EP0108190B1 - Stosswellenreflektor - Google Patents

Stosswellenreflektor Download PDF

Info

Publication number
EP0108190B1
EP0108190B1 EP83106090A EP83106090A EP0108190B1 EP 0108190 B1 EP0108190 B1 EP 0108190B1 EP 83106090 A EP83106090 A EP 83106090A EP 83106090 A EP83106090 A EP 83106090A EP 0108190 B1 EP0108190 B1 EP 0108190B1
Authority
EP
European Patent Office
Prior art keywords
reflector
angle
wave
die
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106090A
Other languages
English (en)
French (fr)
Other versions
EP0108190A2 (de
EP0108190A3 (en
Inventor
Othmar Dr.Rer.Nat. Wess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier System GmbH
Original Assignee
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier System GmbH filed Critical Dornier System GmbH
Publication of EP0108190A2 publication Critical patent/EP0108190A2/de
Publication of EP0108190A3 publication Critical patent/EP0108190A3/de
Application granted granted Critical
Publication of EP0108190B1 publication Critical patent/EP0108190B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to a reflector for focusing shock waves for the contact-free comminution of concrements in bodies of living beings according to DE-A-23 51247.
  • the reflector has the shape of an ellipsoid and has the task of absorbing shock waves that are generated at a spark gap in the first focal point and spread through a liquid in the reflector to the second focal point, in which the concrement to be destroyed e.g. a kidney stone is in focus.
  • the reflector should transmit as high a proportion of the wave energy generated in the first focal point as possible in phase to the second focal point.
  • Reflectors made of brass are known with an enclosure angle of approximately 250 °, whereby the full solid angle (4n) is used to approximately 90% and an axis ratio a: b of approximately 2: 1 (E. Schmiedt: Contributions to Urology, Vol. 2 , Pages 8-13, Kunststoff 1980).
  • the other constraints such as stability and easy workability have led to the use of brass.
  • the invention has for its object to provide a reflector that focuses shock waves with a higher efficiency than the reflectors known from the prior art.
  • the invention is based on the knowledge that it is not the jump in sound wave resistance ⁇ ⁇ c that alone is the decisive variable for good focusing, but that the speeds of the sound wave in the reflector material and in the liquid must be coordinated with one another.
  • the waves hitting the surface of the reflector stimulate it, among other things. to transversal vibrations that propagate with characteristic propagation velocities in the reflector material and on its surface.
  • the reflected wavefront is disturbed if, due to time differences, the reflection surface already swings in the direction of the surface normal when the primary wavefront arrives.
  • In-phase focusing in the second focal point is achieved when the wave propagates faster in the liquid than in the reflector.
  • the wavefront then always hits a stationary reflector surface.
  • materials can also be used whose transverse surface speed is greater than the speed of sound in the coupling medium, e.g. Water is when only the leading of the surface wave is prevented by the geometry of the reflector by complying with the condition mentioned in claim 1.
  • the reflected useful wave itself remains undisturbed and retains the original steepness of the primary wave. All other faults - e.g. are generated by the lagging surface wave - follow the useful wave with a time delay and cannot impair the focusing process.
  • Reflectors according to the invention realize a much better focusing than before, since all wave components overlap in phase.
  • the slope of the pressure rise which is essential for comminution, remains high.
  • the shredding performance increases, fewer applications than before are necessary, which relieves the patient and increases the service life of the spark gap.
  • the condition c To ⁇ c s is met if lead is used as the reflector material and water is used as the coupling liquid. Since the transverse speed of sound in lead at 710 m / sec is lower than the speed of sound in water at 1480 m / sec, the propagating primary wave 7 is always faster than the surface wave 10. The condition is therefore always fulfilled regardless of the reflector geometry. A critical angle ⁇ k does not occur. It is not necessary for the entire reflector body to be made of lead. It is sufficient if the inner surface of the reflector consists of a layer of lead.
  • the condition according to the invention can also be met by reflectors made of a material whose c To > c s .
  • the focus can be improved for the same material by choosing the axial ratio of the ellipsoid closer to 1 or by dispensing with edge zones (smaller angle of coverage).
  • the edge zones are extremely important for the transmission and should not be left out.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)

Description

  • Die Erfindung betrifft einen Reflektor zur Fokussierung von Stoßwellen zur berührungsfreien Zerkleinerung von Konkrementen in Körpern von Lebewesen gemäß der DE-A-23 51247.
  • Der Reflektor besitzt die Form eines Ellipsoids und hat die Aufgabe, Stoßwellen, die an einer Funkenstrecke im ersten Brennpunkt erzugt werden und sich durch eine Flüssigkeit im Reflektor ausbreiten auf den zweiten Brennpunkt, in dem sich das zu zerstörende Konkrement z.B. ein Nierenstein befindet, zu fokussieren. Der Reflektor soll einen möglichst hohen Anteil der im ersten Brennpunkt erzeugten Wellenenergie möglichst phasenrichtig in den zweiten Brennpunkt übertragen.
  • Bekannt sind Reflektoren aus Messing mit einem Umschliessungswinkel von ca. 250°, wobei der volle Raumwinkel (4n) zu etwa 90% ausgenutzt wird und einem Achsverhältnis a:b von ungefähr 2:1 (E. Schmiedt: Beiträge zur Urologie, Bd. 2, Seite 8-13, München 1980). Die Materialauswahl erfolgt aufgrund eines möglichst hohen Sprunges in der Schallimpedanz z=ζ· c (ζ = Dichte; c = Schallgeschwindgkeit) zwischen Flüssigkeit und Reflektormaterial, um einen hohen Reflexionskoeffizienten zu erhalten. Die weiteren Randbedingungen wie Stabilität und leichte Bearbeitbarkeit haben bisher zur Verwendung von Messing geführt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Reflektor zu schaffen, der Stoßwellen mit einem höheren Wirkungsgrad als die aus dem Stand der Technik bekannten Reflektoren fokussiert.
  • Gelöst wird diese Aufgabe von einem Reflektor mit den im Anspruch 1 genannten Merkmalen.
  • Ausbildungen der Erfindung sind Gegenstände von Unteransprüchen.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass nicht der Sprung im Schallwellenwiderstand ζ · c allein die entscheidende Grösse für eine gute Fokussierung ist, sondern dass die Geschwindigkeiten der Schallwelle im Reflektormaterial und in der Flüssigkeit aufeinander abgestimmt sein müssen. Die auf die Oberfläche des Reflektors treffenden Wellen regen diesen u.a. zu Transversalschwingungen an, die sich mit charakteristischen Ausbreitungsgeschwindigkeiten im Reflektormaterial und an dessen Oberfläche ausbreiten. Zu Störungen der reflektierten Wellenfront kommt es, wenn aufgrund von Laufzeitunterschieden die Reflexionsfläche bereits in Richtung der Flächennormalen schwingt, wenn die Primärwellenfront einläuft.
  • Eine phasenrichtige Fokussierung in den zweiten Brennpunkt wird dann erreicht, wenn sich die Welle in der Flüssigkeit schneller als im Reflektor ausbreitet. Die Wellenfront trifft dann stets auf eine ruhende Reflektoroberfläche.
  • Genäß der Erfindung können jedoch auch Materialien verwendet werden, deren transversale Oberflächengeschwindigkeit größer als die Schallgeschwindigkeit im Koppelmedium z.B. Wasser ist, wenn nur die Voreilung der Oberflächenwelle durch die Geometrie des Reflektors durch Einhalten der im Anspruch 1 genannten Bedingung verhindert wird. Die reflektierte Nutzwelle bleibt dann selbst ungestört und behält die ursprüngliche Flankensteilheit der Primärwelle bei. Alle übrigen Störungen - die z.B. durch die nachhinkende Oberflächenwelle erzeugt werden - folgen der Nutzwelle zeitlich verzögert und können den Fokussierungsvorgang nicht beeinträchtigen.
  • Erfindungsgemässe Reflektoren realisieren eine wesentlich bessere Fokussierung als bisher, da alle Wellenanteile sich phasenrichtig überlagern. Die Flankensteilheit des Druckanstiegs, die für eine Zerkleinerung wesentlich ist, bleibt hoch. Die Zerkleinerungsleistung steigt, es sind weniger Applikationen als bisher notwendig, wodurch der Patient entlastet wird und die Standzeit der Funkenstrecke erhöht wird.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der einzigen Figur erklärt:
    • Die Figur zeigt schematisch einen menschlichen Körper 1 mit einem Nierenstein 6 in einer wassergefüllten Wanne 2. An der Unterseite der Wanne 2 ist ein ellipsoidförmiger Reflektor 3 mit den beiden Brennpunkten 9 und 5 befestigt, der ebenfalls mit Wasser gefüllt ist. Im Brennpunkt 4 im Inneren des Reflektors 3 befindet sich eine Funkenstrecke (nicht gezeigt), die durch Unterwasserentladung Stosswellen erzeugen kann. Im zweiten Brennpunkt 5, ausserhalb des Reflektors, liegt das zu zerstörende Konkrement, z.B. der Nierenstein 6. Durch die Reflektorgeometrie ist der Grenzwinkel ϕ max definiert. Wenn im Brennpunkt 4 eine Unterwasserentladung gezündet wird, entsteht eine Stosswellenfront 7, die sich kugelförmig ausbreitet und vom Reflektor 3 als reflektierte Stosswellenfront 9 auf den Nierenstein geleitet wird. Durch die hohen Druck- und Zugamplituden Herden Teile des Nierensteins zum Abplatzen gebracht. Eingezeichnet ist die Stosswellenfront 7, die gerade an den Punkten 8 die Reflektoroberfläche erreicht. Sie trifft momentan unter einem Winkel ϕ auf die Reflektoroberfläche. Die auftretende Stosswellenfront 7 wird zum grössten Teil reflektiert (Front 9), erzeugt aber auch eine transversale Oberflächenwelle 10 (nicht maßstäblich gezeichnet), die sich in der Reflektoroberfläche ausbreitet (Pfeil). Bei erfindungsgemässer Material- und Geometrieauswahl läuft die Primärwelle 7 schneller über die Reflektoroberfläche als die störende Transversalwelle 10. Die Primärwelle 7 trifft daher immer auf ruhendes Oberflächenmaterial, sie wird ungestört reflektiert. Die reflektierte Wellenfront 9 behält die ursprüngliche Flankensteilheit im Druckanstieg. Alle reflektierten Anteile überlagern sich phasenrichtig. Für die Zerkleinerung des Steins 6 geht kaum Energie verloren. Werden die erfindungsgemässen Bedingungen nicht eingehalten, so trifft die Primärwelle 7 auf schon von der Oberflächenwelle 10 angeregte Teile des Reflektors. Durch Wechselwirkung der Primärwelle 7 mit der Oberflächenwelle 10 wird die reflektierte Welle 9 in Amplitude und Phase gestört. Die Folge ist, dass Energie für die Zerkleinerung des Konkrements fehlt oder dass der Druckanstieg am Ort des Konkrements durch die nicht phasenrichtige Uberlagerung der einzelnen Anteile zu langsam erfolgt.
    Ausführungsbeispiele:
  • Die Bedingung cTo < cs wird erfüllt, wenn als Reflektormaterial Blei und als Koppelflüssigkeit Wasser verwendet wird. Da die transversale Schallgeschwindigkeit in Blei mit 710 m/sec kleiner als die Schallgeschwindigkeit in Wasser mit 1480 m/sec ist, ist die sich ausbreitende Primärwelle 7 immer schneller als die Oberflächenwelle 10. Die Bedingung ist daher unabhängig von der Reflektorgeometrie immer erfüllt. Ein kritischer Winkel ϕk tritt nicht auf. Es ist nicht notwendig, dass der ganze Reflektorkörper aus Blei hergestellt wird. Es reicht, wenn die innere Oberfläche des Reflektors aus einer Bleischicht besteht.
  • Die erfindungsgemäße Bedingung kann auch von Reflektoren aus einem Material erfüllt werden, dessen cTo > cs ist. Ein wassergefüllter Reflektor aus Zinn (cTo = 1670 m/sec) mit den Halbachsen a = 12,5 cm und b - 7,5 cm erfüllt die erfindungsgemässe Bedingung, wenn der maximal auftretende Einfallswinkel ϕmaX kleiner als der kritische Winkel ϕ K - 62,4° ist.
  • Der zum Stand der Technik gehörende Messingreflektor (cTO = 2120 m/sec) besitzt bei Wasserfüllung einen kritischen Winkel von 44,8°, jedoch einen maximalen Einfallswinkel von 53,1°. Er erfüllt die erfindungsgemässe Bedingung nicht, eine optimale Fokussierung ist nicht gegeben. Die Fokussierung kann bei gleichem Material verbessert werden durch Wahl des Achsenverhältnisses des Ellipsoids näher an 1 oder durch Verzicht auf Randzonen (kleinerer Umschliessungswinkel). Die Randzonen sind aber für die Ubertragung äusserst wichtig und sollten nicht weggelassen werden.
  • In Analogie zur Schallmauer ergibt sich beim kritischen Winkel ϕ K die Situation, daß die Quelle der Oberflächenschwingung (die einlaufende Primärfront) sich auf der Reflektorfläche mit der Ausbreitungsgeschwindigkeit cTO der Oberflächenwelle selbst ausbreitet und damit phasenrichtig Energie in die Oberflächenwelle einkoppelt. Erst wenn nach einer gewissen gemeinsamen zurückgelegten Strecke sich aufgrund der veränderten Reflektorgeometrie der Einfallswinkel ϕ vergrössert, kann die jetzt energiereiche Oberflächenwelle der einfallenden Stoßwellenfront vorauseilen und ihre Energie nach Art des Mach'schen Kegels (modifiziert durch die gekrümmte Reflektorfläche) ausstrahlen und u.a. teilweise noch vor der eigentlichen Nutzwelle in den Fokusbereich einbringen.

Claims (4)

1. Reflektor (3) zur Fokussierung von Sto59wellen (7, 9) in einer Koppelflüssigkeit, z.B. Wasser, zur berührungslosen Zerkleinerung von Konkrementen (6) in Körpern (1) von Lebewesen, dadurch gekennzeichnet, daß die Ausbreitungsgeschwindigkeit cTO einer transversalen Oberflächenwelle (10) im reflektierenden Materilal kleiner ist als die Schallgeschwindigkeit cs in der den Reflektor (3) füllenden Koppelflßsigkeit, oder daß die Geometrie und die Auswahl des reflektierenden Materials folgender Ungleichung genügen:
Figure imgb0001
wobei
ϕ max = maximal auftretender Einfallswinkel
ϕk= kritischer Winkel.

Reflektor nach Anspruch 1, dadurch gekennzeichnet, daß der Reflektor (3) oder seine innere reflektierende Oberfläche aus Blei, Zinn oder Tantal besteht.
3. Reflektor nach den Anspüchen 1 bis 2, dadurch gekennzeichnet, daß der Reflektor (3) ein Teilellipsoid darstellt, dessen Grenzwinkel ϕmax wegen eines relativ kleinen Umschliessungswinkels kleiner als der Winkel ϕk ist.
4. Reflektor nach Anspruch 3, dadurch gekennzeichnet, daß die Exzentrizität des Reflektorkörpers nahe bei 1 liegt.
EP83106090A 1982-11-06 1983-06-22 Stosswellenreflektor Expired EP0108190B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241026A DE3241026C2 (de) 1982-11-06 1982-11-06 Reflektor zur Fokussierung von Stoßwellen
DE3241026 1982-11-06

Publications (3)

Publication Number Publication Date
EP0108190A2 EP0108190A2 (de) 1984-05-16
EP0108190A3 EP0108190A3 (en) 1984-07-25
EP0108190B1 true EP0108190B1 (de) 1986-09-24

Family

ID=6177450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106090A Expired EP0108190B1 (de) 1982-11-06 1983-06-22 Stosswellenreflektor

Country Status (4)

Country Link
US (1) US4570634A (de)
EP (1) EP0108190B1 (de)
JP (1) JPS5988146A (de)
DE (2) DE3241026C2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33590E (en) 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
US5150712A (en) * 1983-12-14 1992-09-29 Edap International, S.A. Apparatus for examining and localizing tumors using ultra sounds, comprising a device for localized hyperthermia treatment
US5143073A (en) 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
NL8400504A (nl) * 1984-02-16 1985-09-16 Optische Ind De Oude Delft Nv Inrichting voor het aanrakingsloos vergruizen van zich in een lichaam bevindende concrementen.
IL78861A0 (en) * 1985-05-24 1986-09-30 Elscint Ltd Ultrasonic calculi locator
DE3544344A1 (de) * 1985-12-14 1987-06-19 Dornier Medizintechnik Vorrichtung zur thromboisierung mittels stosswellen
FR2600520B1 (fr) * 1986-06-30 1990-09-21 Technomed Int Sa Appareil de generation d'ondes de choc de frequence elevee dans un liquide pour la destruction a distance de cibles, telles que des concretions dont la connectique d'alimentation en courant electrique est disposee a l'interieur d'un element tubulaire limitant ou empechant les fuites electromagnetiques
CS261485B1 (en) * 1986-10-29 1989-02-10 Jiri Mudr Rndr Benes Device for clinic out-of-body lithotripsy of gall stones
FR2623080A1 (fr) * 1987-11-16 1989-05-19 Technomed Int Sa Procede de fabrication d'un dispositif generateur d'ondes de choc indolores et dispositif et appareil ainsi fabriques
DE3835318C1 (de) * 1988-10-17 1990-06-28 Storz Medical Ag, Kreuzlingen, Ch
DE3900433A1 (de) * 1989-01-10 1990-07-12 Schubert Werner Verfahren und vorrichtung fuer die behandlung von erkrankungen mit ultraschallwellen
SE465552B (sv) * 1989-03-21 1991-09-30 Hans Wiksell Anordning foer soenderdelning av konkrement i kroppen paa en patient
US5065761A (en) * 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
US4945898A (en) * 1989-07-12 1990-08-07 Diasonics, Inc. Power supply
IL128404A0 (en) * 1999-02-07 2000-01-31 Spector Avner Device for transmission of shock waves on to large surfaces of human tissue
US6755796B2 (en) 1999-02-07 2004-06-29 Medispec Ltd. Pressure-pulse therapy apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264681B (de) * 1961-07-05 1968-03-28 Siemens Ag Fuer die medizinische Ultraschalldiagnose nach dem Impuls-Echoverfahren bestimmtes ultraschall-spiegeloptisches System zum Senden und Empfangen von Ultraschallwellen
US3302163A (en) * 1965-08-31 1967-01-31 Jr Daniel E Andrews Broad band acoustic transducer
CH574734A5 (de) * 1973-10-12 1976-04-30 Dornier System Gmbh
DE2508494A1 (de) * 1975-02-27 1976-09-02 Hansrichard Dipl Phys D Schulz Anordnung zum fokussieren von elektromagnetischen oder mechanischen wellen
DE2538960C2 (de) * 1975-09-02 1985-04-11 Dornier System Gmbh, 7990 Friedrichshafen Vorrichtung zum berührungslosen Zertrümmern von in einem Lebewesen befindlichen Konkrementen
US4311147A (en) * 1979-05-26 1982-01-19 Richard Wolf Gmbh Apparatus for contact-free disintegration of kidney stones or other calculi

