04-25 Илья Николаевич Джус Шунтирующий реактор с комбинированным возбуждением (варианты)
RU2685221C1 (ru) * 2018-07-24 2019-04-17 Илья Николаевич Джус Шунтирующий реактор со смешанным возбуждением (варианты)
RU2699017C1 (ru) * 2018-12-19 2019-09-03 Илья Николаевич Джус УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВУМЯ ПОДМАГНИЧИВАЕМЫМИ РЕАКТОРАМИ (варианты)
RU2701150C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты)
RU2701144C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус Управляемый шунтирующий реактор
RU2706719C1 (ru) * 2019-01-28 2019-11-20 Илья Николаевич Джус УСТРОЙСТВО УПРАВЛЕНИЯ ДВУМЯ РЕАКТОРАМИ (варианты)
RU2701147C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус Шунтирующий управляемый реактор
RU2701149C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты)
RU2700569C1 (ru) * 2019-03-26 2019-09-18 Илья Николаевич Джус Управляемый реактор с независимым подмагничиванием
CN112541154B (zh) * 2020-11-26 2021-10-08 东南大学 一种磁路功率的计算方法
RU2757149C1 (ru) * 2020-12-08 2021-10-11 Илья Николаевич Джус Трехфазный управляемый реактор (варианты)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1026416B (de) * 1955-10-08 1958-03-20 Siemens Ag Gleichstromvormagnetisierte Drehstromdrosselspule
US2844804A (en) * 1955-07-06 1958-07-22 Letourneau Westinghouse Compan Control transformer
CH355210A (de) * 1958-01-25 1961-06-30 Bbc Brown Boveri & Cie Regulieranordnung für Schweissgleichrichter
US3087108A (en) * 1957-01-03 1963-04-23 Dominic S Toffolo Flux switching transformer
US3622868A (en) * 1970-02-06 1971-11-23 Joachim H Todt Regulating power transformer with magnetic shunt
US3657678A (en) * 1970-06-08 1972-04-18 Carl A Schwenden Multi-purpose, multi-voltage transformer
US3757201A (en) * 1972-05-19 1973-09-04 L Cornwell Electric power controlling or regulating system
FR2324053A1 (fr) * 1975-09-12 1977-04-08 Inst Elektroswarki Patona Dispositif pour le traitement des metaux au plasma

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1788152A (en) * 1928-06-20 1931-01-06 Union Switch & Signal Co Electrical translating apparatus
US1862204A (en) * 1930-11-01 1932-06-07 Union Switch & Signal Co Electrical translating apparatus
US2445857A (en) * 1944-11-23 1948-07-27 Automatic Elect Lab Magnetic frequency changer
US3188456A (en) * 1961-08-24 1965-06-08 Jr Raymond L King Magnetic modulator for computing divisions and multiplications
BE629601A (fr) * 1962-03-16
US3403323A (en) * 1965-05-14 1968-09-24 Wanlass Electric Company Electrical energy translating devices and regulators using the same
US3582829A (en) * 1968-08-05 1971-06-01 Wanlass Electric Co Modulating systems incorporating an electrically variable inductance as a modulating element
US3735305A (en) * 1972-09-20 1973-05-22 Us Air Force High power electrically variable inductor
GB1424986A (en) * 1974-02-11 1976-02-11 Rivas R V De Electromagnetic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844804A (en) * 1955-07-06 1958-07-22 Letourneau Westinghouse Compan Control transformer
DE1026416B (de) * 1955-10-08 1958-03-20 Siemens Ag Gleichstromvormagnetisierte Drehstromdrosselspule
US3087108A (en) * 1957-01-03 1963-04-23 Dominic S Toffolo Flux switching transformer
CH355210A (de) * 1958-01-25 1961-06-30 Bbc Brown Boveri & Cie Regulieranordnung für Schweissgleichrichter
US3622868A (en) * 1970-02-06 1971-11-23 Joachim H Todt Regulating power transformer with magnetic shunt
US3657678A (en) * 1970-06-08 1972-04-18 Carl A Schwenden Multi-purpose, multi-voltage transformer
US3757201A (en) * 1972-05-19 1973-09-04 L Cornwell Electric power controlling or regulating system
FR2324053A1 (fr) * 1975-09-12 1977-04-08 Inst Elektroswarki Patona Dispositif pour le traitement des metaux au plasma

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROWN BOVERI MITTEILUNGEN, vol. 52, no. 7, juillet 1965 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599162A (zh) * 2023-07-19 2023-08-15 昆明理工大学 一种n-1下新能源渗透率的确定方法
CN116599162B (zh) * 2023-07-19 2023-09-15 昆明理工大学 一种n-1下新能源渗透率的确定方法

Also Published As

Publication number Publication date
EP0106371A2 (fr) 1984-04-25
JPS6040171B2 (ja) 1985-09-10
EP0106371B1 (fr) 1986-03-26
EP0010502B1 (fr) 1985-07-10
BR7906797A (pt) 1980-06-17
US4393157A (en) 1983-07-12
CA1118509A (fr) 1982-02-16
EP0109096B1 (fr) 1986-04-30
DE2967481D1 (en) 1985-08-14
EP0106371A3 (en) 1984-05-30
EP0010502A1 (fr) 1980-04-30
JPS5556608A (en) 1980-04-25

Similar Documents

Publication Publication Date Title
EP0109096B1 (fr) Dispositif à inductance variable
EP0194163B1 (fr) Inductance variable auto-controlée à entrefers, et système électrique comprenant une telle inductance
EP0339164A1 (fr) Transformateur-inducteur auto-régulé à entrefers
EP1555745B1 (fr) Convertisseur 12 alternances comportant une self de filtrage intégré au redresseur
CA1293538C (fr) Appareil de mesure de courants electriques a couplage magnetique
FR2532511A1 (fr)
EP0340049A1 (fr) Dispositif d'alimentation de tube luminescent
EP1841616B1 (fr) Transformateur pour véhicule moteur multicourant
CH648708A5 (fr) Dispositif d'alimentation de courant continu a tension reglable comprenant un transformateur variable.
EP0443342A1 (fr) Procédé de contrôle du transfert d'énergie dans un convertisseur statique; convertisseur statique d'énergie pour sa mise en oeuvre et alimentation électrique utilisant un tel convertisseur
FR3012252A1 (fr) Dispositif d'inductance
CH620054A5 (fr)
FR2494520A1 (fr) Onduleur statique perfectionne, notamment pour des lampes a decharge
EP0226510B1 (fr) Convertisseur symétrique de tension à régulation primaire
BE485412A (fr)
BE495834A (fr)
BE519791A (fr)
BE475379A (fr)
BE351530A (fr)
FR2500690A2 (fr) Moteur generateur electrique a flux differentiel
FR2801736A1 (fr) Dispositif de filtrage d'harmoniques generees par une charge alimentee par un reseau a frequence variable
BE495595A (fr)
BE486084A (fr)
BE483325A (fr)
BE404957A (fr) Dispositif de contrôle des appareils à décharge électrique utilisant une méthode différentielle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 10502

Country of ref document: EP

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19840613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 10502

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

REF Corresponds to:

Ref document number: 2967595

Country of ref document: DE

Date of ref document: 19860605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 83111475.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961011

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961028

Year of fee payment: 18

Ref country code: FR

Payment date: 19961028

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961118

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961209

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: HYDRO-QUEBEC

Effective date: 19971031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

EUG Se: european patent has lapsed

Ref document number: 83111475.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST