EP0103727A1 - Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse - Google Patents

Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse Download PDF

Info

Publication number
EP0103727A1
EP0103727A1 EP83107762A EP83107762A EP0103727A1 EP 0103727 A1 EP0103727 A1 EP 0103727A1 EP 83107762 A EP83107762 A EP 83107762A EP 83107762 A EP83107762 A EP 83107762A EP 0103727 A1 EP0103727 A1 EP 0103727A1
Authority
EP
European Patent Office
Prior art keywords
pump
pumps
hydraulic cylinder
control device
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83107762A
Other languages
English (en)
French (fr)
Inventor
Theo Frei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP0103727A1 publication Critical patent/EP0103727A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/24Control arrangements for fluid-driven presses controlling the movement of a plurality of actuating members to maintain parallel movement of the platen or press beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41563Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the invention relates to a synchronization control device for the electrohydraulic drive of a press brake, the drive having devices for generating the forward, working and creep speed as well as the return speed of the hydraulic cylinders of the press brake, and wherein a displacement feedback device is provided in the synchronization control device for each hydraulic cylinder, and the synchronism of the hydraulic cylinders can be regulated as a function of the control deviation formed from the difference between the actual travel values.
  • a synchronization control device according to the preamble has become known.
  • the hydraulic cylinders are driven by a pump driven by an electric motor.
  • the actuator is a two-stage servo valve in the spool design provided, with each cylinder being assigned a servo valve.
  • the synchronism is achieved in that the position of the two cylinders is continuously recorded by means of the actual position encoder and the control deviation determined from the difference between the actual position values is fed to the servo valve of the faster cylinder.
  • the servo valves used as actuators are relatively expensive, can get dirty very easily and are therefore quite prone to failure. In addition, they act like throttle elements, so that additional energy losses occur.
  • each hydraulic cylinder has a separate drive, the drives being simultaneously designed as an actuator.
  • two further pumps are provided, driven by a common, non-controllable electric motor, which are connected in parallel to the pumps of the drives designed as actuators.
  • the actuator is assigned to only one hydraulic cylinder, the other hydraulic cylinder being operated by a pump driven at a constant speed.
  • the advantages achieved by the invention are, in particular, that in one embodiment an actuator with only one pump and one controllable electric motor is required.
  • the actuator has a pump and a controllable electric motor for each hydraulic cylinder
  • the advantages are that the pumps of the actuator serve simultaneously to drive the hydraulic cylinders and the plunger in synchronism in a horizontal position or in an inclined position downwards can be driven.
  • the proposed actuator has a robust design, is not prone to malfunction and causes practically no energy losses.
  • Z1 and Z2 denote the hydraulic cylinders of a press brake, which are actuated by pumps P1, P2, which can be driven by means of controllable direct current motors M1, M2.
  • the direct current motors M1, M2 can be, for example, direct current shunt motors, the speeds of which can be regulated by changing the armature voltage by means of thyristors.
  • S1 and S2 designate filling valves, by means of which the hydraulic cylinders ZI, Z2 are filled during the advance and emptied during the return, the hydraulic fluid being one container each ter Rl, R2 is removed or supplied.
  • the filling valves S1, S2 are controlled via a control system STS.
  • a first, the first hydraulic cylinder Z1 and a second, the second hydraulic cylinder Z2 associated pressure relief valve DB1, DB2 is set so that the pressure is slightly above that generated by the weight of the ram and punch of the press brake.
  • Another pressure relief valve DBG which is connected to the outputs of pumps P1, P2 via check valves RV1, RV2, is assigned to both hydraulic cylinders Z1, Z2 and set to the maximum pressing force of the press brake.
  • Each hydraulic cylinder Z1, Z2 is assigned a flow valve V1, V2 which is open during the advance and which is connected on the one hand to the input of the relevant pump P1, P2 and on the other hand to the lower end of the associated hydraulic cylinder Z1, Z2.
  • Each hydraulic cylinder Z1, Z2 is also assigned a return valve W1, W2, which is connected on the one hand to the outlet of the pump P1, P2 in question and on the other hand in a first position at the upper end and in a second position at the lower end of the associated hydraulic cylinder Z1, Z2.
  • the pumps P1, P2 are connected on the suction side to a further hydraulic fluid container R3 via further check valves RV3, RV4.
  • the actual travel value transmitters MS1, MS2 consist, for example, of code rulers and code reading devices, the actual travel values determined being fed to a digital subtractor in order to form a control deviation.
  • the control device can also be designed, for example, in such a way that the output of the digital subtractor is connected via a DA converter to a control amplifier, the output variable of which is fed to a subordinate speed control loop as a setpoint, the output of the speed controller being connected to an actuator which is made from an ignition angle control , the thyristors, the DC shunt motors M1, M2 and the pumps P1, P2 is formed.
  • the work step means the slow closing of the press brake.
  • Switching takes place by closing the flow valves V1, V2, the brake pressure occurring being limited by the pressure relief valves DB1, DB2.
  • the filling valves S1, S2 are now also closed with a slight delay, so that the pumps P1, P2 deliver from the hydraulic fluid container R3 into the closed cylinder spaces, the hydraulic fluid on the piston ring sides being discharged via the pressure-limiting valves DB1, DB2 and the working speed that is established depending of the pump speed.
  • the hydraulic cylinders Z1, Z2 cannot advance because of the ram weight, since the hydraulic fluid can only be displaced via the pressure relief valves DB1, DB2.
  • the return flow is initiated when the exact end position of the ram is reached.
  • the return valves W1, W2 are switched over, the flow valves V1, V2 are closed and the filling valves S1, S2 are opened, the return speed being given by the pump speed.
  • FIG. 2 Compared to FIG. 1, further pumps P3, P4 are provided in FIG. 2, which are connected in parallel to pumps P1, P2 and are driven together by an asynchronous motor M3.
  • the outputs of the other pumps P3, P4 are connected to the hydraulic fluid container R3 via a reversing valve UV1.
  • the control of the flow, the operation and the return as well as the generation of the corresponding speeds takes place in the same way as in the embodiment according to FIG. 1, but with the hydraulic cylinders Z1, Z2 being driven by both pumps P1, P3 and P2, P4, respectively and the pumps P1-P4 are dimensioned accordingly smaller.
  • the Synchronous control takes place in the same way as in FIG. 1, with the difference that controllable direct current motors M1, M2 of lower power are provided.
  • the normal working speed may be too high, so that you have to continue with a creep speed.
  • the changeover from the work cycle to the creep speed is carried out by opening the reversing valve UV1, the pumps P3, P4 delivering into the hydraulic fluid container R3 and the creep speed being set in accordance with the small delivery rates of the pumps P1, P2.
  • the switchover from work operation to creep speed takes place by opening the reversing valves UV1, UV2, pump P4 pumping into pressure fluid container R3 on the one hand and pump P3 branching off a part of the delivery quantity predetermined by appropriate setting of the two-flow regulator SR into pressure fluid container R3.
  • the required creep speed is set here by the remaining delivery rate of pump P3 and the delivery rate of controllable pump P2.
  • the pump P3 driven by the asynchronous motor M3 at a constant speed and the first hydraulic cylinder Z1 are matched to one another in such a way that a specific speed can be achieved.
  • the actual travel value determined on the first hydraulic cylinder Z1 is now fed to the digital subtractor as the setpoint and the actual travel value determined on the second hydraulic cylinder Z2 as the actual value.
  • the speed of the DC shunt motor M2 and the pump P2 is adjusted via the thyristors in such a way that the speed of the delivery flow and thus of the second hydraulic cylinder Z2 is either reduced or enlarged until the synchronization of both hydraulic cylinders Z1, Z2 is established and the ram moves downwards in the horizontal position.
  • the embodiment according to FIG. 4 corresponds to the embodiment according to FIG. 3, however the two-flow controller SR is omitted and the reversing valve UV2 is connected on the output side to the input of the pump P4.
  • the input of the controllable pump P2 is connected to the input of the pump_P4 via a check valve RV5 and to the pressure fluid container R3 via a further check valve RV6.
  • the pump P4 works as a hydraulic motor, so that part of the drive energy expended is recovered.
  • the creep speed required for the first hydraulic cylinder Z1 results from the difference in the delivery rates of the pumps P3, P4 and for the second hydraulic cylinder Z2 from the delivery rate of the controllable pump P2, the delivery rates for both hydraulic cylinders Z1, Z2 at an average speed of the pump P2 are the same.
  • an adjustable DC motor for the actuator can also be used with an adjustable asynchronous motor.

Abstract

Mit dieser Gleichlaufregelungseinrichtung kann der Stössel einer Abkantpresse in Horizontallage oder in Abhängigkeit einer vorgegebenen Wegdifferenz der beiden Hydraulikzylinder (Z1, Z2) in Schräglage nach unten gefahren werden. Zu diesem Zweck ist jedem Hydraulikzylinder (Z1, Z2) eine von einem regelbaren Elektromotor (M1, M2) angetriebene Pumpe (P1, P2) zugeordnet. Bei einer anderen, wirtschaftlicheren Ausführung, sind zwei weitere, von einem gemeinsamen, nichtregelbaren Elektromotor (M3) angetriebene Pumpen (P3, P4) vorgesehen, die den regelbaren Pumpen (P1, P2) parallel geschaltet sind. Soll der Stössel lediglich in Horizontallage nach unten gefahren werden, so weist nur ein Hydraulikzylinder (Z2) eine mittels eines regelbaren Elektromotors (M2) angetriebene Pumpe (P2) auf. Hierbei wird der Wegistwert des anderen Hydraulikzylinders (Z1), der von der mit konstanter Drehzahl angetriebenen weiteren Pumpe (P3) betätigt wird, als Sollwert vorgegeben.

Description

  • Die Erfindung betrifft eine Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse, wobei der Antrieb Einrichtungen für die Erzeugung der Vorlauf-, der Arbeits- und Schleichganggeschwindigkeit sowie der Rücklaufgeschwindigkeit der Hydraulikzylinder der Abkantpresse aufweist und wobei in der Gleichlaufregelungseinrichtung für jeden Hydraulikzylinder ein Wegistwertgeber vorgesehen ist, und in Abhängigkeit von der aus der Differenz der Wegistwerte gebildeten Regelabweichung der Gleichlauf der Hydraulikzylinder regelbar ist.
  • Mit dem Sonderdruck aus der Zeitschrift "Oelhydraulik und Pneumatik" 24, 1980, Nr. 6, ist eine Gleichlaufregelungseinrichtung gemäss Oberbegriff bekannt geworden. Hierbei besteht der Antrieb der Hydraulikzylinder aus einer, mittels Elektromotor angetriebenen Pumpe. Als Stellglied ist ein zweistufiges Servoventil in Kolbenschieberausführung vorgesehen, wobei jedem Zylinder ein Servoventil zugeordnet ist. Der Gleichlauf wird dadurch erreicht, dass ständig die Position der beiden Zylinder mittels Wegistwertgeber erfasst wird und die aus der Differenz der Wegistwerte ermittelte Regelabweichung dem Servoventil des schnelleren Zylinders zugeführt wird. Die als Stellglieder verwendeten Servoventile sind relativ teuer, können sehr leicht verschmutzen und sind daher ziemlich störanfällig. Ausserdem wirken sie wie Drosselelemente, so dass zusätzlich Energieverluste entstehen.
  • Die der Erfindung zugrunde liegende Aufgabe besteht darin, zwecks Behebung vorstehend erwähnter Nachteile eine Gleichlaufregelungseinrichtung zu schaffen, bei der das Stellglied robuster und betriebssicherer aufgebaut ist sowie verlust- ärmer arbeitet. Zur Lösung dieser Aufgabe schlägt die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist ein Stellglied vor, das mindestens einen regelbaren Elektromotor und eine von diesem angetriebene Pumpe aufweist. Nach einer ersten Ausführungsform weist jeder Hydraulikzylinder einen separaten Antrieb auf, wobei die Antriebe gleichzeitig als Stellglied ausgebildet sind. Nach einer zweiten Ausführungsform sind zwei weitere, von einem gemeinsamen, nichtregelbaren Elektromotor angetriebene Pumpen vorgesehen, die den Pumpen der als Stellglied ausgebildeten Antriebe parallel geschaltet sind. Nach einer dritten Ausführungsform ist das Stellglied lediglich einem Hydraulikzylinder zugeordnet, wobei der andere Hydraulikzylinder von einer mit einer konstanten Drehzahl angetriebenen Pumpe betätigt wird.
  • Die mit der Erfindung erzielten Vorteile liegen insbesondere darin, dass bei einer Ausführungsform ein Stellglied mit nur einer Pumpe und einem regelbaren Elektromotor benötigt wird. Bei einer anderen Ausführungsform, bei welcher das Stellglied für jeden Hydraulikzylinder eine Pumpe und einen regelbaren Elektromotor aufweist, liegen die Vorteile darin, dass die Pumpen des Stellgliedes gleichzeitig dem Antrieb der Hydraulikzylinder dienen und der Stössel im Gleichlauf in einer Horizontallage oder in einer Schräglage nach unten gefahren werden kann. Das vorgeschlagene Stellglied ist robust aufgebaut, arbeitet wenig störanfällig und verursacht praktisch keine Energieverluste.
  • Im folgenden wird die Erfindung an Hand mehrerer auf der Zeichnung dargestellter Ausführungsbeispiele näher erläutert. Es zeigen:
    • Fig. 1 eine schematische Darstellung eines ersten Ausführungsbeispieles der erfindungsgemässen Gleichlaufregelungseinrichtung, wobei das Stellglied beiden Hydraulikzylindern zugeordnet ist,
    • Fig. 2 eine schematische Darstellung eines zweiten Ausführungsbeispieles der Gleichlaufregelungseinrichtung mit einer ersten Ausführungsform der Einrichtung zur Erzeugung der Schleichganggeschwindigkeit und der Stellgliedanordnung gemäss Fig. 1,
    • Fig. 3 eine schematische Darstellung eines dritten Ausführungsbeispieles der Gleichlaufregelungseinrichtung mit einer zweiten Ausführungsform der Einrichtung zur Erzeugung der Schleichganggeschwindigkeit, wobei das Stellglied lediglich einem Hydraulikzylinder zugeordnet ist und
    • Fig. 4 eine schematische Darstellung der Gleichlaufregelungseinrichtung gemäss Fig. 3, jedoch mit einer dritten Ausführungsform der Einrichtung zur Erzeugung der Schleichganggeschwindigkeit.
  • In der Fig. 1 sind mit Z1 und Z2 die Hydraulikzylinder einer Abkantpresse bezeichnet, welche von Pumpen P1, P2 betätigt werden, die mittels regelbarer Gleichstrommotoren M1, M2 antreibbar sind. Die Gleichstrommotoren M1, M2 können beispielsweise Gleichstrom-Nebenschlussmotoren sein, deren Drehzahlen durch Ankerspannungsänderung mittels Thyristoren regelbar sind. Mit S1 und S2 sind Füllventile bezeichnet, mittels welchen die Hydraulikzylinder ZI, Z2 beim Vorlauf gefüllt und beim Rücklauf entleert werden, wobei die Druckflüssigkeit je einem Behälter Rl, R2 entnommen bzw. zugeführt wird. Die Füllventile S1, S2 werden über ein Steuersystem STS gesteuert. Ein erstes, dem ersten Hydraulikzylinder Z1 und ein zweites, dem zweiten Hydraulikzylinder Z2 zugeordnetes Druckbegrenzungsventil DB1, DB2 ist jeweils so eingestellt, dass der Druck etwas über demjenigen liegt, der durch das Gewicht des Stössels und Stempels der Abkantpresse erzeugt wird. Ein weiteres, über Rückschlagventile RV1, RV2 mit den Ausgängen der Pumpen P1, P2 verbundenes Druckbegrenzungsventil DBG ist beiden Hydraulikzylindern Z1, Z2 zugeordnet und auf die maximale Presskraft der Abkantpresse eingestellt. Jedem Hydraulikzylinder Z1, Z2 ist ein während des Vorlaufes geöffnetes Vorlaufventil Vl, V2 zugeordnet, welches einerseits mit dem Eingang der betreffenden Pumpe Pl, P2 und andererseits mit dem unteren Ende des zugeordneten Hydraulikzylinders Z1, Z2 verbunden ist. Jedem Hydraulikzylinder Z1, Z2 ist ferner ein Rücklaufventil W1, W2 zugeordnet, welches einerseits am Ausgang der betreffenden Pumpe P1, P2 und andererseits in einer ersten Stellung am oberen Ende und in einer zweiten Stellung am unteren Ende des zugehörigen Hydraulikzylinders Z1, Z2 angeschlossen ist. Die Pumpen Pl, P2 sind saugseitig über weitere Rückschlagventile RV3, RV4 mit einem weiteren Druckflüssigkeitsbehälter R3 verbunden.
  • Mit MS1 und MS2 sind mit den Hydraulikzylindern Z1, Z2 verbundene Wegistwertgeber einer Gleichlaufregelungseinrichtung bezeichnet. Die Wegistwertgeber MS1, MS2 besthen beispielsweise aus Codelinealen und Codeleseeinrichtungen, wobei die ermittelten Wegistwerte zwecks Bildung einer Regelabweichung einem Digitalsubtrahierer zugeführt werden. Die Regeleinrichtung kann weiterhin beispielsweise derart beschaffen sein, dass der Ausgang des Digitalsubtrahierers über einen DA-Wandler mit einem Regelverstärker verbunden ist, dessen Ausgangsgrösse einem unterlagerten Drehzahlregelkreis als Sollwert zugeführt wird, wobei der Ausgang des Drehzahlreglers an einem Stellglied angeschlossen ist, welches aus einer Zündwinkelsteuerung, den Thyristoren, den Gleichstrom-Nebenschlussmotoren M1, M2 und den Pumpen P1, P2 gebildet ist.
  • Die vorstehend beschriebene Gleichlaufregelungseinrichtung arbeitet wie folgt:
    • Der Vorlauf, worunter das schnelle Schliessen der Abkantpresse zu verstehen ist, beginnt mit dem Oeffnen der Füllventile S1, S2 und der Vorlaufventile Vl, V2. Hierbei steht der Stösseldruck an den Saugseiten der Pumpen P1, P2 an, so dass diese als Hydraulikmotoren arbeiten und von den Elektromotoren M1, M2 in Abhängigkeit von der zugeführten Regelspannung gebremst werden. Das damit erzielte dosierte Abführen der Druckflüssigkeit auf den Kolbenringseiten der Hydraulikzylinder Z1, Z2 bestimmt die Vorlaufgeschwindigkeit. Die Druckflüssigkeit wird hierbei über die Rückschlagventile RVI, RV2 und das geöffnete Druckbegrenzungsventil DGB in den Druckflüssigkeitsbehälter R3 gefördert.
  • Kurz vor dem Auftreffen des Stempels auf dem Werkstück wird auf den Arbeitsgang umgeschaltet, wobei unter Arbeitsgang das langsame Schliessen der Abkantpresse zu verstehen ist. Das Umschalten geschieht durch Schliessen der Vorlaufventile V1, V2, wobei der auftretende Bremsdruck durch die Druckbegrenzungsventile DB1, DB2 begrenzt wird. Mit geringer Verzögerung werden nun auch die Füllventile S1, S2 geschlossen, so dass die Pumpen P1, P2 aus dem Druckflüssigkeitsbehälter R3 in die abgeschlossenen Zylinderräume fördern, wobei die Druckflüssigkeit auf den Kolbenringseiten über die Druckbegrenzungsventile DB1, DB2 abgeführt wird und die sich einstellende Arbeitsgeschwindigkeit abhängig von der Pumpendrehzahl ist. Die Hydraulikzylinder Z1, Z2 können wegen des Stösselgewichtes nicht vorlaufen, da die Druckflüssigkeit nur über die Druckbegrenzungsventile DB1, DB2 verdrängt werden kann.
  • Bei der Gleichlaufregelung der Hydraulikzylinder Z1, Z2 wird nun aus den Wegistwerten eine Differenz gebildet, die mit einem Sollwert verglichen wird. Wenn der Stössel in Horizontallage nach unten gefahren werden soll, wird als Sollwert der Wert "0" vorgegeben. Muss der Stössel auf beiden Seiten eine genaue, voneinander verschiedene Endlage erreichen, so wird die Differenz der Endlagen als Sollwert vorgegeben, wobei der Stössel in einer Schräglage nach unten fährt. In beiden Fällen wird in Abhängigkeit des Vorzeichens der aus der Differenz der Wegistwerte und dem Sollwert gebildeten Regelabweichung entweder die eine oder die andere Pumpe P1, P2 verstellt.
  • Der Rücklauf wird bei Erreichen der genauen Endlage des Stössels eingeleitet. Hierbei werden die Rücklaufventile Wl, W2 umgeschaltet, die Vorlaufventile V1, V2 geschlossen sowie die Füllventile S1, S2 geöffnet, wobei die Rücklaufgeschwindigkeit durch die Pumpendrehzahl gegeben ist.
  • Gegenüber der Fig. 1 sind in der Fig. 2 weitere Pumpen P3, P4 vorgesehen, die den Pumpen P1, P2 parallel geschaltet sind und gemeinsam von einem Asynchronmotor M3 angetrieben werden. Die Ausgänge der weiteren Pumpen P3, P4 sind über ein Umsteuerventil UV1 mit dem Druckflüssigkeitsbehälter R3 verbunden. Die Steuerung des Vorlaufes, des Arbeitsganges und des Rücklaufes sowie die Erzeugung der entsprechenden Geschwindigkeiten erfolgt auf die gleiche Weise wie bei der Ausführung gemäss Fig. 1, wobei jedoch die Hydraulikzylinder Z1, Z2 jeweils durch beide Pumpen P1, P3 bzw. P2, P4 angetrieben werden und die Pumpen P1-P4 entsprechend kleiner dimensioniert sind. Auch die Gleichlaufregelung erfolgt auf die gleiche Weise wie bei der Fig. 1, mit dem Unterschied, dass regelbare Gleichstrommotoren M1, M2 kleinerer Leistung vorgesehen sind.
  • Bei grossen Werkstücken kann die normale Arbeitsgeschwindigkeit unter Umständen zu gross sein, so dass mit einem Schleichgang weitergefahren werden muss. Die Umschaltung vom Arbeitsgang auf den Schleichgang erfolgt durch Oeffnen des Umsteuerventils UV1, wobei die Pumpen P3, P4 in den Druckflüssigkeitsbehälter R3 fördern und der Schleichgang sich entsprechend der kleinen Fördermengen der Pumpen P1, P2 einstellt.
  • Beim Ausführungsbeispiel gemäss Fig. 3, das annähernd dem der Fig. 2 entspricht, ist lediglich dem zweiten Hydraulikzylinder Z2 ein aus der Pumpe P2 und dem regelbaren Gleichstrommotor M2 bestehendes Stellglied zugeordnet. Das Umsteuerventil UV1 ist eingangsseitig nur noch mit dem Ausgang der dem zweiten Hydraulikzylinder Z2 zugeordneten, weiteren Pumpe P4 verbunden. Ein weiteres Umsteuerventil UV2 ist eingangsseitig mit dem Ausgang der dem ersten Hydraulikzylinder Zl zugeordneten weiteren Pumpe P3 verbunden. Ausgangsseitig steht das Umsteuerventil UV2 über einen Zweistromregler SR mit dem Druckflüssigkeitsbehälter R3 in Verbindung. Die Steuerung des Vorlaufes, des Arbeitsganges und des Rücklaufes sowie die Erzeugung der entsprechenden Geschwindigkeiten erfolgt auf die gleiche Weise wie bei der Ausführung gemäss Fig. 2, wobei jedoch die Pumpen P2, P3 und P4 derart dimensioniert sind, dass das Fördervolumen der Pumpe P3 gleich der Summe der Fördervolumen der Pumpe P4 und der bei einer mittleren Drehzahl laufenden Pumpe P2 ist. Die Umschaltung vom Arbeitsgang auf den Schleichgang erfolgt durch Oeffnen der Umsteuerventile UV1, UV2, wobei einerseits die Pumpe P4 in den Druckflüssigkeitsbehälter R3 fördert und andererseits die Pumpe P3 einem durch entsprechende Einstellung des Zweistromreglers SR vorbestimmten Teil der Fördermenge in den Druckflüssigkeitsbehälter R3 abzweigt. Die erforderliche Schleichganggeschwindigkeit stellt sich hierbei durch die restliche Fördermenge der Pumpe P3 und der Fördermenge der regelbaren Pumpe P2 ein.
  • Die mittels des Asynchronmotors M3 mit einer konstanten Drehzahl angetriebene Pumpe P3 und der erste Hydraulikzylinder Z1 sind derart aufeinander abgestimmt, dass eine bestimmte Geschwindigkeit erzielbar ist. Bei der Gleichlaufregelung wird nun der am ersten Hydraulikzylinder Z1 ermittelte Wegistwert dem Digitalsubtrahierer als Sollwert und der am zweiten Hydraulikzylinder Z2 ermittelte Wegistwert als Istwert zugeführt. Je nach Vorzeichen der sich ergebenden Regelabweichung wird über die Thyristoren die Drehzahl des Gleichstrom-Nebenschlussmotors M2 und der Pumpe P2 derart verstellt, dass die Geschwindigkeit des Förderstromes und damit des zweiten Hydraulikzylinders Z2 entweder verkleinert oder vergrössert wird, bis der Gleichlauf beider Hydraulikzylinder Z1, Z2 hergestellt ist und der Stössel in Horizontallage nach unten fährt.
  • Das Ausführungsbeispiel gemäss Fig. 4 entspricht dem Ausführungsbeispiel gemäss Fig. 3, wobei jedoch der Zweistromregler SR entfällt und das Umsteuerventil UV2 ausgangsseitig mit dem Eingang der Pumpe P4 verbunden ist. Der Eingang der regelbaren Pumpe P2 ist über ein Rückschlagventil RV5 mit dem Eingang der Pumpe_P4 und über ein weiteres Rückschlagventil RV6 mit dem Druckflüssigkeitsbehälter R3 verbunden. Bei der Umschaltung auf Schleichgang wird ein Teil der Fördermenge der Pumpe P3 über das Umsteuerventil UV2, die Pumpe P4 und das Umsteuerventil UV1 in den Druckflüssigkeitsbehälter R3 gefördert, wobei die abgeführte Teilmenge durch die Pumpe P4 bestimmt wird. Hierbei arbeitet die Pumpe P4 als Hydraulikmotor, so dass ein Teil der aufgewendeten Antriebsenergie zurückgewonnen wird. Die erforderliche Schleichganggeschwindigkeit ergibt sich für den ersten Hydraulikzylinder Z1 aus der Differenz der Fördermengen der Pumpen P3, P4 und für den zweiten Hydraulikzylinder Z2 aus der Fördermenge der regelbaren Pumpe P2, wobei die Fördermengen für beide Hydraulikzylinder Z1, Z2 bei einer mittleren Drehzahl der Pumpe P2 gleich sind.
  • Anstelle eines regelbaren Gleichstrommotors, kann für das Stellglied auch ein regelbarer Asynchronmotor verwendet werden.

Claims (8)

1. Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse, wobei der Antrieb Einrichtungen für die Erzeugung der Vorlauf-, der Arbeits- und Schleichganggeschwindigkeit sowie der Rücklaufgeschwindigkeit der Hydraulikzylinder (Z1, Z2) der Abkantpresse aufweist und wobei in der Gleichlaufregelungseinrichtung für jeden Hydraulikzylinder (Z1, Z2) ein Wegistwertgeber (MS1, MS2) vorgesehen ist, und in Abhängigkeit vonder aus der Differenz der Wegistwerte gebildeten Regelabweichung der Gleichlauf.der Hydraulikzylinder (Z1, Z2) regelbar ist,
dadurch gekennzeichnet,
dass für den Antrieb der Hydraulikzylinder (Z1, Z2), wie an sich bekannt, mindestens je eine elektromotorisch angetriebene Pumpe vorgesehen ist, und dass die Gleichlaufregelungseinrichtung ein Stellglied aufweist, welches mindestens aus einem regelbaren Elektromotor und einer von diesem antreibbaren Pumpe besteht, wobei das Stellglied einem oder beiden Hydraulikzylindern (Z1, Z2) zugeordnet ist.
2. Gleichlaufregelungseinrichtung nach Patentanspruch 1,
dadurch gekennzeichnet,
dass für den Antrieb der Pumpen (Pl, P2) der Hydraulikzylinder (Z1, Z2) regelbare Gleichstrommotoren (M1, M2) vorgesehen sind, welche zusammen mit den Pumpen (P1, P2) das Stellglied bilden, wobei der Sollwert der Gleichlaufregelung eine vorbestimmte Wegdifferenz der Hydraulikzylinder (ZI, Z2) ist.
3. Gleichlaufregelungseinrichtung nach den Patentansprüchen 1 und 2,
dadurch gekennzeichnet,
dass den Pumpen (P1, P2) mit regelbaren Gleichstrommotoren (M1, M2) je eine weitere Pumpe (P3, P4) parallel geschaltet ist, wobei die weiteren Pumpen (P3, P4), wie an sich bekannt, mittels eines gemeinsamen Asynchronmotors (M3) antreibbar sind.
4. Gleichlaufregelungseinrichtung nach Patentanspruch 1,
dadurch gekennzeichnet,
dass für den Antrieb der Pumpen (P3, P4) der Hydraulikzylinder (Z1, Z2), wie an sich bekannt, ein gemeinsamer Asynchronmotor (M3) vorgesehen ist, und das Stellglied lediglich eine Pumpe (P2) und einen diese antreibenden regelbaren Gleichstrommotor (M2) aufweist, wobei die Pumpe (P2) des Stellgliedes der Pumpe (P4) des zweiten Hydraulikzylinders (Z2) parallel geschaltet ist, und wobei der Wegistwert des ersten Hydraulikzylinders (Z1) der Wegsollwert der Gleichlaufregelung ist, so dass die Geschwindigkeit des zweiten Hydraulikzylinders (Z2) der Geschwindigkeit des über die Pumpe (P3) mit einer konstanten Drehzahl des Asynchromotors (M3) angetriebenen ersten Hydraulikzylinders (Z1) angleichbar ist.
5. Gleichlaufregelungseinrichtung nach Patentanspruch 1,
dadurch gekennzeichnet,
dass die Einrichtung für die Erzeugung der Vorlaufgeschwindigkeit aus je einem Füllventil (S1, S2) und je einem Vorlaufventil (V1, V2) je Hydraulikzylinder (Z1, Z2) besteht, wobei das Füllventil (S1, S2) mit einem Druckflüssigkeitsbehälter (R1, R2) und dem oberen Ende und das Vorlaufventil (V1, V2) mit dem Sauganschluss der jeweils zugeordneten Pumpen und dem unteren Ende des Hydraulikzylinders (Z1, Z2) verbunden sind und Füll- und Vorlaufventile (S1, S2, V1, V2) während des Vorlaufes geöffnet sind, wobei die Vorlaufgeschwindigkeit durch Antreiben der Pumpen mittels des Stösseldruckes und deren Abbremsen durch die Elektromotoren erzeugbar ist.
6. Gleichlaufregelungseinrichtung nach den Patentansprüchen 1 und 3,
dadurch gekennzeichnet,
dass die Einrichtung für die Erzeugung der Schleichganggeschwindigkeit ein Umsteuerventil (UV1) aufweist, das eingangsseitig mit den Ausgängen der gemeinsam von einem Asynchronmotor (M3) angetriebenen Pumpen (P3, P4) und ausgangsseitig mit einem Druckflüssigkeitsbehälter (R3) verbunden ist.
7. Gleichlaufregelungseinrichtung nach den Patentansprüchen 1 und 4,
dadurch gekennzeichnet,
dass die Einrichtung für die Erzeugung der Schleichganggeschwindigkeit zwei Umsteuerventile (UV1, UV2) aufweist, wobei das eine Umsteuerventil (UV1) eingangsseitig mit dem Ausgang der einen Pumpe (P4) der gemeinsam angetriebenen Pumpen (P3, P4) und ausgangsseitig mit einem Druckflüssigkeitsbehälter (R3) verbunden ist, und das andere Umsteuerventil (UV2) eingangsseitig mit dem Ausgang der anderen Pumpe (P3) der gemeinsam angetriebenen Pumpen (P3, P4) und ausgangsseitig über einen Zweistromregler (SR) mit dem Druckflüssigkeitsbehälter (R3) in Verbindung steht.
8. Gleichlaufregelungseinrichtung nach den Patentansprüchen 1 und 4,
dadurch gekennzeichnet,
dass die Einrichtung für die Erzeugung der Schleichganggeschwindigkeit zwei Umsteuerventile (UV1, UV2) aufweist, wobei das eine Umsteuerventil (UV1) eingangsseitig mit dem Ausgang der einen Pumpe (P4) der gemeinsam angetriebenen Pumpen (P3, P4) und ausgangsseitig mit einem Druckflüssigkeitsbehälter (R3) verbunden ist, und das andere Umsteuerventil (UV2) eingangsseitig mit dem Ausgang der anderen Pumpe (P3) der gemeinsam angetriebenen Pumpen (P3, P4) und ausgangsseitig mit dem Eingang der einen Pumpe (P4) in Verbindung steht, wobei der Eingang der parallel geschalteten Pumpe (P2) des Stellgliedes über ein Rückschlagventil (RV5) mit dem Eingang der einen Pumpe (P4) und über ein weiteres Rückschlagventil (RV6) mit dem Druckflüssigkeitsbehälter (R3) verbunden ist.
EP83107762A 1982-09-02 1983-08-06 Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse Withdrawn EP0103727A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5214/82 1982-09-02
CH521482 1982-09-02

Publications (1)

Publication Number Publication Date
EP0103727A1 true EP0103727A1 (de) 1984-03-28

Family

ID=4289854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107762A Withdrawn EP0103727A1 (de) 1982-09-02 1983-08-06 Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse

Country Status (2)

Country Link
EP (1) EP0103727A1 (de)
JP (1) JPS5961600A (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2294977A (en) * 1994-11-09 1996-05-15 Nicholas John Funnell Hydraulic drive system
WO1997025532A1 (de) * 1996-01-10 1997-07-17 Aeroquip-Vickers Internatonal Gmbh Verlustarmer antrieb für mehrere hydraulische aktuatoren
EP1291467A1 (de) * 2000-05-23 2003-03-12 Kobelco Construction Machinery Co., Ltd. Baumaschine
DE102009052531A1 (de) 2009-11-11 2011-05-12 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
ITMI20111408A1 (it) * 2011-07-27 2013-01-28 Promau Srl Apparato e metodo per il controllo elettroidraulico del parallelismo in una calandra per la lavorazione di manufatti in metallo
CN104088835A (zh) * 2014-07-06 2014-10-08 上海宏信设备工程有限公司 组合式螺纹自锁的液压冗余钢支撑轴力补偿系统
CN104088858A (zh) * 2014-07-06 2014-10-08 上海宏信设备工程有限公司 电源及液压冗余的螺纹自锁型轴力补偿系统
CN104196807A (zh) * 2014-09-18 2014-12-10 芜湖高昌液压机电技术有限公司 二柱龙门举升机液压马达同步回路
CN104405705A (zh) * 2014-09-18 2015-03-11 芜湖高昌液压机电技术有限公司 二柱龙门举升机自校正液压马达同步回路
DE202015106161U1 (de) 2015-11-13 2015-11-27 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102016118853B3 (de) * 2016-10-05 2017-10-26 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102016118854A1 (de) 2016-10-05 2018-04-05 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
CN111347713A (zh) * 2018-12-20 2020-06-30 罗伯特·博世有限公司 特别是用于压力机或注塑机的静液的驱动器
CN114263780A (zh) * 2021-12-20 2022-04-01 山东大学 一种压力逐级升降自平衡的高压或超高压阀门切换系统
DE102021006222B3 (de) 2021-12-16 2023-04-20 Hydac International Gmbh Pressenvorrichtung und 2/2-Wege-Proportional-Sitzventil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1125280B (de) * 1955-07-20 1962-03-08 Us Industries Inc Gleichlaufsteuerung fuer hydraulische Pressen, insbesondere Blechpressen
DE1577168A1 (de) * 1965-09-01 1971-10-07 Houdaille Industries Inc Angetriebenes Werkzeug
FR2214053A1 (de) * 1973-01-11 1974-08-09 Picot Sa
EP0029223A2 (de) * 1979-11-15 1981-05-27 Politechnika Krakowska Hydraulisches Versorgungssystem einer Pulsationspresse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1125280B (de) * 1955-07-20 1962-03-08 Us Industries Inc Gleichlaufsteuerung fuer hydraulische Pressen, insbesondere Blechpressen
DE1577168A1 (de) * 1965-09-01 1971-10-07 Houdaille Industries Inc Angetriebenes Werkzeug
FR2214053A1 (de) * 1973-01-11 1974-08-09 Picot Sa
EP0029223A2 (de) * 1979-11-15 1981-05-27 Politechnika Krakowska Hydraulisches Versorgungssystem einer Pulsationspresse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
\LHYDRAULIK UND PHEUMATIK, Band 24, Nr. 6, 1980, Seiten 462,465,466, Mainz (DE); *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2294977A (en) * 1994-11-09 1996-05-15 Nicholas John Funnell Hydraulic drive system
GB2294977B (en) * 1994-11-09 1997-08-06 Nicholas John Funnell Hydraulic drive system
WO1997025532A1 (de) * 1996-01-10 1997-07-17 Aeroquip-Vickers Internatonal Gmbh Verlustarmer antrieb für mehrere hydraulische aktuatoren
US6205780B1 (en) 1996-01-10 2001-03-27 Aeroquip-Vickers International Gmbh Low-loss drive system for a plurality of hydraulic actuators
EP1291467A1 (de) * 2000-05-23 2003-03-12 Kobelco Construction Machinery Co., Ltd. Baumaschine
EP1291467A4 (de) * 2000-05-23 2008-01-23 Kobelco Constr Machinery Ltd Baumaschine
US9044913B2 (en) 2009-11-11 2015-06-02 Hoerbiger Automatierungstechnik Holding GmbH Machine press
WO2011057773A2 (de) 2009-11-11 2011-05-19 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
DE102009052531A1 (de) 2009-11-11 2011-05-12 Hoerbiger Automatisierungstechnik Holding Gmbh Maschinenpresse
ITMI20111408A1 (it) * 2011-07-27 2013-01-28 Promau Srl Apparato e metodo per il controllo elettroidraulico del parallelismo in una calandra per la lavorazione di manufatti in metallo
EP2551029A1 (de) * 2011-07-27 2013-01-30 Promau S.R.L. Vorrichtung und Verfahren zur elektrohydraulischen Steuerung der Parallelität in einer Biegemaschine zur Bearbeitung von Metallprodukten
US9669443B2 (en) 2011-07-27 2017-06-06 Promau S.R.L. Apparatus and method for the electrohydraulic control of parallelism in a bending machine for working metal products
US9468961B2 (en) 2011-07-27 2016-10-18 Promau S.R.L. Apparatus and method for the electrohydraulic control of parallelism in a bending machine for working metal products
CN104088858B (zh) * 2014-07-06 2016-05-18 上海宏信设备工程有限公司 电源及液压冗余的螺纹自锁型轴力补偿系统
CN104088835A (zh) * 2014-07-06 2014-10-08 上海宏信设备工程有限公司 组合式螺纹自锁的液压冗余钢支撑轴力补偿系统
CN104088858A (zh) * 2014-07-06 2014-10-08 上海宏信设备工程有限公司 电源及液压冗余的螺纹自锁型轴力补偿系统
CN104088835B (zh) * 2014-07-06 2016-05-18 上海宏信设备工程有限公司 组合式螺纹自锁的液压冗余钢支撑轴力补偿系统
CN104196807A (zh) * 2014-09-18 2014-12-10 芜湖高昌液压机电技术有限公司 二柱龙门举升机液压马达同步回路
CN104405705A (zh) * 2014-09-18 2015-03-11 芜湖高昌液压机电技术有限公司 二柱龙门举升机自校正液压马达同步回路
DE202015106161U1 (de) 2015-11-13 2015-11-27 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
WO2017081202A1 (de) 2015-11-13 2017-05-18 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische antriebseinheit
DE102016119823A1 (de) 2015-11-13 2017-05-18 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102016118853B3 (de) * 2016-10-05 2017-10-26 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
DE102016118854A1 (de) 2016-10-05 2018-04-05 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische Antriebseinheit
WO2018065226A1 (de) 2016-10-05 2018-04-12 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische antriebseinheit
WO2018065130A1 (de) 2016-10-05 2018-04-12 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulische antriebseinheit
US10662976B2 (en) 2016-10-05 2020-05-26 HAWE Altenstadt Holding GmbH Electrohydraulic drive unit
CN111347713A (zh) * 2018-12-20 2020-06-30 罗伯特·博世有限公司 特别是用于压力机或注塑机的静液的驱动器
DE102021006222B3 (de) 2021-12-16 2023-04-20 Hydac International Gmbh Pressenvorrichtung und 2/2-Wege-Proportional-Sitzventil
CN114263780A (zh) * 2021-12-20 2022-04-01 山东大学 一种压力逐级升降自平衡的高压或超高压阀门切换系统

Also Published As

Publication number Publication date
JPS5961600A (ja) 1984-04-07

Similar Documents

Publication Publication Date Title
EP0615837B1 (de) Verfahren zur Regelung des Antriebs einer hydraulischen Presse und Vorrichtung zur Durchführung des Verfahrens
DE3238111C1 (de) Hydraulikeinrichtung fuer die Formschliesseinheit einer Kunststoff-Spritzgiessmaschine
EP0103727A1 (de) Gleichlaufregelungseinrichtung für den elektrohydraulischen Antrieb einer Abkantpresse
EP0641644A1 (de) Verfahren zur Regelung des Antriebs einer hydraulischen Presse und Vorrichtung zur Durchführung des Verfahrens
EP1318906A1 (de) Steuervorrichtung für eine hydraulische presse sowie verfahren zu deren betrieb
WO1996011796A1 (de) Hydraulisches antriebssystem für eine presse
DE1920184C3 (de) Vorrichtung zum gleichzeitigen und gleichmäßigen Bewegen mehrerer, durch Druckmittel betriebener Arbeitszylinder
WO1998013243A1 (de) Hydraulische bremsanlage mit bremskraftverstärkung
DE3247004C2 (de) Hydrostatisches Getriebe, insbesondere für den Fahrzeugantrieb
EP0629455B1 (de) Stauchpressenhauptantrieb
DE2349351C3 (de) Hydrauliksystem für eine Presse
WO2010051913A1 (de) Hydraulischer kraftübersetzer
DE2544794B2 (de) Antrieb einer hydraulischen Presse
DE2510667A1 (de) Hydraulisches steuer- und regelgeraet, insbesondere fuer spritzgiessmaschinen
DE3919640C2 (de) Steuerventileinrichtung mit zwei Steuerblöcken und Pumpensteuerung für mehrere hydraulische Antriebe
EP1076778B1 (de) Vorrichtung zur wegabhängigen steuerung der von einem kolben erzeugten kraft
EP0406792A1 (de) Regelschaltung für den Hochlauf der Druckwange eines Ziehapparats
DE2052303A1 (de) Hydraulikanlage für Planiermaschinen, Lademaschinen, Bagger und dergl
DE2223995B2 (de) Proportionalsteuerung für einen Hydraulikzylinder
DE1450878C (de) Hydrostatisches Getriebe
DE1650744C (de) Hydrostatisches Getriebe für Wechselbewegungen
DE1450878B2 (de) Hydrostatisches getriebe
DE2214013A1 (de) Drucksteuereinrichtung
DD93302B1 (de) Vollhydraulischer Schließantrieb, insbesondere für Spritzgußmaschinen
CH410643A (de) Steuereinrichtung für ein doppeltwirkendes Schubkolbengetriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19841129

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FREI, THEO