Also Published As

Publication number Publication date
JPS5988146A (ja) 1984-05-22
EP0108190A2 (de) 1984-05-16
EP0108190A3 (en) 1984-07-25
DE3241026A1 (de) 1984-05-10
US4570634A (en) 1986-02-18
DE3366440D1 (en) 1986-10-30
JPH0417660B2 (de) 1992-03-26
DE3241026C2 (de) 1986-12-04

Similar Documents

Publication Publication Date Title
EP0108190B1 (de) Stosswellenreflektor
DE3320998C2 (de) Vorrichtung zum Anpassen eines Stoßwellenfeldes
EP0300315A1 (de) Stosswellengenerator für eine Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE3907605C2 (de) Stosswellenquelle
DE3328051A1 (de) Einrichtung zum beruehrungslosen zertruemmern von konkrementen
DE3240691C1 (de) Vorrichtung zur Erzeugung von Stosswellenimpulsfolgen
EP0369177B1 (de) Vorrichtung zur Erzeugung von fokussierten akustischen Druckwellen
EP0188750A1 (de) Stosswellenrohr für die Zertrümmerung von Konkrementen
EP0268019A1 (de) Vorrichtung zur Zertrümmerung eines von einem Fluid umgebenen festen Körpers
DE2541492A1 (de) Ultraschallwandler
DE2538960A1 (de) Einrichtung zum beruehrungsfreien zertruemmern von im koerper eines lebewesens befindlichen konkrementen
DE1487569A1 (de) Ultraschallwandler
DE2461590A1 (de) Strahlablenker zur transformation eines parallelstrahlen-buendels in ein konstanteinfallstrahlen-buendel auf einen zylinderkoerper
DE3437488A1 (de) Schallsender
EP0441997B1 (de) Medizinischer Ultraschall-Applikator zur Verwendung in einem von akustischen Stosswellen durchlaufenen Ausbreitungsmedium
DE9109025U1 (de) Generator zur Erzeugung akustischer Zugimpulse
EP0240797B1 (de) Stosswellenquelle mit erhöhtem Wirkungsgrad
DE3739393A1 (de) Lithotripter mit verstellbarer fokussierung
DE8717503U1 (de) Stoßwellenquelle mit zentralem Ortungssystem
DE2109013B2 (de) Elektroakustischer Wandler
JPS62253045A (ja) 衝撃波源
Granz Measurement of shock wave properties after the passage through a tissue mimicking material
DE721793C (de) Vorrichtung zur Reflexion mechanischer Schwingungen
DE2215083B2 (de) Vorrichtung zur Verminderung der Schallausbreitung in flüssigkeitsgefüllten Rohren und Kanälen
DE10340624B4 (de) Stoßwellenquelle zum Erzeugen einer fokussierten Stoßwelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19840829

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3366440

Country of ref document: DE

Date of ref document: 19861030

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890511

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 7

Ref country code: GB

Payment date: 19890630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920812

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990630

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST